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Abstract 
 
 

In this paper we examine two methods for modelling asymmetries, namely dynamic 
leverage and threshold effects, in Stochastic Volatility (SV) models, one based on the 
threshold effects (TE) indicator function of Glosten, Jagannathan and Runkle (1992), 
and the other on dynamic leverage (DL), or the negative correlation between the 
innovations in returns and volatility. A general dynamic leverage threshold effects 
(DLTE) SV model is also used to enable non-nested tests of the two asymmetric SV 
models against each other to be calculated. The three SV models are estimated by the 
Monte Carlo likelihood (MCL) method proposed by Sandmann and Koopman (1998), 
and the finite sample properties of the estimator are investigated using numerical 
simulations. As the numerical simulation results show that the MCL estimator is biased, 
a simple method for correcting the bias is suggested and the performance of the 
bias-corrected MCL estimators is evaluated. Four financial time series are used to 
estimate the SV models, with empirical asymmetric effects found to be statistically 
significant in each case. The empirical results for S&P 500, TOPIX and Yen/USD 
returns indicate that dynamic leverage dominates the threshold effects model for 
capturing asymmetric behaviour, while the results for USD/AUD returns show that 
both the non-nested dynamic leverage and threshold effects models are rejected against 
each other. For the four data series considered, the dynamic leverage model dominates 
the threshold effects model in capturing asymmetric effects. In all cases, there is 
significant evidence of asymmetries in the general DLTE model.  
 
 
Key words: Stochastic volatility, asymmetric effects, dynamic leverage, threshold 
effects, indicator function, Monte Carlo likelihood, numerical simulations, bias 
correction, non-nested models. 
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1  Introduction 
 

It has long been recognized that the returns of financial assets are negatively 
correlated with changes in the volatilities of returns (see Black (1976) and Christie 
(1982)) and, moreover, that such volatilities tend to change over time. In the class of 
autoregressive conditional heteroskedasticity (ARCH) models pioneered by Engle 
(1982), several authors have proposed extensions of the ARCH model and found 
evidence of such negative correlation. For instance, Nelson (1991) proposed the 
exponential generalized ARCH (EGARCH) model, while Glosten, Jagannathan and 
Runkle (1992) developed a threshold indicator function GARCH model, which is 
commonly called the GJR model. The threshold effect is typically called asymmetry 
when the threshold is set to zero. A common idea used in such asymmetric models is 
the `leverage' effect, in which negative shocks to returns increase the predictable 
volatility to a greater extent than do positive shocks.  

 
On the other hand, stochastic volatility (SV) models are based on the direct 

correlation between the innovations in both returns and volatility. For a theoretical 
development in continuous time, Hull and White (1987) generalized the Black-Scholes 
option pricing formula to analyse stochastic volatility and the negative correlation 
between the innovations. In empirical research, extensions of a simple discrete time 
model due to Taylor (1986) have been analysed by Wiggins (1987), Chesney and Scott 
(1989), and Harvey and Shephard (1996) in order to accommodate the direct 
correlation. Although this extension has been called the asymmetric SV model, we will 
refer to the asymmetric behaviour based on the direct correlation between the 
innovations as the “dynamic leverage” SV model to distinguish it from an alternative 
model of asymmetry. 

 
In addition to the dynamic leverage model, this paper considers an alternative 

asymmetric SV model using a threshold effects indicator function, as developed by 
Glosten, Jagannathan and Runkle (1992) in the context of ARCH models. We will refer 
to the asymmetric behaviour based on a zero threshold indicator function as the 
“threshold effects” SV model. These two asymmetric SV models, as well as a more 
general model which incorporates both types of asymmetries, called the “dynamic 
leverage threshold effects” SV model, will be estimated and tested for an optimal and 
practical representation of asymmetry. The general model also permits the non-nested 
dynamic leverage and threshold effects SV models to be tested against each other. 
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The empirical analysis is concerned with both stock returns and exchange rate 
returns. Although Gallant, Hsieh and Tauchen (1991) found that the response of 
conditional volatility to negative and positive shocks was essentially symmetric for the 
British pound/US dollar exchange rate by using the seminonparametric technique of 
Gallant and Tauchen (1989), we observed asymmetries in the exchange rate data based 
on the dynamic leverage and threshold effects SV models, even though such 
asymmetries may not be captured adequately using the ARCH approach. 

 
For estimation of the SV model, recent developments have been on the 

likelihood-oriented procedures (see Fridman and Harris (1998), Sandmann and 
Koopman (1998) and Watanabe (1999)), and on the Bayesian Markov Chain Monte 
Carlo (MCMC) technique proposed by Jacquier, Polson and Rossi (1994) (see, among 
others, Chib, Nardari and Shephard (2002) and Shephard and Pitt (1998)). The Monte 
Carlo results conducted by Fridman and Harris (1998), Sandmann and Koopman 
(1998) and Watanabe (1999) show that the properties of these methods are very similar 
to those of Jacquier, Polson and Rossi (1994). While the procedures proposed by 
Fridman and Harris (1998) and Watanabe (1999) are more computationally demanding 
than the MCMC technique of Jacquier, Polson and Rossi (1994), the Monte Carlo 
likelihood method proposed by Sandmann and Koopman (1998) is much easier to 
implement computationally. With regard to the Bayesian approach, Asai (2003) found 
some evidence that the method of Chib, Nardari and Shephard (2002) was the best 
with regard to a numerical efficiency measure that was proposed by Geweke (1992). 

 
The remainder of the paper is organized as follows. Section 2 examines the 

dynamic leverage (DL), threshold effects (TE), and dynamic leverage threshold effects 
(DLTE) SV models, and investigates their relationships. A non-nested testing 
procedure to discriminate between the DL and TE models is also discussed. Section 3 
discusses some estimation techniques for SV models, and Section 4 presents the results 
of some Monte Carlo experiments regarding the finite sample performance of the 
estimators of the alternative SV models. As the numerical simulation results show that 
the MCL estimator is biased, a simple method for correcting the bias is suggested and 
the performance of the bias-corrected MCL estimators is evaluated. In Section 5, the 
two asymmetric SV models and the DLTE model are estimated using S&P 500 
Composite returns, the Tokyo stock price index (TOPIX) returns, and the exchange 
rates between the USA and Australia and between Japan and the USA. Section 6 gives 
some concluding remarks. 
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2  Asymmetric Effects in Stochastic Volatility Models 
 

In this paper we consider two types of asymmetric behaviour in SV models. 
Dynamic leverage captures asymmetry by the negative correlation between returns and 
volatility innovations, as follows: 

 
 ,,...,1),1,0(~),2/exp( TtNhy tttt == εσε  (1) 

 2
1 , ~ (0, ), ( ) ,t t t t t th h N Eη ηφ η η σ ε η ρσ+ = + =  (2) 

where ttt R µ−=y  is the mean-adjusted return on an asset. Since many financial time 
series exhibit little or no dynamic behaviour in the mean but pronounced serial 
dependence in the variance (see Bollerslev, Chow and Kroner (1992), Bollerslev, Engle 
and Nelson (1994), and Li, Ling and McAleer (2002) for useful surveys), the 
estimation of tµ  is not the subject of interest in this paper. We will refer to this type 
of asymmetry, namely when 0≠ρ , as the dynamic leverage (DL) SV model. When 

0=ρ , there is no dynamic leverage, although alternative asymmetries may be present 
(such as 0≠γ  in equation (3) below). 
 

There are two standard methods of capturing asymmetric behaviour in ARCH-type 
models, one of which is the exponential generalized ARCH (EGARCH) model of 
Nelson (1991). Although the EGARCH model has been used quite frequently in 
empirical applications when asymmetric behaviour is observed, the presence of the 
absolute value of a standardized shock in the model poses a problem regarding the 
statistical properties of the model. Shephard (1996) suggested a likely sufficient 
condition for consistency of the quasi-maximum likelihood estimator (QMLE). 
McAleer, Chan and Marinova (2002) noted that a similar condition was likely to be 
sufficient for the existence of moments and for asymptotic normality of the QMLE.  

 
A more frequently used model of asymmetric behaviour in ARCH-type models is 

the threshold indicator function ARCH (or GJR) model of Glosten, Jagannathan and 
Runkle (1992). The threshold effect is typically called asymmetry when the threshold 
is set to zero. Ling and McAleer (2002) established the necessary and sufficient 
conditions for the existence of moments of the GJR(1,1) model, while McAleer, Chan 
and Marinova (2002) established the sufficient conditions for consistency and 
asymptotic normality of the QMLE of GJR(1,1). In view of these recent theoretical 
results, the development of an alternative to the DL SV model will be based on the 
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threshold model of Glosten, Jagannathan and Runkle (1992). 
 

    In the model of asymmetry based on thresholds, volatility is affected by the sign 
of the previous returns innovation, as follows: 

 { }1 , ( ) [ ( )] ,t t t t t t th h I E Iφ ξ ξ γ ε ε η+ = + = − +  (3) 

where 0)(),,0(~ 2 =ttt EN ηεση η , and )(⋅I  is an indicator function such that 

1)( =xI  if  0<x  and 0)( =xI  otherwise. Note that 0][ =tE ξ  and 

2 2 2[ ] 4tE ηξ σ γ= + . In the following, we refer to this type of asymmetric behaviour, 

that is, when 0≠γ , as the threshold effects (TE) SV model. When 0=γ , there is no 
threshold effect, although alternative asymmetries may be present (such as 0≠ρ  in 
equation (2) above).  
 
    When 0≠ρ  in (2) and 0≠γ  in (3), this yields the dynamic leverage threshold 
effects (DLTE) SV model. The general DLTE model may be interpreted as either: (i) an 
asymmetric model which exhibits both dynamic leverage and threshold effects; or (ii) 
an artifact which is used solely for purposes of testing the non-nested DL and TE 
models against each other. In the latter case, the four possible outcomes of the 
non-nested tests of the DL and TE models against each other are as follows: 
(i) 0=ρ  and 0=γ , which leads to rejection of both DL and TE;  
(ii) 0≠ρ  and 0=γ , which leads to rejection of TE but not DL; 
(iii) 0=ρ  and 0≠γ , which leads to rejection of DL but not TE; 
(iv) 0≠ρ  and 0≠γ , which leads to rejection of neither DL nor TE.  
 
    Tests of non-nested conditional volatility models, specifically GARCH versus 
EGARCH, and GJR versus EGARCH, have been examined by Ling and McAleer 
(2000) and McAleer, Chan and Marinova (2002), respectively. For further details 
regarding non-nested testing procedures in the context of econometric time series and 
regression models, see McAleer (1995). 
 
    An alternative comparison of the DL and TE models can be made as follows. 
Averaged over the whole sample, we can examine the relationship between the DL and 
TE models through the correlation of tξ  and tε  under alternative models. While 

ρεξ =),( ttCorr  for the DL model, the correlation coefficient is given by 



7 

2 2( , ) 2 ( /4)t tCorr ηξ ε γ π σ γ= − +  for the TE model, since 

πεεε 212/||)),(( −=−= ttt EICov . This result indicates that an appropriate choice 

of γ  in the TE model would yield the same ),( ttCov εξ  as in the DL model. By 
appropriate construction of the TE and DL models, if the ty  are generated by the TE 

model when 0γγ =  and 0ηη σσ =  but the DL model is estimated, the estimate of ρ  

will be approximately 2 2
0 0 02 ( /4)ηγ π σ γ− + . However, if the data are generated by 

the true DL model but the TE model is estimated, the estimate of γ  will be smaller 
than the values derived by ρ  since the TE model can capture only the threshold 
effects.  
 

In the DLTE model, the correlation coefficient of tξ  and tε  is given by 

 

 ( )2 2

2
( , ) .

/4
t tCorr η

η η

ρσ π γ
ξ ε

π σ γ γρσ

−
=

+ −
 

 (4)  

 

This is also useful for testing the differences between the DL and TE models.

  

    It should be noted that 2 2( , ) 2 ( /4) 2 0.7979t tCorr ηξ ε γ π σ γ π= − + < =  for 

the TE model, which implies that this model is not appropriate for describing highly 
positive or negative correlation. 
 
3  Model Estimation 
 

Before we examine the empirical performance of the two non-nested asymmetric 
SV models, as well as the general DLTE SV model, it will be useful to discuss 
estimation of the SV model. There are three categories of estimator: (i) sampling 

theory based on ty ; (ii) sampling theory based on log 2y t ; (iii) Bayesian Markov 

Chain Monte Carlo (MCMC) methods. The distinction between the first two categories 
is important, especially for likelihood-based inference. For instance, Kim, Shephard 
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and Chib (1998) proposed the non-nested likelihood ratio test of the SV model versus 
the GARCH model, which needs additional estimation of the likelihood of ty   for the 

second category. The third category is indifferent to the choice of ty  or log 2y t  

because the posterior distributions are invariant to the choice of distribution of ty  or 

log 2y t  if the priors are the same.  

For each of the first two categories, there is an optimal method with respect to the 
finite sample properties, namely the likelihood-oriented procedures of Fridman and 
Harris (1998), Sandmann and Koopman (1998) and Watanabe (1999). For the first 
category, Fridman and Harris (1998) and Watanabe (1999) independently applied the 
non-Gaussian state-space-model filtering and smoothing procedure of Kitagawa (1987) 
to evaluate the likelihood through recursive numerical integration. It should be noted 
that another method of estimation is the efficient method of moments (EMM) 
procedure proposed by Gallant and Tauchen (1996), which matches the score of the 
auxiliary model through simulation. Although the procedures based on method of 
moments are known to be suboptimal relative to the likelihood-based methods, Gallant 
and Tauchen (1996) claim that, if the auxiliary model is an accurate approximation to 
the distribution of the data, then EMM is as efficient as maximum likelihood. However, 
there is no method for estimating the instantaneous volatility throughout the sample, 

Tt ,,1K= , so that an additional form of estimation, such as the Kalman filter based on 

log 2y t , is required.  

 
In the second category, Sandmann and Koopman (1998) proposed the Monte Carlo 

maximum likelihood method, for which the likelihood function can be approximated 
arbitrarily by decomposing it into a Gaussian part, constructed by the Kalman filter, 
and a remainder function, for which the expectation is evaluated through simulation. 
Monte Carlo results conducted by Fridman and Harris (1998), Sandmann and 
Koopman (1998) and Watanabe (1999) show that their methods have properties which 
are very close to those of Jacquier, Polson and Rossi (1994), which is an estimation 
method from the third category. While the procedures proposed by Fridman and Harris 
(1998) and Watanabe (1999) are more computationally demanding than the MCMC 
method of Jacquier, Polson and Rossi (1994), the Monte Carlo likelihood method 
proposed by Sandmann and Koopman (1998) is much easier to implement 
computationally. Regarding the estimation of the likelihood of ty , one of several 
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computationally inefficient but accurate methods can be used as this requires no 
iterations. For example, the auxiliary particle filters proposed by Pitt and Shephard 
(1999) would be suitable. 

 
    A distinguishing feature of the third category is that another measure of efficiency 
is required to compare the various methods as all the approaches produce a single 
posterior. Jacquier, Polson and Rossi (1994) proposed a Bayesian approach for 
estimating SV models using the MCMC technique. Their method is called the 
single-move sampler since it requires sampling each ht. Illustrative examples in de 
Jong and Shephard (1995), Shephard and Pitt (1997) and Kim, Shephard and Chib 
(1998) regarding the normal SV model suggest that the single-move sampler would 
produce a highly correlated sample sequence when state variables are highly 
autocorrelated. The single-move sampler is, therefore, inefficient in the sense that it 
needs to repeat the sampling a large number of times.  
 

Two methods are more efficient than the single-move sampler, the first of which is 
the multi-move sampler proposed by Shephard and Pitt (1997). As the original 
multi-move sampler suffers from serious estimation bias, Watanabe and Omori (2001) 
suggested a correction. A second method is the so-called “integration sampler”, which 
was proposed by Kim, Shephard and Chib (1998) and extended by Chib, Nardari and 
Shephard (2002). Based on simulated data, Asai (2003) found that, by using an 
efficiency factor presented in Geweke (1992), the integration sampler always 

outperformed the multi-move sampler for sampling ( , ηφ σ ), but that the former was 

generally less efficient than the latter for sampling σ  and the latent volatilities. Using 
the Yen/Dollar exchange rate data, Asai (2003) also showed that there was an empirical 
case in which the integration sampler outperformed the multi-move sampler for all the 

parameters ( ησφσ ,, ). 

 
Compared with the Monte Carlo Likelihood (MCL) method of Sandmann and 

Koopman (1998), the Bayesian MCMC methods are computationally demanding. The 
Monte Carlo results of Sandmann and Koopman (1998), which compare the MCL 
method with the MCMC method of Jacquier, Polson and Rossi (1994), show that MCL 
yields a larger bias than MCMC when the unconditional variance of the time-varying 
log-volatility is relatively small. Since such an outcome suggests that the volatility is 
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not particularly significant, in what follows only the MCL method is used for 
estimating the three SV models. 

 
Returning to the asymmetric SV models, as the MCL method can incorporate 

asymmetry and explanatory variables into the volatility equation, it is a straightforward 
extension to estimate the DL and TE models. For the Bayesian MCMC method, we 
would use a slight modification of the integration sampler of Chib, Nardari and 
Shephard (2002). It should be noted that Jacquier, Polson and Rossi (2004) proposed a 
Bayesian MCMC technique to estimate the DL model. However, this approach is based 
on Jacquier, Polson and Rossi (1994), which is less efficient than the method of Chib, 
Nardari and Shephard (2002) with respect to numerical efficiency. Moreover, Yu 
(2004) showed that it was not clear how to ensure or interpret the leverage effect in the 
model of Jacquier, Polson and Rossi (2004).  
 
4  Monte Carlo Experiments 
 

Simulation experiments were conducted in order to assess the performance of the 

MCL estimator. The range of parameter values )',,,( γσφσθ η=  was selected as 

follows. First, the autoregressive parameter φ  is set to 0.95, and ),,( γρση  is 

selected so that the coefficient of variation, namely 

1
1

)(Var
exp

)(E
)(Var

22 −⎟⎟
⎠

⎞
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⎝

⎛
−

==
φ
ξ t

t

t

h
h

CV  

takes the value of unity in the DLTE model, with a restriction that the correlation 
coefficient between tξ  and tε  is -0.30 or -0.60. Specifically, we set the parameter 
vector to be 

 ),,( γρση  = {(0.260, -0.30, 0), (0.241, 0, 0.195), (0.253, -0.15, 0.100)},  

which represents the DL, TE and DLTE models, respectively. Note that for each 

parameter set, the value of )(Var tξ  is 0.260, the absolute value of ρ  in DL is 

twice that of ρ  in DLTE, and the value of γ  in TE is roughly twice that of γ  in 
DLTE. For the case ( , ) 0.60t tCorr ε ξ = −  we specify the parameter values to be  

),,( γρση  = {(0.260, -0.60, 0), (0.173, 0, 0.388), (0.224, -0.30, 0.225)}. 
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Again, the value of )(Var tξ  is 0.260 for each parameter set. Second, the values of 

the location parameter, σ , are chosen such that the expected variance, namely 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)1(2
)(Var

exp)( 2
22

φ
ξ

σ t
tyE , 

is set to 0.0009. If the simulated data are regarded as weekly returns, this corresponds 
to an approximate 22% annualized standard deviation. For convenience in estimation, 
we mapped σ  into α  using 2logσα = , which yields =α  -7.36. For each θ , we 
generated a sample of size T = 1000, 2000 and 5000, and estimated the DL, TE and 
DLTE models using the MCL method. 
 

It should be noted that we exclude the case of highly negative autocorrelation, 
such as ( , ) 0.90t tCorr ε ξ = − , since it may exceed the bound for the TE model, as 
described in the previous section. 
 
4.1 Estimates based on correct models 
 

    Table 1 shows the results for ( ), 0.30t tCorr ε ξ = −  under various true models and 

sample sizes. Table 1(a) reports the sample means and standard deviations of the MCL 
estimates for 500K =  replications, while Table 1(b) presents the 95% coverage 
probabilities of the Monte Carlo simulations. Thus, for each replication i , a 

confidence interval is computed as )ˆ(Var96.1ˆ
ijij θθ ± , where )ˆ(Var ijθ  is the 

relevant element of the covariance matrix of the estimator ijθ̂ . The coverage 

probability, p̂ , corresponds to the number of times the true value of θ  (which, for 
the purposes of the experiments, is assumed to be known), 0θ , falls within the 
confidence interval for each replication, divided by the number of replications, K . 

Standard errors are computed from the Bernoulli formula )ˆ1(ˆ)/1( ppK − .  

 
    Table 1 indicates that there is a small bias in the estimator of ρ  relative to the 
true value. The bias seems to increase as || ρ  becomes large, being around 0.03 for 

0.15ρ = −  and around 0.06 for 0.30ρ = − . This may explain the relatively low 
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coverage probability for ρ  compared with γ , especially in DLTE. The bias in ρ  

remains even for sample size 5000T = , which may lead to the result that the coverage 
probability for ρ  decreases as the sample size increases for 0.30ρ = − . Estimated 

values of ( ),t tCorr ε ξ  and )(Var tξ , which are ρ  and ησ , respectively, in the DL 

model, also support the results regarding the bias. The absolute value of the estimate of 
ρ  in DL is roughly twice that of ρ  in DLTE, and the estimate of γ  in TE is twice 
that of γ  in DLTE, which are similar to the true parameter values. In TE (where 

0=ρ ), the sample mean of the correlation coefficient is close to the true value, but 
those for =ρ  0.15 and 0.30ρ = −  are about -0.33 and -0.37, respectively.  
 
The estimates of ρ  and γ  are significant in DL and TE, respectively, but neither is 

significant in DLTE for 1000T =  and 2000. The sample mean of )(Var tξ  

approaches the true value as ρ  approaches zero, and the bias seems to disappear as 
the sample size increases. Although it might be expected, the standard deviations in 
Table 1 are very close to those in Table 3 of Sandmann and Koopman (1998), which 
report the finite sample properties of the MCL estimates when 0ρ =  and 0γ = . 
 

    Table 2 presents the results for ( ), 0.60t tCorr ε ξ = −  under various true models. 

The bias for ρ  increases as ρ  deviates significantly from zero. While the bias is 
about 0.05 for 0.30ρ = − , it is about 0.10 for 0.60ρ = − . Estimates of γ  are close to 
the true values. In addition to these results, the evidence that the sample mean of 

)(Var tξ  approaches the true value as ρ  approaches zero implies that a little bias 

for ησ  is affected by the bias for ρ . Before we discuss a way of correcting such 

biases, it will be helpful to present the results for misspecified models, as the main 
concern in the paper is to examine the relationships among the DL, TE and DLTE 
models. 
 
4.2 Estimates based on misspecified models and LR tests 
 
    Table 3 shows the estimation results for two models when a third model is true. 
The sample size for Table 3 is 2000T = , with the results for 1000T =  and 5000 
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being omitted as they are qualitatively similar. Table 3(a) presents the sample means 
and standard deviations of the MCL estimates of TE and DLTE when the true model is 
DL. As expected, the estimated correlation coefficient between tξ  and tε  is far from 
the true value -0.3. While the estimate of γ  is significant in the incorrect TE but not 
in DLTE, the estimate of ρ is significant in DLTE. Table 3(b) indicates that DL can 
capture the true correlation between tξ  and tε  even when TE is the true model. 
While the estimate of ρ  is significant in the incorrect DL but not in DLTE, the 
estimate of γ is significant in DLTE. Thus, Tables 3(a) and 3(b) show that the 
non-nested t-test based on the general DLTE model has power to distinguish between 
the DL and TE models by rejecting TE when DL is true and also rejecting TE when DL 
is true. Table 3(c) shows that the estimates of ρ and γ are significant in the incorrect DL 
and TE models, respectively, when DLTE is true.  
 
    Table 4 reports the rejection frequencies of the likelihood ratio (LR) tests of the 
respective null hypotheses under alternative true models. Table 4(a) and (b) correspond 

to the cases for ( ),t tCorr ε ξ  to be -0.30 and -0.60, respectively. The LR test is based 

on log 2y t  since it does not require any additional computation. Table 4 indicates that 

the rejection frequency of the LR test is close to the nominal size of 5% when the DL 
and TE models are true, and that the LR test has sufficient power to reject the 
respective null hypotheses when the general DLTE model is true. Table 4(a) and (b)b 
also indicates that the rejection frequency of the LR test when the DLTE is true 
increase as the sample size increases. Comparing Table 4(a) with (b), the rejection 

frequency when the DLTE is true for ( ), 0.30t tCorr ε ξ = −  is relatively smaller than 

that for ( ), 0.60t tCorr ε ξ = − , as expected.  

 
4.3 Bias correction 
 

As stated above, the estimates of ρ  have a small bias even for sample size 

5000T = , with the estimates of ησ  being sensitive to the estimates of ρ . In order to 

cope with this problem, we propose an effective method for correcting the bias. 
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    Based on the response surface methodology, we consider two regressions as 
follows: 
 

 1 2

1 2 3 4

ˆ error,
ˆ / / error,

a a
b b b T b Tη η η

ρ ρ ρ
σ σ ρ σ
− = + +
− = + + + +

 

 
where ia  (i = 1,2) and ib  (i = 1, …, 4) are coefficients. The first regression does not 
depend on sample sizes as the bias of ρ  does not seem to be affected by the sample 
sizes that are typically used in empirical analysis. The first and second terms of the 
right-hand side of the second regression follow from the same idea, with the third and 
fourth terms diminishing as T  increases. In order to estimate these models, we used 
twelve observations listed in Tables 1(a) and 2(a) for the DL and DLTE models. Table 
5 shows the estimation results. All parameters except for the constant term for ρ  are 
significant at the five percent level. The p-value of the constant term is 0.053. Several 
other specifications were considered, including terms such as /Tρ , but these were all 
insignificant. Based on these results, two natural bias-corrected estimators are given as 
follows: 
 

 
( )ˆ 0.014 1.147,

ˆ (0.005 0.039 39.138 / )
.

1 181.79 /
T

T
η

η

ρ ρ
σ ρ

σ

= +

− − −
=

+

%

%
%

 

 
This method can be applied not only to the DL and DLTE models, but also to the TE 
model, with the latter obtained upon setting 0ρ =% .  
 

We performed Monte Carlo experiments to investigate the performance of the 
bias-corrected MCL estimators. Table 6 shows the results for 2000T =  and 

( , ) 0.3t tCorr ξ ε = − . Several other cases examined are qualitatively similar to the 
results in Table 6, and hence they are omitted. Compared with the original estimates in 

Table 1, Table 6 shows that the biases in ησ  and ρ  are reduced dramatically in the 

DL and DLTE models, and that the coverage probabilities about ρ  are much closer to 
0.95 than those reported in Table 1. The estimates of the correlation coefficients 

between tξ  and tε , and the estimates of Var( )ξ , are all close to the true values of 

-0.3 and 0.260, respectively. More precise estimates would require further extensive 
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Monte Carlo experiments using response surface methodology. The results in Table 6, 
however, indicate that the simple bias-correction method suggested above can be quite 
effective. 
 
5  Empirical Results 
 

This section examines the MCL estimates of asymmetric behaviour in the three SV 
models for four sets of empirical data, namely Standard and Poor's 500 Composite 
Index (S&P), the Tokyo stock price index (TOPIX), the US Dollar/Australian Dollar 
exchange rate (USD/AUD), and the Japanese Yen/US dollar exchange rate 
(YEN/USD). The sample period for S&P is 1/6/1986 to 12/4/2000, giving T = 3723 
observations, that for TOPIX is 1/4/1990 to 9/30/1999, giving T = 2403 observations, 
that for USD/AUD is 1/6/1986 to 12/4/2000, giving T = 3723 observations, and that 
for Yen/USD is 1/4/1990 to 12/28/1999, giving T = 2467 observations. We define 
returns ty  as 100 × {log Pt - log Pt-1} minus the sample mean, where Pt is the closing 
price on day t . Figure 1 shows the mean subtracted returns of all four series. There 
seems to be an outlying observation early in the sample for S&P, and there are 
clusterings of volatility in each series. 

 
    For stock returns, a negative correlation would be expected between the 
innovations in returns and volatility. Table 7 shows the MCL estimates for S&P. 
Although the estimates of ρ and γ are significant, and have the expected signs, at the 
five percent level in the DL and TE models, respectively, the non-nested LR test based 
on the general DLTE model rejects the TE null hypothesis but does not reject the DL 
null hypothesis. The result that DL is preferred to TE for S&P implies that threshold 
effects are inadequate for capturing the asymmetric structure of stock returns, whereas 
dynamic leverage is appropriate. Table 8 for TOPIX returns leads to a similar 
implication in that the individual estimates of ρ and γ are significant, and have the 
expected signs, at the five percent level in the DL and TE models, respectively, but the 
non-nested LR test based on the general DLTE model rejects TE in favour of DL. In 
both Tables 7 and 8, there is significant evidence of asymmetries in the general DLTE 
model.  
 
    The Monte Carlo results of Sandmann and Koopman (1998) show that their MCL 
method yields a larger bias than the Bayesian MCMC approach of Jacquier, Polson and 
Rossi (1994) when the unconditional variance of the time-varying log-volatility is 
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relatively small, especially when the value of CV defined in the previous section is 
close to 0.01. When CV is equal to or greater than one, the MCL estimates are very 
close to the true value, as are the Bayesian MCMC estimates. For S&P the value of CV 
is 1.060, which will guarantee robustness of the results with respect to the coefficient 
of variation.  
 
    Tables 9 and 10 present the MCL estimates for USD/AUD and Yen/USD returns. 
In Table 9, the value of CV is 1.171, and the estimate of γ, though having the expected 
sign, is insignificant in the TE model, which corresponds to the result of Gallant, Hsieh 
and Tauchen (1991) for the British Pound/US Dollar rate. However, the estimate of ρ is 
significant in the DL model, indicating a negative correlation between the USD/AUD 
returns and volatility innovations. It is interesting to note that the estimates of both ρ 
and γ are significant in the general DLTE model, which leads to rejection of both the 
non-nested DL and TE models against each other. Thus, the non-nested LR test does 
not reject either model in favour of the other. The results for Yen/USD returns in Table 
10 are similar to those for USD/AUD returns in Table 9, except that the estimate of γ is 
not significant in the general DLTE model, thereby leading to the rejection of the TE 
model in favour of the DL model. In both Tables 9 and 10, there is significant evidence 
of asymmetries in the general DLTE model. 
 
    The method of Sandmann and Koopman (1998) is used to obtain the smoothed 
volatility estimates of the DL and TE models for each of the four series, which are 
given in Figures 2 and 3, respectively. Apart from a spike early in the sample for S&P, 
which corresponds to an outlying observation, there do not appear to be extreme 
volatility estimates elsewhere in the series. Sample correlations between the pairs of 
volatility estimates for the four series in Figures 2(a)-2(d) and 3(a)-3(d) are very 
similar at 0.99223, 0.99053, 0.99464 and 0.99725, respectively. The differences in the 
smoothed volatility estimates in Figures 2 and 3 may be interpreted as follows. Let 

( , )t tCorr ε ξ  be denoted ρ1 and ρ2 for DL and TE, respectively, and the corresponding 
volatilities be denoted h1 and h2, respectively. In the empirical analysis, it is always 
the case that ρ1 < ρ2 < 0. There is a tendency for h1 > h2 after a large negative price 
shock. For example, there is a large negative shock around T = 500 in Figure 1(a), with 
Figures 2(a) and 3(a) showing that the corresponding volatilities satisfy h1 > h2. 
Similarly, there is a tendency for h1 < h2 immediately after a large positive shock. For 
example, there is a positive shock in Figure 1(c) around T = 3300, with Figures 2(c) 
and 3(c) showing that the corresponding volatilities satisfy h1 < h2.  
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6  Conclusion 
 
    In this paper we considered two methods for modelling asymmetries in Stochastic 
Volatility (SV) models, namely the threshold effects (TE) model based on the indicator 
function of Glosten, Jagannathan and Runkle (1992), and the dynamic leverage (DL) 
model based on the negative correlation between the innovations in returns and 
volatility. A general dynamic leverage threshold effects (DLTE) SV model, which 
could be interpreted as either an asymmetric model which exhibits both dynamic 
leverage and threshold effects; or as an artifact which is used solely for purposes of 
testing the non-nested DL and TE models against each other, was also analysed.   
 
    The three SV models were estimated by the Monte Carlo likelihood method 
proposed by Sandmann and Koopman (1998), and the finite sample properties of the 
estimator were investigated using numerical simulations. As the numerical simulation 
results show that the MCL estimator is biased, a simple method for correcting the bias 
was suggested and the performance of the bias-corrected MCL estimators was 
evaluated. Four financial time series were used to estimate the SV models, with 
asymmetric effects found to be statistically significant in each case. The empirical 
results for S&P 500, TOPIX and Yen/USD returns indicated that the dynamic leverage 
model dominated the threshold effects model for capturing asymmetric behaviour, 
while the results for USD/AUD returns showed that both the non-nested dynamic 
leverage and threshold effects models could be rejected against each other. For the four 
data series considered, the dynamic leverage SV model dominated the threshold effects 
SV model in capturing asymmetric behaviour. In all cases, there was significant 
evidence of asymmetries in the general DLTE model.  
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Table 1: Simulations for the MCL Estimator Based on True Models for 

( ), 0.30t tCorr ε ξ = −  

 
(a) Sample means and standard deviations of the MCL estimates 

Model T  φ  ησ  α  ρ  γ  Var( )ξ  Corr. 

DL 1000 0.941 0.282 -7.414 -0.377    
  (0.018) (0.038) (0.156) (0.119)    
 2000 0.944 0.279 -7.412 -0.369    
  (0.012) (0.028) (0.123) (0.092)    
 5000 0.946 0.276 -7.407 -0.367    
  (0.007) (0.017) (0.076) (0.052)    

TE 1000 0.942 0.253 -7.410  0.209 0.275 -0.303 
  (0.018) (0.037) (0.152)  (0.057) (0.037) (0.075)
 2000 0.944 0.252 -7.411  0.200 0.272 -0.293 
  (0.012) (0.027) (0.121)  (0.042) (0.027) (0.057)
 5000 0.946 0.252 -7.407  0.198 0.271 -0.292 
  (0.007) (0.017) (0.074)  (0.025) (0.017) (0.033)

DLTE 1000 0.941 0.272 -7.412 -0.172 0.112 0.282 -0.332 
  (0.018) (0.040) (0.157) (0.236) (0.105) (0.038) (0.133)
 2000 0.944 0.269 -7.422 -0.187 0.100 0.277 -0.330 
  (0.012) (0.028) (0.125) (0.164) (0.070) (0.027) (0.101)
 5000 0.946 0.266 -7.408 -0.182 0.103 0.274 -0.328 
  (0.007) (0.017) (0.076) (0.103) (0.044) (0.017) (0.059)
Note: `Corr.' denotes the correlation coefficient between tξ  and tε  
given in equation (4). 
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(b) 95% Coverage Probabilities 

Model T  φ  ησ  α  ρ  γ  

DL 1000 0.968 0.952 0.928 0.874  
  (0.008) (0.010) (0.012) (0.015)  
 2000 0.956 0.918 0.900 0.842  
  (0.009) (0.012) (0.013) (0.016)  
 5000 0.958 0.892 0.878 0.792  
  (0.009) (0.014) (0.015) (0.018)  

TE 1000 0.970 0.974 0.926  0.956 
  (0.008) (0.007) (0.012)  (0.009) 
 2000 0.962 0.952 0.902  0.942 
  (0.009) (0.010) (0.013)  (0.010) 
 5000 0.950 0.942 0.888  0.960 
  (0.010) (0.010) (0.014)  (0.009) 

DLTE 1000 0.968 0.964 0.930 0.888 0.936 
  (0.008) (0.008) (0.011) (0.014) (0.011) 
 2000 0.972 0.958 0.906 0.904 0.948 
  (0.007) (0.009) (0.013) (0.013) (0.010) 
 5000 0.956 0.932 0.882 0.922 0.950 
  (0.009) (0.011) (0.014) (0.012) (0.010) 

Note: The coverage probability is the fraction of times that the true 
parameter values falls within the confidence interval. Standard errors 
are given in parentheses and are computed from the Bernoulli 
formula given on page 11. 
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Table 2: Simulations for the MCL Estimator Based on True Models for 

( ), 0.60t tCorr ε ξ = −  

 
(a) Sample means and standard deviations of the MCL estimates 

Model T  φ  ησ  α  ρ  γ  Var( )ξ  Corr. 

DL 1000 0.943 0.296 -7.405 -0.704    
  (0.015) (0.037) (0.137) (0.081)    
 2000 0.945 0.293 -7.400 -0.699    
  (0.010) (0.027) (0.099) (0.059)    
 5000 0.947 0.291 -7.399 -0.696    
  (0.006) (0.016) (0.066) (0.036)    

TE 1000 0.945 0.181 -7.398  0.403 0.272 -0.593 
  (0.013) (0.031) (0.114)  (0.052) (0.032) (0.050)
 2000 0.947 0.182 -7.395  0.395 0.269 -0.586 
  (0.008) (0.022) (0.083)  (0.034) (0.022) (0.036)
 5000 0.947 0.183 -7.395  0.393 0.269 -0.583 
  (0.005) (0.014) (0.055)  (0.023) (0.014) (0.022)

DLTE 1000 0.944 0.242 -7.404 -0.346 0.238 0.284 -0.643 
  (0.014) (0.039) (0.137) (0.231) (0.098) (0.035) (0.114)
 2000 0.946 0.240 -7.402 -0.359 0.230 0.279 -0.644 
  (0.009) (0.027) (0.101) (0.159) (0.065) (0.024) (0.084)
 5000 0.947 0.239 -7.401 -0.360 0.229 0.277 -0.642 
  (0.006) (0.017) (0.067) (0.098) (0.041) (0.015) (0.051)
Note: `Corr.' denotes the correlation coefficient between tξ  and tε  
given in equation (4). 
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(b) 95% Coverage Probabilities 

Model T  φ  ησ  α  ρ  γ  

DL 1000 0.968 0.952 0.928 0.874  
  (0.008) (0.010) (0.012) (0.015)  
 2000 0.956 0.918 0.900 0.842  
  (0.009) (0.012) (0.013) (0.016)  
 5000 0.958 0.892 0.878 0.792  
  (0.009) (0.014) (0.015) (0.018)  

TE 1000 0.964 0.964 0.942  0.962 
  (0.008) (0.008) (0.010)  (0.009) 
 2000 0.954 0.956 0.916  0.958 
  (0.009) (0.009) (0.012)  (0.009) 
 5000 0.952 0.926 0.888  0.950 
  (0.010) (0.012) (0.014)  (0.010) 

DLTE 1000 0.962 0.962 0.932 0.874 0.922 
  (0.009) (0.009) (0.011) (0.015) (0.012) 
 2000 0.956 0.942 0.910 0.884 0.948 
  (0.009) (0.010) (0.013) (0.014) (0.010) 
 5000 0.954 0.892 0.886 0.876 0.950 
  (0.009) (0.014) (0.014) (0.015) (0.010) 

Note: The coverage probability is the fraction of times that the true 
parameter values falls within the confidence interval. Standard errors 
are given in parentheses and are computed from the Bernoulli 
formula given on page 11. 
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Table 3: Simulations for the MCL Estimator Based on True Models 
 

(a) True model: DL  

Model φ  ησ  α  ρ  γ  Var( )ξ  Corr. 

TE 0.944 0.265 -7.415  0.129 0.273 -0.189 
 (0.013) (0.028) (0.124)  (0.042) (0.028) (0.060) 

DLTE 0.944 0.280 -7.412 -0.366 -0.002 0.281 -0.366 
 (0.013) (0.031) (0.124) (0.145) (0.069) (0.029) (0.094) 

Note: `Corr.' denotes the correlation coefficient between tξ  and tε  
given in the text. 

 
 

(b) True model: TE  

Model φ  ησ  α  ρ  γ  Var( )ξ  Corr. 

DL 0.943 0.280 -7.409 -0.375    
 (0.012) (0.028) (0.124) (0.090)    

DLTE 0.944 0.255 -7.411 -0.006 0.198 0.274 -0.295 
 (0.012) (0.027) (0.121) (0.173) (0.069) (0.027) (0.105) 

Note: `Corr.' denotes the correlation coefficient between tξ  and tε   
given in the text. 

 
 

(c) True model: DLTE  

Model φ  ησ  α  ρ  γ  Var( )ξ  Corr. 

DL 0.944 0.283 -7.411 -0.367    
 (0.012) (0.028) (0.126) (0.091)    

TE 0.944 0.263 -7.414  0.165 0.276 -0.239 
 (0.012) (0.027) (0.124)  (0.042) (0.027) (0.058) 

Note: `Corr.' denotes the correlation coefficient between tξ  and tε   
given in the text. 
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Table 4: Rejection Frequencies (RF) of Likelihood Ratio Tests 
 
 

(a) Rejection Frequencies for ( ), 0.30t tCorr ε ξ = −  

Null  True RF 
hypothesis model 1000T = 2000T = 5000T =  

H0: γ=0 DL 0.06 0.05 0.05 
 DLTE 0.21 0.31 0.65 

H0: ρ=0 TE 0.06 0.06 0.04 
 DLTE 0.13 0.19 0.40 

 
 

(b) Rejection Frequencies for ( ), 0.60t tCorr ε ξ = −  

Null  True RF 
hypothesis model 1000T = 2000T = 5000T =  

H0: γ=0 DL 0.07 0.05 0.04 
 DLTE 0.71 0.94 1.00 

H0: ρ=0 TE 0.06 0.05 0.04 
 DLTE 0.30 0.56 0.91 

 

Note: The likelihood is based on the distribution of log 2y t . The 

nominal significance level is 5% and the corresponding value of the 
cumulative distribution function of χ2 (1) is 3.84. 
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Table 5: Response Surface Regressions for Biases 
 

Dependent 
variable 

Const. ρ  1/T  /Tησ  S.E. 2R  

ρ̂ ρ−  -0.014 0.147   0.0099 0.878 
 (-2.19) (8.47)     
 [0.053] [0.000]     

ˆη ησ σ−  0.005 -0.039 -39.138 181.79 0.0018 0.960 

 (2.97) (-11.69) (-2.80) (3.26)   
 [0.018] [0.000] [0.023] [0.011]   
Note: t-values are given in parentheses and p-values 
based on the t-distribution are given in brackets. 

 
 

Table 6: Simulations for the Bias Corrected MCL Estimators Based on True Models for 

( ), 0.30t tCorr ε ξ = −  and 2000T =  

 

 
Sample means and standard deviations 

of the bias corrected MCL estimates 
95% Coverage 
Probabilities 

Model ησ  ρ  Var( )ξ Corr. ησ  ρ  

DL 0.258 -0.310   0.964 0.968 
 (0.025) (0.073)     

TE 0.245  0.266 -0.302 0.936  
 (0.024)  (0.024) (0.053)   

DLTE 0.254 -0.147 0.263 -0.301 0.968 0.964 
 (0.025) (0.144) (0.026) (0.081)   

Note: `Corr.' denotes the correlation coefficient between tξ  and tε  
given in equation (4). The coverage probability is the fraction of 
times that the true parameter values falls within the confidence 
interval. Standard errors are given in parentheses and are computed 
from the Bernoulli formula given on page 11. 
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Table 7: MCL Estimates for S&P 500 Returns 
 

Model φ  ησ  α  ρ  γ  LogLike Corr. 

SV 0.9634 0.2297 -0.5103   -8306.5 0 
 (0.0083) (0.0248) (0.1060)     

DL 0.9527 0.2753 -0.5050 -0.4911  -8284.0 -0.49 
 (0.0096) (0.0279) (0.0893) (0.0599)   (0.06) 

TE 0.9587 0.2415 -0.5527  0.1565 -8294.0 -0.25 
 (0.0090) (0.0258) (0.0993)  (0.0329)  (0.04) 

DLTE 0.9530 0.2726 -0.5085 -0.4728 0.0136 -8284.0 -0.49 
 (0.0096) (0.0291) (0.0903) (0.0871) (0.0452)  (0.06) 

Note: Standard errors are given in parentheses. 
 
 
 
 

Table 8: MCL Estimates for TOPIX Returns 
 

Model φ  ησ  α  ρ  γ  LogLike Corr. 

SV 0.9492 0.2741 0.0334   -5181.2 0 
 (0.0111) (0.0281) (0.1143)     

DL 0.9608 0.2643 0.0065 -0.5976  -5151.8 -0.60 
 (0.0092) (0.0260) (0.1186) (0.0623)   (0.06) 

TE 0.9610 0.2204 -0.0280  0.2444 -5156.0 -0.39 
 (0.0087) (0.0245) (0.1190)  (0.0333)  (0.05) 

DLTE 0.9618 0.2409 -0.0093 -0.4800 0.0829 -5150.8 -0.60 
 (0.0087) (0.0266) (0.6516) (0.1061) (0.0486)  (0.07) 

Note: Standard errors are given in parentheses. 
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Table 9: MCL Estimates for USD/AUD Returns 
 

Model φ  ησ  α  ρ  γ  LogLike Corr. 

SV 0.8651 0.4417 -1.3579   -10318 0 
 (0.0232) (0.0421) (0.0579)     

DL 0.8522 0.4623 -1.3637 -0.2290  -10310 -0.23 
 (0.0238) (0.0423) (0.0596) (0.0533)   (0.05) 

TE 0.8607 0.4452 -1.3332  0.0635 -10317 -0.06 
 (0.0238) (0.0423) (0.0596)  (0.0387)  (0.04) 

DLTE 0.8515 0.4813 -1.4123 -0.3433 -0.1204 -10307 -0.24 
 (0.0241) (0.0449) (0.0587) (0.0715) (0.0584)  (0.05) 

Note: Standard errors are given in parentheses. 
 
 
 
 
 

Table 10: MCL Estimates for YEN/USD Returns 
 

Model φ  ησ  α  ρ  γ  LogLike Corr. 

SV 0.9412 0.2619 -0.9823   -5300.1 0 
 (0.0153) (0.0351) (0.0953)     

DL 0.9320 0.2797 -0.9705 -0.2351  -5296.2 -0.24 
 (0.0173) (0.0379) (0.0875) (0.0800)   (0.08) 

TE 0.9370 0.2681 -0.9705  0.0510 -5299.1 -0.08 
 (0.0166) (0.0367) (0.0923)  (0.0373)  (0.05) 

DLTE 0.9327 0.2899 -0.9801 -0.3904 -0.0928 -5295.1 -0.26 
 (0.0168) (0.0395) (0.0874) (0.1203) (0.0624)  (0.07) 

Note: Standard errors are given in parentheses. 
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