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Introduction

The Autoregressive Conditional Heteoskedas-
ticity (ARCH) model (Engle, 1982 and Boller-
slev, 1986) is often used to describe and fore-
cast conditional volatility in asset returns.

This model is designed to predict the condi-
tional variance of the second observation in a
volatile period, but not the first.

We propose the GARCH-IE (IE for innovation
effects) model, which adds a component to the
GARCH equation such that it becomes pos-
Ssible to forecast a sudden jump in volatility.
Hence, the first observation in a sequence of
large returns might be predicted.



Main idea: the IE component is a positive-
valued outcome of a threshold (censored) re-
gression. This regression contains explanatory
variables and an error term.

In a sense, our model is in between the stan-
dard GARCH model and the stochastic volatil-
ity (Taylor, 1986) model, where in this last
model an error term is always included in the
conditional volatility equation.



GARCH

Consider a stock return y¢, and

yr = B1 + PBoxi—1 + €, (1)

where x;_1 concerns explanatory variables for
these returns. The GARCH model assumes
that

et = eV hy (2)
and

ht =w+a(y_1 — B1 — Boxrs_2)° + Bhi_1 (3)

Note: no additional error term in (3) and also
AR(1) structure.



Innovation effects

Franses and Paap (JAE 2002) assume latent
shocks to emerge from a censored (threshold)
regression model, where linear combinations of
lagged explanatory variables lead to positive
shocks, while otherwise shocks have zero ef-
fect.

This feature reads as adding vy with

i 00+ 0121 +ur if g+ 01241 > —uy
7o if 0 + 01241 < —uy

(4)
to a series y;, with u; ~ N(0,02). As only posi-
tive values of v; are added, the model contains
an explicit description of exogenous innovation
effects.



Explanatory variables

Franses, van der Leij and Paap (JAE 2002)
recommend to consider the moving average of
stock prices over k days, that is,
t
Ek:,t = % Z Z;.
i=t—k—+1

The ratio of the moving average of stock prices
of kq days over that of k> days is defined as

wy = Tt~ St (5)
kot
where usually 0 < k1 < ko. Typically, in prac-
tice one takes ki to be equal to 1, 2 or 5, and
k> equal to 50, 100 or 200.

In our empirical work below we use the ratio
of 1-day and 50-days moving average.



GARCH-IE

The GARCH-IE model is given by

yr = B1 + Boxi—1 + €, (6)

where

et = ntVhi, (7)
with

ht=w+aer 1+ B(hi—1 —vi_1) +v,  (8)
and
oy — ) 01t 02w 1 w0101+ Ocap 1 > —wy
' 0 if 01 + 0oxp 1 < —uy,

(9)

where n; ~ N(0,1) and u; ~ N(0,02). We
assume that »n; is mutually uncorrelated with

Ut .
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Simulation results for an ARCH-IE and an ARCH
model, when averaged over 1000 replications
for a sample size of 1000.

Statistic ARCH-IE ARCH
Mean 0.1019 0.1021
Variance 2.4712 1.8800
Skewness -0.0308 -0.0112
Kurtosis 6.9041 5.8349
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Inference

The log-likelihood is

T
E(YT|XT—1;6777 6) — Z ln(f(ytlyt—lvxt—l;67779))7

t=1

(10)

where g comprises 31, B>, v reflects w, a and 3
and 6 summarizes 64, 60->.

As vy has a censored normal distribution, the
density function of y; given its past and xz;_1
can be written as

flye i1, z—1,91) =
Pr[’l)t — O|xt—1; 67’77 Q]f(ytn/%—lamt—lavt; 6777 9)|vt=0
oo 1] Ut
+/ / cb( )f(yt|Yt—1,fCt—l,’Ut)|vt>odUt
—$t9 Oy Ou
(11)
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Nine stock markets

Daily data for years 1990-1999. Forecasting
sample is 2000.

We use AIC for within-sample evaluation and
the log-likelihood for out-of-sample compari-
son.

Next, we consider those large absolute returns
which were preceded by 20 small returns.

Expected sign of 6> is negative. When the
recent index is below a longer-term average,
we might expect sudden volatility (leverage ef-
fect).
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GARCH(1,1) and GARCH-IE(1,1) model for daily returns on the
Dow Jones from 1/1/1990 to 12/31/1999

o 3 01 05 o2
GARCH 0.049 0.942
( 0.009 ) ( 0.011)
GARCH-IE 0.013 0.979 ~1.772 -0.387 4.267

(0.004) (0.006) (0.482) (0.078) (1.280)
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Within-sample performance in forecasting

absolute returns (AIC)
GARCH-IE GARCH

DOWJONES 2.433 2.497
NASDAQ 2.812 2.856
SP500 2.389 2.451
NIKKEI 3.410 3.486
FTSE 2.540 2.565
DAX 3.031 3.121
CAC 3.132 3.166
AEX 2.715 2.753
HANGSENG 3.542 3.601
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Qut-of-sample performance in forecasting

absolute returns for 2000 (LL)
GARCH-IE GARCH

DOWJONES -416.950 -418.316

NASDAQ -630.853 -633.571
SP500 -432.559 -438.385
NIKKEI -437.319 -443.926
FTSE -399.702 -397.876
DAX -462.203 -460.682
CAC -460.340 -459.394
AEX -394.572 -396.470

HANGSENG -517.670 -523.109
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Forecasting performance of GARCH-IE
compared with the GARCH model for
observations with 20 days of low returns
before: Fraction of times that
GARCH-IE model gives more accurate forecast

Within-sample Out-of-sample

DOWJONES 9 (11) 3 (6)
NASDAQ 1 (5) 0 (0)
SP500 8 (12) 4 (5)
NIKKEI 4 (7) 1 (5)
FTSE 5 (10) 2 (8)
DAX 2 (6) 1 (1)
CAC 4 (5) 2 (4)
AEX 2 (4) 3 (5)

HANGSENG 0 (3) 1 (1)
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Conclusion

First attempt to sensibly include additional er-
ror term in GARCH model

Inference is not difficult.

Illustrations show an improved within-sample
fit, but not always good out-of-sample fore-
casts.

Perhaps we should look for better z;_71 vari-
ables.
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