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Introduction

The Autoregressive Conditional Heteoskedas-

ticity (ARCH) model (Engle, 1982 and Boller-

slev, 1986) is often used to describe and fore-

cast conditional volatility in asset returns.

This model is designed to predict the condi-

tional variance of the second observation in a

volatile period, but not the first.

We propose the GARCH-IE (IE for innovation

effects) model, which adds a component to the

GARCH equation such that it becomes pos-

sible to forecast a sudden jump in volatility.

Hence, the first observation in a sequence of

large returns might be predicted.
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Main idea: the IE component is a positive-

valued outcome of a threshold (censored) re-

gression. This regression contains explanatory

variables and an error term.

In a sense, our model is in between the stan-

dard GARCH model and the stochastic volatil-

ity (Taylor, 1986) model, where in this last

model an error term is always included in the

conditional volatility equation.



GARCH

Consider a stock return yt, and

yt = β1 + β2xt−1 + εt, (1)

where xt−1 concerns explanatory variables for

these returns. The GARCH model assumes

that

εt = ηt

√
ht (2)

and

ht = ω + α(yt−1 − β1 − β2xt−2)
2 + βht−1 (3)

Note: no additional error term in (3) and also

AR(1) structure.
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Innovation effects

Franses and Paap (JAE 2002) assume latent

shocks to emerge from a censored (threshold)

regression model, where linear combinations of

lagged explanatory variables lead to positive

shocks, while otherwise shocks have zero ef-

fect.

This feature reads as adding vt with

vt =

{
θ0 + θ1xt−1 + ut if θ0 + θ1xt−1 > −ut
0 if θ0 + θ1xt−1 ≤ −ut

}

(4)

to a series yt, with ut ∼ N(0, σ2
u). As only posi-

tive values of vt are added, the model contains

an explicit description of exogenous innovation

effects.
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Explanatory variables

Franses, van der Leij and Paap (JAE 2002)

recommend to consider the moving average of

stock prices over k days, that is,

zk,t =
1

k

t∑

i=t−k+1

zi.

The ratio of the moving average of stock prices

of k1 days over that of k2 days is defined as

xt =
zk1,t − zk2,t

zk2,t
, (5)

where usually 0 < k1 < k2. Typically, in prac-

tice one takes k1 to be equal to 1, 2 or 5, and

k2 equal to 50, 100 or 200.

In our empirical work below we use the ratio

of 1-day and 50-days moving average.
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GARCH-IE

The GARCH-IE model is given by

yt = β1 + β2xt−1 + εt, (6)

where

εt = ηt

√
ht, (7)

with

ht = ω + αε2t−1 + β(ht−1 − vt−1) + vt, (8)

and

vt =

{
θ1 + θ2xt−1 + ut if θ1 + θ2xt−1 > −ut
0 if θ1 + θ2xt−1 ≤ −ut,

(9)

where ηt ∼ N(0,1) and ut ∼ N(0, σ2
u). We

assume that ηt is mutually uncorrelated with

ut.
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model
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Simulation results for an ARCH-IE and an ARCH

model, when averaged over 1000 replications

for a sample size of 1000.

Statistic ARCH-IE ARCH

Mean 0.1019 0.1021
Variance 2.4712 1.8800
Skewness -0.0308 -0.0112
Kurtosis 6.9041 5.8349
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Inference

The log-likelihood is

`(YT |XT−1;β, γ, θ) =
T∑

t=1

ln(f(yt|Yt−1, xt−1;β, γ, θ)),

(10)

where β comprises β1, β2, γ reflects ω, α and β

and θ summarizes θ1, θ2.

As vt has a censored normal distribution, the

density function of yt given its past and xt−1

can be written as

f(yt|Yt−1, xt−1; yt) =

Pr[vt = 0|xt−1;β, γ, θ]f(yt|Yt−1, xt−1, vt;β, γ, θ)|vt=0

+
∫ ∞
−x

′
tθ

1

σu
φ

(
ut

σu

)
f(yt|Yt−1, xt−1, vt)|vt>0dut

(11)
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Nine stock markets

Daily data for years 1990-1999. Forecasting

sample is 2000.

We use AIC for within-sample evaluation and

the log-likelihood for out-of-sample compari-

son.

Next, we consider those large absolute returns

which were preceded by 20 small returns.

Expected sign of θ2 is negative. When the

recent index is below a longer-term average,

we might expect sudden volatility (leverage ef-

fect).
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GARCH(1,1) and GARCH-IE(1,1) model for daily returns on the
Dow Jones from 1/1/1990 to 12/31/1999

α β θ1 θ2 σ2
u

GARCH 0.049 0.942
( 0.009 ) ( 0.011 )

GARCH-IE 0.013 0.979 -1.772 -0.387 4.267
( 0.004 ) ( 0.006 ) ( 0.482 ) ( 0.078 ) ( 1.280 )
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Within-sample performance in forecasting

absolute returns (AIC)
GARCH-IE GARCH

DOWJONES 2.433 2.497
NASDAQ 2.812 2.856
SP500 2.389 2.451
NIKKEI 3.410 3.486
FTSE 2.540 2.565
DAX 3.031 3.121
CAC 3.132 3.166
AEX 2.715 2.753
HANGSENG 3.542 3.601
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Out-of-sample performance in forecasting

absolute returns for 2000 (LL)
GARCH-IE GARCH

DOWJONES -416.950 -418.316
NASDAQ -630.853 -633.571
SP500 -432.559 -438.385
NIKKEI -437.319 -443.926
FTSE -399.702 -397.876
DAX -462.203 -460.682
CAC -460.340 -459.394
AEX -394.572 -396.470
HANGSENG -517.670 -523.109
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Forecasting performance of GARCH-IE

compared with the GARCH model for

observations with 20 days of low returns

before: Fraction of times that

GARCH-IE model gives more accurate forecast
Within-sample Out-of-sample

DOWJONES 9 (11) 3 (6)
NASDAQ 1 (5) 0 (0)
SP500 8 (12) 4 (5)
NIKKEI 4 (7) 1 (5)
FTSE 5 (10) 2 (8)
DAX 2 (6) 1 (1)
CAC 4 (5) 2 (4)
AEX 2 (4) 3 (5)
HANGSENG 0 (3) 1 (1)
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Conclusion

First attempt to sensibly include additional er-

ror term in GARCH model

Inference is not difficult.

Illustrations show an improved within-sample

fit, but not always good out-of-sample fore-

casts.

Perhaps we should look for better xt−1 vari-

ables.
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