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ABSTRACT 
 
 

 
In this paper, I consider the problem faced by a professional investment manager who 
wants to track the return of the S&P 500 index with 30 DJIA stocks. The manager 
constructs many covariance matrix estimators, based on daily returns and high-frequency 
returns, to form his optimal portfolio. Although prior research has documented that 
realized volatility based on intraday returns is more precise than daily return constructed 
volatility, the manager will not switch from daily to intraday returns to estimate the 
conditional covariance matrix if he rebalances his portfolio monthly and has past 12 
months of data to use. He will switch to intraday returns only when his estimation 
horizon is shorter than 6 months or he rebalances his portfolio daily. 
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1. Introduction

Volatility is central for many asset pricing, asset allocation and risk man-
agement applications.1 Thus, following the work of Merton (1980) and Nelson
(1992), there is increasing interest among financial economists on the high pre-
cision with which volatility can be estimated under the diffusion assumption
which is often invoked in theoretical work. The basic insight is that precise
estimation of volatility can be obtained from an arbitrarily short span of data
provided that returns are sampled sufficiently frequently. In contrast, precise
estimation of the drift generally requires long spans of data, regardless of the
frequency with which returns are sampled. As a result, there is an apparent
tendency toward the use of high-frequency data in the volatility measurement
in the literature.
Historically, the choice of the sampling frequency was decided by the data

availability. In the early days, monthly returns were used. Later, daily data
became available. In recent years, the ever lower costs of data recording and
storage have made time-stamped observations on all quotes and transactions,
named ultra-high frequency data by Engle (2000), available in many important
financial markets. With the advent of high-frequency data, significant progress
has been made in the volatility measurement. Among this, a novel model-free
approach called realized volatility has been proposed in Andersen and Boller-
slev (1998) which uses high-frequency returns. Basically, this approach is to
estimate the ex-post realized volatility by summing the squared intraday high-
frequency returns. They argue that these realized volatility estimates should be
free from measurement error in theory as the sampling frequency of the returns
approaches infinity. In practice, to mitigate the contamination by market mi-
crostructure frictions which include price discreteness, infrequent trading, and
bid-ask bounce, a five-minute return horizon is chosen as the effective “contin-
uous time record” for high liquid assets as suggested in Andersen, Bollerslev,
Diebold, and Labys (2000) and Andreou and Ghysels (2001). A number of
papers implement this approach and use five-minute returns to estimate the
realized volatility and examine its properties. Among them, Andersen, Boller-
slev, Diebold, and Labys (2000, 2001) examine foreign exchange rates, Ander-
sen, Bollerslev, Diebold, and Ebens (2001, henceforth, ABDE) examine DJIA
stocks, Ebens(2000) examines the DJIA index, and Areal and Taylor (2002) ex-
amine FTSE-100 index futures. These findings provide support for the realized
volatility approach in the statistical sense.
Despite the availability of intraday data, it is still very common to use daily

returns to estimate volatility, especially unconditional variance. A natural ques-
tion to ask is whether there is benefit of using intraday data to estimate volatility
in practice. Bai, Russell, and Tiao (2001, BRT, hereafter) provide a measure
of the usefulness of high frequency data in estimating volatility. They examine
the precision of unconditional variance estimates that use high-frequency data

1Here I use the term “volatility” to refer to any element of covariance matrix of asset
returns, thus in this paper, the use of volatility is to denote variances and covariances rather
than standard deviations.
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and derive an analytical expression for it as a function of the prominent high-
frequency data characteristics including leptokurtosis, autocorrelation in the
returns, deterministic patterns and volatility clustering in intraday variance.
Their simulation and empirical results indicate that once these features are ac-
counted for, the benefit of using high frequency data to estimate daily volatility
is much smaller than the one under ideal situation in which the asset prices
follow the geometric Brownian motion. The simple sum of squares estimator
using intraday returns can be much less efficient than those from daily returns
when high-frequency returns have significant negative lag one autocorrelation
and strong leptokurtosis.
High-frequency data are more useful to estimate time-varying volatility.

Fleming, Kirby, and Ostdiek (2003, henceforth, FKO) evaluate the economic
benefits of the realized volatility approach in the context of investment deci-
sions. They consider a risk-averse investor who uses conditional mean-variance
analysis to allocate funds across four asset classes: stocks, bonds, gold, and
cash, and rebalances his portfolio daily. Their results indicate that the value
of switching from daily to intradaily returns to estimate the conditional covari-
ance matrix can be substantial. The investor would be willing to pay 50 to 200
basis points per year to capture the incremental gains generated by the realized-
volatility-based estimator. Moreover, volatility timing at the daily levels leads
to performance gains over longer horizons. However, in this latter case, FKO
(2003) only compare realized-volatility-based volatility-timing strategy with the
ex ante efficient static portfolios for a range of longer horizons, thus it is still
unclear whether there is benefit of switching from daily to intradaily returns to
measure the conditional covariance matrix over longer horizons.
In this paper, I consider a professional investment manager whose objective

is to track the S&P 500 index with 30 stocks in the Dow Jones Industrial Av-
erage (DJIA).2 The minimum tracking error volatility portfolio can be found
by expressing every stock’s return in excess of the return on the benchmark,
and solving for the portfolio with the lowest variance of excess returns. Previ-
ous research (Jagannathan and Ma, 2003) shows that once the nonnegativity
constraint is imposed, portfolios constructed using sample covariance matrices
perform as well as portfolios constructed using covariance matrices estimated
using factor models and shrinkage methods, whether they use monthly returns
or daily returns. Also, the sample covariance matrix of daily returns performs
better than the monthly return covariance matrix. To extend the research with
higher frequency data, I construct large covariance matrix estimates based on
intraday returns and daily returns respectively, and evaluate whether there is
benefit of using high-frequency data. The manager first uses past 12 months
of data, daily or high-frequency data to estimate the covariance matrix every
month and hold the portfolio for one month and redo the estimation once every
month. For this purpose, I construct estimates of the conditional covariance
matrix based on daily returns and intraday returns, which include the sample

2 I focus on the 30 DJIA stocks for their importance and computational tractability. It
should be easily extended to a limited number of other liquid stocks.
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covariance matrix adjusted or unadjusted for microstructure effects, the opti-
mal shrinkage estimator of Ledoit and Wolf (2001), and the rolling estimators
suggested by Foster and Nelson (1996) and Andreou and Ghysels (2002). Con-
sistent with FKO (2003) and BRT (2001), I find that adding overnight returns
and first-order correlation in the measure of the realized volatility will greatly
reduce the tracking errors. But unlike FKO (2003), there is no evidence that the
tracking errors from realized-volatility-based estimator are smaller than those
from daily returns, even when the simplest sample covariance matrix of daily
returns is used. They are almost the same after the former estimator adopts
the optimal decay rate and the bias corrections using both daily and intraday
data.
If the manager rebalances his portfolio daily, things are different. I find that

there are substantial performance gains with switching to the realized-volatility
based estimator. Even when the manager still rebalances monthly, if he only
utilizes less than 6 months of previous daily or high-frequency data to esti-
mate the covariance matrix, there are significant incremental gains generated
by the realized-volatility-based estimator. In this latter case, I find that stan-
dard deviation of the tracking errors from daily-return based covariance matrix
estimator increases quickly with the decrease of the sample size, while those
from realized-volatility-based estimator are very stable, whether 6 months’ high
frequency data or only one month’s high-frequency data are used. The out-of-
sample performances from all of them are much better than from previous one
year’s high-frequency data. This indicates that longer horizon of high-frequency
data may not be necessary and there is a tradeoff between efficiency gains from
the larger sample size and biases from market microstructure frictions. The
results with the minimum variance portfolio from the 30 stocks in DJIA are
also consistent with above findings. By measuring high-dimensional covariance
matrix with realized volatility approach, this paper contributes to the current
literature by answering under which circumstances, there are potential per-
formance gains with high-frequency data and how to utilize them, thus holds
promise for the further development of better decision making in practical risk
management and portfolio allocation.
The rest of the paper is organized as follows. Section 2 proposes the problem

faced by a professional investment manager. Section 3 describes features of daily
and high-frequency data and develops methodology for constructing the condi-
tional covariance matrix estimates. Section 4 describes the data and presents
the empirical results. Section 5 examines the robustness of the above results by
constructing the minimum variance portfolio with the 30 DJIA stocks and doing
the same empirical analysis as before. I also demonstrate with a Monte Carlo
simulation exercise that high-frequency data indeed help when the asset prices
follow the geometric Brownian motion with the same covariance matrix as used
in the empirical analysis. Finally, I discuss the implications of my findings for
future research and conclude.

2. Portfolio Optimization Problem
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There is a lot of evidence that superior returns to investment performance
are elusive. Numerous studies indicate that on average professional investment
managers do not outperform passive benchmarks. In turn, the methods of opti-
mally tracking a benchmark, especially when full replication of the benchmark
is not desired or not practical, have received attention in academics and practi-
tioners. In practice, managers are often evaluated relative to some benchmark,
therefore it has become one of their objectives to minimize the portfolio’s track-
ing error volatility, or the volatility of the difference between a portfolio’s return
and the return on the benchmark.3

Following Chan, Karceski and Lakonishok (1999), I assume a professional
investment manager who is trying to track the return of the S&P 500 index.
Suppose the manager can allocate funds across the 30 Dow Jones stocks and he
uses conditional mean-variance analysis with past one year of data to make his
allocation decisions and rebalances his portfolio monthly, that is, he constructs
his minimum variance portfolio using returns in excess of the benchmark.4 Every
month, he uses past 12 months of data of these DJIA stocks and the S&P 500
index, daily or high-frequency returns, for estimating the covariance matrix, and
forms his portfolio accordingly.5

Let Rt denote the 1×30 vector of excess returns formed by substracting the
S&P 500 index return from the individual stock returns on day t. Suppose there
are 21 trading days in one month, then at the beginning date t of every month
m (that is, t = 21 ∗ (m − 1) + 1), the manager will use the return series from
[R0t−252, R

0
t−251, ..., R

0
t−1] (previous one year’s data) to estimate covariance and

generate a covariance matrix forecast Σm for month m. After that, to construct
his minimum tracking error variance portfolio in month m, the manager simply
applies the following weights with the 30 DJIA stocks

wm =
Σ−1m 1

10Σ−1m 1
(1)

where 1 is a 30×1 vector of ones.6 The portfolio is held for one month and

3Estimates of the mean returns are very noisy. In fact, Jagannathan and Ma ( 2003) find
that tangency portfolios even do not perform as well as the minimum variance portfolios in
terms of out-of-sample Sharpe Ratio. In practice, professional investment managers are often
evaluated relative to some benchmarks, thus it is necessary to use a subset of available high
liquid stocks to construct the minimum tracking error portfolios.

4 In section 4, I also consider another case, i.e, the manager rebalances his portfolio daily.
Other things are the same; he uses past 12 months of data and the same estimation methods
to construct his minimum tracking error portfolio. Similar problems emerge when he only has
less than 6 months of past data to use. Section 5 explores the problem when the manager
wants to form the time-varying minimum variance portfolio using the 30 DJIA stocks.

5Here the use of a rolling window allows for time variations in variances as in French,
Schwert and Stambaugh (1987) and time variations in covariances as in Bollerslev, Engle and
Wooldridge (1988). A considerable literature has shown that expected returns are notoriously
difficult to predict while return variances and covariances are much easier to estimate from
historical data. For this reason, when the manager mimimizes the tracking error volatility, he
focuses on forecasting the second moments rather than expected returns.

6Note that constructing the minimum tracking error variance portfolio is the same as
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its realized return is recorded. This procedure begins from the point where the
manager has enough data to estimate the covariance matrices and is repeated
monthly at the beginning of every following month. It is easy to see that the
optimal portfolio weights vary through time as Σm changes. Thus for each
different estimation method, the manager has the ex post performance of its
minimum tracking error portfolio, which is rebalanced monthly. He then uses
the ex post standard deviation of its minimum tracking error volatility portfolio
as a measure of how precise a covariance estimator is.

3. Econometric Methodology

In this section, I provide a number of covariance matrix estimators based on
daily data or high-frequency data, which will be used in the following empiri-
cal analysis. These estimators can be used to generate the covariance matrix
forecasts based on the past 12 months of data (the estimation period). I first
construct covariance matrix estimators and forecasts with daily return data.
These include the daily return sample covariance matrix, its variants that in-
corporate the corrections for microstructure effects suggested by Scholes and
Williams (1977), Dimson (1979), Cohen, Hawawini, Maier, Schartz and Whit-
come (1983, henceforth, CHMSW), Jagannathan and Ma (2003), etc. and the
optimal shrinkage estimator proposed by Ledoit and Wolf (2003). Following
Foster and Nelson (1996) and FKO (2003), I also construct a rolling covariance
matrix estimator. Then I introduce notation, and provide different methods
to estimate the conditional covariance matrix using high-frequency data taking
into account of several features of intradaily returns. As is documented in BRT
(2001), high-frequency financial data have deterministic intraday volatility, se-
rial correlation, fat tails and volatility clustering, which do not conform well
with the geometric Brownian motion assumption. To deal with these features,
besides sample covariance matrix estimators, I also develop several rolling es-
timators based on lagged returns, which follow the work of Foster and Nelson
(1996), Andreou and Ghysels (2001), Areal and Taylor (2002), and FKO (2003).
FKO (2003) argue that these estimators avoid complicated parametric assump-
tions and nest a variety of GARCH and stochastic volatility models as special
cases, thus are computationally efficient and provide a natural way to evaluate
the performance gains using realized volatility.

3.1 Covariance Matrix Estimators Based on Daily Returns

3.1.1 Sample Covariance Matrix Estimator

The starting point for forecasting return covariances is given by the sample
covariance matrix:

constructing the minimum variance portfolio using returns in excess of the benchmark subject
to the restriction that the portfolio weights sum to one.
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S =
1

252− 1

252X
k=1

(Rt−k −
−
R)0(Rt−k −

−
R) (2)

where Rt−k is the 1×30 vector of excess returns formed by substracting the
S&P 500 index return from the individual stock returns on day t− k,

−
R is the

in sample historical average of these return vectors. The manager uses past one
year’s data to estimate the covariance matrix, thus the sample size is 252. He
then uses the above matrix to predict return variances and covariances on day t.

3.1.2 Sample Covariance Matrix Estimator (CHMSW)

Due to nontrading effect, the observed daily returns may not be equal to
the true daily returns. To correct this bias, CHMSW (1983) propose a new
estimator. Suppose that the true date n return on stock k is rtk,n, and the
corresponding observed return is rk,n. The CHMSW estimator is based on the
following relation between the covariance of the true returns on any two stocks j
and k, j 6= k and the covariance of the observed returns on the same two stocks
at different leads and lags:

cov(rtj,n, r
t
k,n) = cov(rj,n, rk,n) +

LX
m=1

[cov(rj,n, rk,n−m) + cov(rj,n−m, rk,n)] (3)

This equation remains valid when either or both assets are portfolios. With
this equation, we can estimate the true covariances using daily observed re-
turns. In practice, following CHMSW (1983) and Shanken (1987), L is set to 3
for daily returns. To construct the minimum tracking error volatility portfolio,
the manager only needs to replace the returns in above equation with excess
returns relative to the benchmark.

3.1.3 Sample Covariance Matrix Estimator (SW)

The Scholes-William estimator is the special case of the above equation, with
L equal to 1.

3.1.4 Sample Covariance Matrix Estimator (NW)

There is a potential problem in implementing SW and CHMSW estimator:
the estimated covariance matrix from equation (3) may not be positive semi-
definite. This is problematic for solving the portfolio variance minimization
problem since estimated variances can be negative when the estimated covari-
ance matrix is not positive semi-definite. In addition, an estimator of S that
is not positive definite may be troublesome because S−1 may behave poorly at
the same time. In order to address this issue, I propose the following estimator
according to Newey and West(1987):
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cov(rtj,n, r
t
k,n) = cov(rj,n, rk,n)+

LX
m=1

w(m,L)[cov(rj,n, rk,n−m)+cov(rj,n−m, rk,n)]

(4)
where

w(m,L) = 1− m

L+ 1
(5)

is the Bartlett Kernel.

3.1.5 Optimal Shrinkage Estimator

This estimator is from Ledoit and Wolf (2003). Assume that the return on
stock j in trading day t is generated by the market model,

rj,t = αj + βjrM,t + εj,t (6)

where rM,t is the day t return on the market index, and εj,t is a residual term.
If rM,t is uncorrelated with the residual return εj,t and the residual returns are
mutually uncorrelated, the covariance matrix estimator F of the returns on a
set of stocks is given by

F = s2mBB
0 +D (7)

where B is the vector of β,s, s2m is the sample variance of rM,t, and D is a diag-
onal matrix that has the sample variances of the residuals along the diagonal.
The optimal shrinkage estimator is a weighted average of the sample covari-

ance matrix and the market model based estimator:

Σ =
λ

T
F + (1− λ

T
)S (8)

where λ is a parameter that determines the shrinkage intensity which can be
estimated from the data and T is the sample size. This estimator is positive
semi-definite and Ledoit and Wolf (2003) shows that it outperforms many factor
models empirically. To use it to construct the minimum tracking error variance
portfolio, all that the manager needs to do is to use excess returns instead of
raw returns.

3.1.6 Optimal Rolling Sample Covariance Matrix Estimator

Foster and Nelson (1996) provide an optimal rolling estimator that has the
smallest asymptotic mean squared error (MSE). FKO (2003) extend this estima-
tor to multivariate case and gives an excellent exposition about its application
in the current portfolio optimization problem.
Following FKO (2003), suppose we have a conditional covariance matrix

estimate Σt on day t with the general form:
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Σt =
∞X
k=1

Wt−k ∗ (Rt−k −
−
R)0(Rt−k −

−
R) (9)

whereWt−k is a symmetric 30×30 matrix of weights, and ∗ denotes element-by-
element multiplication, or the Hadamard product of two matrices. It includes
many estimators such as the sample covariance matrix estimator and GARCH
models as its special cases with the suitable choices of the weighting scheme. Fos-
ter and Nelson(1996) prove that, under weak assumptions, the optimal weight
is given by an exponential function;

Wt−k = α exp(−αk)1 · 10 (10)

where 1 is a 30×1 vector of ones. Under this weight, the optimal rolling
sample covariance matrix estimator will be

Σt = exp(−α)Σt−1 + α exp(−α)(Rt−1 −
−
R)0(Rt−1 −

−
R) (11)

This estimator Σt is positive semi-definite and is a special example of a mul-
tivariate GARCH model such as Engle and Kroner(1995). The advantage with
this estimator is that it has only one parameter α to estimate. The optimal decay
rate α controls the rate at which the weights decay with the lag length. Unlike
the overparameterized multivariate model, this parsimonious form is computa-
tionally easy to implement and this is very important in a real-time portfolio
optimization problem.

3.2 Covariance Matrix Estimators Based on Intradaily Returns

The realized volatility approach advocated by ABDE (2001) and Barndorff-
Nielsen and Shephard (2002) suggests that intradaily returns can be used to
construct daily volatility estimates which in theory should be more accurate
than those based on daily returns.
Normalize the unit time interval to represent a trading day. The daily return

is simply the sum of all the high-frequency intraday returns in the trading period
and the overnight return:

rj,t = rj,t,0 + rj,t,1 + rj,t,2 + ...+ rj,t,N (12)

whereN is the sampling frequency for the trading period in a day and rj,t,k is the
return of stock j in interval k (1 ≤ k ≤ N) on day t. rj,t,0 is the overnight return
for stock j on the same day. The overnight period is defined as the close of the
previous trading day to the open of the subsequent trading day, e.g., overnight
-Monday is the period from close-Friday to open-Monday.7 Overnight returns
are computed as the natural logarithm of the stock price relative, adjusted for
dividends and splits.

7Therefore, the daily return is from close of the previous trading day to close of the sub-
sequent trading day, which follows common use in the literature.
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Denote Rt,n as the 1×30 vector of excess returns for all the 30 DJIA stocks
relative to the S&P 500 index in interval n (0 ≤ n ≤ N) on day t. The manager
then uses the previous one year’s intradaily data to estimate the covariance ma-
trix.

3.2.1 Sample Covariance Matrix Estimator (excluding overnight
returns)

In much research related to realized volatility, overnight returns are ignored
either because financial markets are open 24 hours a day such as FX markets,
thus there are no overnight returns (see ABDL (2000, 2001)), or because only
realized intraday volatility is considered as in ABDE (2001). For simplicity,
I exclude overnight returns now. Since there is little evidence that there are
changes in expected returns at the high-frequency(such as five-minute) level, I
have the following sample covariance matrix estimator:

S =
1

252

252X
k=1

NX
n=1

R0t−k,nRt−k,n (13)

where N is the number of intraday intervals in a trading day. Basically, this
estimator replaces the cross-product of daily returns with the sum of the cross-
product of sufficiently finely sampled high-frequency returns. Although the
former is also an unbiased estimate for the realized daily integrated volatility, it
is an extremely noisy estimator and may include large measurement errors; in
contrast, realized volatility measures using high-frequency returns are asymp-
totically free of measurement error under the diffusion assumption.

3.2.2 Sample Covariance Matrix Estimator (including overnight
returns)

Although the stock markets are closed overnight, the arrival of information
during non-trading hours will still lead to non-zero overnight returns. Excluding
overnight returns will lead information loss and bias the covariance matrix esti-
mator. To reduce these negative effects, I include the outer product of the vector
of overnight returns as another term when constructing the realized volatility.
Although it is an imprecise estimator of the integrated covariance matrix over
the non-trading period, the information gains may dominate the imprecision.
The estimator is given as:8

S =
1

252

252X
k=1

NX
n=0

R0t−k,nRt−k,n (14)

8 I tried raw overnight returns and demeaned overnight returns where the sample mean is
deducted from the raw returns. Both produced very similar results. To save space, I only
include empirical results obtained from demeaned overnight returns in this paper.
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3.2.3 Sample Covariance Matrix Estimator (adjusted for intraday
volatility pattern)

It is widely documented that there is a distinct U-shaped pattern in stock
return volatility over the trading day, i.e. volatility is high at the open and close
of trading and low in the middle of the day, see Wood, McInish and Ord (1985)
and Harris (1986) for early evidence. Therefore, as the sampling period shrinks,
stock returns do not conform well with the normal white noise assumption.
Andersen and Bollerslev (1997) and Martens, Chang, and Taylor (2002) suggest
using the flexible Fourier form (FFF) to filter out the deterministic seasonals
from high-frequency data. In the present portfolio optimization problem, I use
a computationally easier to implement method to remove the intraday pattern,
which follows Areal and Taylor (2002).
Suppose for any stock j,

var(rj,t|σj,t) = σ2j,t, (15)

var(rj,t,n|σj,t) = λj,nσ
2
j,t, (16)

NX
n=0

λj,n = 1. (17)

where σj,t is the latent daily volatility for stock j on day t, and λj,n is the
proportion of a trading day’s total return variance that is attributed to period
n, assuming that intraday returns are uncorrelated. The realized volatility for
trading day t is estimated by weighting the intraday squared returns,

gσj,t2 = NX
n=0

wj,nr
2
j,t,n (18)

Areal and Taylor (2002) derive the optimal weight as

wj,m =
1

(N + 1)gλj,m =

P
t

PN
n=0 r

2
j,t,n

(N + 1)
P

t r
2
j,t,m

(19)

The estimategσj,t2 with this weight is a consistent and unbiased estimate of
the realized volatility and has the least variance. From this expression, it is easy
to see that the optimal weight wj,m is inversely proportional to λj,m. Thus the
weight for the overnight returns is much less than that for the other returns since
the average overnight return is much larger than the average intraday return
in any high-frequency interval. This weight can be also used to construct the
realized covariance by

fcov(ri,t, rj,t) = NX
n=0

√
wi,n
√
wj,nri,t,nrj,t,n (20)

11



3.2.4 Sample Covariance Matrix Estimator (adjusted for correla-
tions )

Stock return series are approximately Gaussian and uncorrelated when mea-
sured over monthly or longer horizon. As the sampling frequency increases,
however, temporal dependence and departures from normality become strik-
ingly apparent. As is well known, non-synchronous trading and bid-ask spread
will typically induce negative autocorrelation for individual security returns and
positive autocorrelation for the market index returns, particularly at lag one.
This correlation tends to become stronger as the sampling frequency increases.
To take account of this, French, Schwert and Stambaugh (1987) use the sum
of squared daily returns plus twice the sum of the products of adjacent returns
to estimate the variance of the monthly returns. Here I focus on estimation of
daily volatility using high-frequency data and this suggests the following esti-
mator that allows for serial dependence:

S =
1

252

252X
k=1

{
NX
n=0

R0t−k,nRt−k,n+
LX
l=1

[
NX

n=l+1

R0t−k,nRt−k,n−l+
NX

n=l+1

R0t−k,n−lRt−k,n]}

(21)
where L is the maximum number of lead and lag covariances to be included.9

Since there is no evidence that overnight returns have significant correlation with
intraday returns, the lead and lag covariances included in above estimator only
apply for high-frequency returns.

3.2.5 Optimal Rolling Sample Covariance Matrix Estimator

To encompass the realized volatility approach within the rolling estimator
framework, it is only necessary to replace the outer product of the vector of
demeaned returns in equation (11) with the realized covariance matrix:

Σt = exp(−α)Σt−1 + α exp(−α)
NX
n=0

R0t−1,nRt−1,n (22)

Intuitively, it should be more efficient than the daily return based estimator
from (12) as argued in ABDE (2001), the realized volatility is asymptotically
free of measurement error, while the cross-product of daily returns is extremely

9An alternative approach to purge the high-frequency returns of the serial correlation
induced by microstructure frictions would estimate sample autocorrelation and use a MA
model to filter the raw return series, then estimate realized volatilty with filtered returns.
This is adopted in ABDE (2001). I also experimented with the use of filtered five-minute
returns. This gives similar results to using contempraneous unfiltered returns, and has worse
out-of-sample performance compared to the lag correlation included estimator, thus is not
included in this paper.
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noisy although it is unbiased.

3.3 Monthly Covariance Matrix Forecast

In section 3.1 and 3.2, I provide 11 daily covariance matrix estimates based
on daily returns or high-frequency returns. It is easy to produce a new estima-
tor from the combination of above estimators. For example, I can also include
some lead and lag covariances in (22) to get another rolling covariance matrix
estimator. For the purpose of monthly rebalancing, a monthly covariance ma-
trix has to be constructed to get the optimal portfolio weight from these daily
estimates, as can be seen in (1).
There are several methods used in this paper. A simplest monthly forecast

would use the daily estimate multiplied by a constant, for instance, 21 ∗ Σt, as
a choice since it is assumed that there are 21 trading days in a month. From
(1), the choice of this constant is irrelevant; it is cancelled out. Therefore, daily
covariance matrix estimate can be used directly to get the optimal portfolio.
Jagannathan and Ma (2003) provide a method to estimate the covariance

matrix of monthly returns using data on daily returns. Let fR0 the 252×30
matrix of demeaned returns from [R0t−252, R

0
t−251, ..., R

0
t−1]. For j = 1, 2, ..., 20,gR−j is the matrix of lag-j demeaned returns. Denote

Ωj =
fR0
0
gR−j
252

(23)

S = 21Ω0 +
20X
j=1

(21− j)(Ωj +Ω
0

j) (24)

S is positive semi-definite and consistent. This estimator takes account of
all the autocovariances and cross-covariances between all the daily returns at
different leads and lags in a month and is in spirit similar to Newey and West
(1987) estimator. It is easily extended to high-frequency data case.
Andreou and Ghysels (2002) treat integrated volatility as a continuous time

stochastic process, sample it at high frequency and get a rolling sample estimator-
Historical Quadratic Variation (HQV). This is especially useful for the high-
frequency data. The following monthly covariance matrix estimator is con-

structed according to this approach. Let
21P
t=1

NP
n=0

R0t,nRt,n be the monthly realized

volatility from day 1 to 21. It can seen as a continuous time stochastic process.
If this process is sampled at daily frequency, then there will be 232(=252-21+1)
monthly realized volatilities in a year. A sample mean of these monthly realized
volatility series can be used to compute the optimal portfolio weight.
The last method assumes that the daily covariance matrix estimates follows

a AR(1) process. After I have used the past one year’s returns to get the sample
mean of the daily covariance estimate S, at the beginning date of a month t+1,gΣt+1 = αΣt + (1− α)S (25)
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is used to forecast the covariance matrix on day t+1. Here α is the autoregres-
sive parameter, Σt can be outer-products of lag daily excess return vectors or
realized volatility or optimal rolling sample estimator on day t, etc. After this,
daily covariance matrix forecasts from day t + 2 to t + 21 can be recursively
constructed. With these daily forecasts, a monthly covariance matrix estimate
is given by

P21
j=1

gΣt+j .
4. Empirical Results

4.1 Data

My empirical analysis from high-frequency returns is based on data from the
Trade and Quotation(TAQ) and Chicago Mercantile Exchange(CME) database.
The TAQ data files contain continuously recorded information on the trades and
quotations for the securities listed on the New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and the National Association of Security
Dealers Automated Quotation system (NASDAQ). The database is published
monthly, and has been available since January 1993. The sample period is from
January 2, 1993 until June 30, 2000, for a total of 1894 trading days. Since a full
replication of the S&P 500 index with all the stocks is not practical, I restrict
my analysis to the 30 DJIA stocks. The sample consists of all the quotes for the
thirty DJIA firms, as of the reconfiguration of the DJIA index on November 1,
2000.10 A list of the relevant ticker symbols is contained in the tables below.
The DJIA stocks are among the most actively traded U.S. equities and rep-

resent about one-fifth of the value of all US stocks. The median duration be-
tween trades for all of the stocks across the full sample is less than one minute.
Although all of them are high liquid, it is not practically feasible to push the
continuous record asymptotics and the length of the observation interval beyond
their transaction frequency. In addition, market microstructure features, such
as price discreteness, nonsynchronous trading, and bid-ask spread, can seriously
distort the distributional properties of high-frequency intraday returns, espe-
cially in the current multivariate context, if varying degrees of interpolation are
employed in the calculation of the returns for different stocks. Following ABDE
(2001), I construct five-minute returns which represent a reasonable compro-
mise between the accuracy of the theoretical approximations and the market
microstructure considerations.
The daily transaction record extends from 9:30 EST until 16:00 EST. Each

quote consists of a bid and an ask price along with a “time stamp” to the nearest
second. To avoid the opening effect of the exchange on the quotes price data
and possible reporting errors in the opening of the stock markets, I remove a
30 minute window of data and consider quotes price after 10:00 EST. Hence,
the intraday sample covers the records from 10:00 EST to 16:00 EST, with a
total of 72 five-minute returns for each trading day. The five-minute return

10 I also experimented with the use of transcation prices instead of price quotes for the thirty
DJIA stocks in part of the sample period, which produced very similar empirical results.
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series for the thirty stocks in DJIA are constructed from the difference between
the average of the log bid and the log ask that are recorded at or immediately
before the corresponding five-minute marks. Overnight returns are computed
accordingly as the difference between the mid-points of log quotes at 10:00 EST
and the previous 16:00 EST, adjusted for dividends and splits.11

Intraday observations on the S&P 500 cash index can be obtained from
Chicago Mercantile Exchange (CME). The period covered by the data is the
same as those of the thirty DJIA stocks, from 9:00 CST to 15:00 CST each
trading day from January 2,1993 until June 30,2000.12 Similarly, the five-minute
return and overnight series of the S&P 500 index are constructed, except that
they are the logarithmic difference between the cash index levels at each five-
minute and overnight interval.
Daily returns of the 30 DJIA stocks and the S&P 500 index of the same

period can be obtained from the Center for Research in Security Prices (CRSP)
daily data files.

4.2 Empirical Results

In this section, I compare the out-of-sample performance of minimum track-
ing error portfolios formed using a number of covariance matrix estimators based
on daily data or high-frequency data, with an eye to judging which models im-
prove the manager’s ability to optimize portfolio risk. I first provide summary
statistics for daily returns and five-minute returns. Then I form the minimum
tracking error portfolios according to the covariance matrix estimators given
in section 3. These portfolios are rebalanced daily and monthly and evaluated
according to their out-of-sample performance. Finally, the t-tests for the dif-
ference between the mean returns and mean squared returns on the portfolios
reveal in which case and what kind of covariance matrix estimators based on
high-frequency data can improve upon those based on daily returns.
Table 1 and Table 2 provide summary statistics for daily returns and five-

minute returns for each of the thirty DJIA stocks and the S&P 500 cash index,
respectively. From Table 2, it is clear that the means of all the five-minute
return series are close to zero. Given their sample standard deviations, a simple
t-test shows that the means of high-frequency returns are effectively zero from
a statistical perspective. There are some significant differences as the sampling
frequency increases. The kurtosis of the S&P 500 index and all the individual
stocks, except EK, PG and T, become larger as the data are sampled more
frequently. The cross-sectional average kurtosis of the 30 DJIA stocks increases
from 8.2539 to 14.0095 as five-minute returns replace daily returns. In the same

11During the sample period, there are some mergers and acquisition deals for some of the
stocks. I always use PERMNO as the unique standard to decide the return series for a security.
A security through its entire trading history can be checked with one PERMNO, regardless
of name changes or capital structure changes.
12 June 27,1995 S&P 500 cash index and futures high-frequency data are missing in the

CME data files. In addition, CME data files don’t include December 18,1998 S&P 500 futures
contract data. These two days are excluded from the empirical analysis.
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time, the kurtosis of the S&P 500 index increases from 8.5479 to 15.4402. The
average of the first order autocorrelation of daily returns for each of the thirty
stocks is -0.0071. Almost half of stocks ( 14 out of 30 ) have positive first order
autocorrelations, and another 16 stocks negatively correlated in the first order;
the minimum is -0.0671, and the maximum is 0.0576. This indicates most of
the daily return series can be seen as uncorrelated. In contrast, the five-minute
returns of all the individual stocks, except INTC and MSFT, have significant
negative lag one autocorrelations. The cross-sectional average is -0.1163. The
first order autocorrelation of the daily S&P returns is only -0.0008, while that
of five-minute S&P returns is 0.1259. These highly significant autocorrelations
of the index and the individual stocks may be explained by a non-synchronous
trading effect as suggested in Lo and MacKinlay (1990).
Table 3 gives the out-of-sample means, standard deviations, and other char-

acteristics of the minimum tracking error portfolios if the manager rebalances
his portfolio monthly based on past 12 months of data, daily returns or intraday
returns. In all the covariance matrix estimators based on daily returns (panel
A), the sample covariance matrix estimator provides the minimum standard
deviation, thus has the best forecast performance.13 In the rest of the estima-
tors, the sample covariance matrix (NW, L=1), the optimal shrinkage estimator
(LW), and the rolling sample estimator (FKO) with the decay rate 0.01 have
similar standard deviations.14 The sample covariance matrix (CHMSW) and
the sample covariance matrix (SW) deviate a lot from all the other estima-
tors and perform very poorly according to their standard deviations. This may
be explained by the fact that these two estimates are not necessarily positive
semi-definite, therefore variance estimates can be negative. They may not be in-
vertible, which are problematic in computing the portfolio weight from equation
(1). In fact, both the sample covariance matrix (SW) and the sample covari-
ance matrix (NW, L=1) include the lag 1 autocovariances and cross-covariances,
but has different weight with this adjustment. The sample covariance matrix
(NW, L=1) is positive semi-definite, while the former is not. The out-of-sample
performance of the sample covariance matrix (JM) is also very poor. Although

13Monthly returns are not real monthly returns, but constructed from the sum of daily
returns in 21 consecutive trading days so that there is no overlap in the estimation period
and the forecast period. I also tried monthly returns from CRSP monthly data files. In
this case, the sample covariance matrix using daily returns has the best forecast performance
among all the estimators, based on daily returns or intraday returns. Here and below, when
the manager rebalances monthly, the monthly covariance matrix forecast is contructed from
the daily covariance matrix multiplied by a constant, except the sample covariance matrix
estimator (JM), the rolling sample estimator (AG), and several other rolling sample estimators
which use the second parameter as the autoregressive coefficient.
14Unlike FKO (2003), the optimal decay rate with the rolling sample estimator (FKO)

does not come from maximum likelihood estimate (MLE), but from the best result among
a lot of parameter choice experiments from the interval [0, 1] so that the minimum tracking
error with this estimator is only achieved conditional on the identification of the optimal decay
rate. It is less efficient but easier to implement in the real-time portfolio optimization problem.
The difference between this estimator and the rolling sample estimator (FN) when they both
use five-minute returns is that the latter is not adjusted using daily return information, but
includes the first-order autocorrelation between the intraday returns to measure the covariance
matrix.
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including all the autocovariances and cross-covariances between the daily returns
in a month is in theory less biased when constructing the monthly covariance
matrix estimate, it also introduces greater noise potentially so that the statisti-
cal efficiency of the estimator declines.15 The optimal shrinkage estimator (LW)
does not perform better out-of-sample than the sample covariance matrix. It is
more useful if a large covariance matrix need to be estimated when there are
no long enough time-series data available, while it is no severe under current
situation.
The sample covariance matrix is constructed when portfolio weights are un-

restricted. Short sale restrictions has little effect on the composition of the
minimum tracking error portfolios. This is different from Jagannathan and Ma
(2003) where they find that short sale restrictions improve the performance of
the sample covariance matrix by a significant amount when they use monthly
returns so that it can be comparable to that of the single factor model.16 On
the average, all the thirty stocks have positive weights in the minimum tracking
error portfolios. XON and GE have the maximum average weight; about 8%
and 7% respectively while the weights of all the other stocks don’t exceed 5%.
There are only 6 stocks which have negative weights in the full sample period.
DD has the minimum weight -3.53%. The second minimum weight is on stock
CAT(-1.29%). The short positions with the rest four stocks are all less than
0.6%. The maximum long positions are put on stock GE (12.86%) and XON
(11.11%), but there are still significant time variations with the weights.
Panel B of Table 3 provides the out-of-sample performance of the minimum

tracking error portfolios whose covariance matrix estimates use five-minute re-
turns and overnight returns. The following patterns emerge. First, including
overnight returns in the realized volatility substantially improves the out-of-
sample performance. The high-frequency rolling sample estimator (FKO) con-
ditional on its optimal decay rate 0.03 performs as well as the daily sample
covariance matrix estimator when the realized volatility includes overnight re-
turns. Second, the sample covariance matrix estimator (AT) which takes ac-
count of intraday volatility and the rolling sample covariance estimator (AG)
which samples the monthly realized volatility more frequently do not perform
better than the sample covariance matrix using realized volatility approach. All
of them perform worse than the sample covariance matrix using daily returns.
Third, when lag one autocovariances and cross-covariances are included in the

15 Jagannathan and Ma ( 2003) get similar out of sample performances when they use this
estimator, the sample covariance matrix (CHMSW), the sample covariance matrix (SW) and
the sample covariance matrix. There are two differences from this paper: 1. they use past 60
months or 120 months of daily returns while I use past 12 months of daily returns in order to
be consistent with the high-frequency data; 2. they use randomly chosen 500 stocks to track
the S&P 500 index while I use 30 DJIA stocks.
16 Jagannathan and Ma (2003) don’t get significant improvement in performance when con-

stucting sample covariance matrix from daily returns wtih shortsale restrictions. They also
find short sale constraints are not important for the single factor model which verifys the
Green and Hollifield (1992) hypothesis that the presence of a single dominant factor is critical
for the minimum variance portfolio to have a lot of short positions. The dominant factor gets
cancelled out when the single factor model is used to generate the minimum tracking error
portfolio.
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realized daily volatility, the sample covariance matrix estimator improves a lot
- its performance becomes comparable to that of daily return based sample co-
variance matrix.17 Fourth, when the lag one correlation and overnight returns
are incorporated into the realized volatility, the last six rolling sample estima-
tors perform marginally better than the daily return based sample covariance
matrix with appropriate choices of the decay rate and the autoregressive co-
efficient. Another interesting fact to note is that there is only one stock that
has negative weight -0.6% in the full sample for the sample covariance matrix
estimator with overnight returns and lag 1 covariances. On the average, all the
stocks have long positions and XON has the maximum average weight 7%.
Table 4 compares the out-of-sample performance of each covariance estima-

tor if the manager balances his portfolio daily using the past 12 months of data.
Consistent with the monthly rebalancing case, the sample covariance matrix
(CHMSW) and the sample covariance matrix (SW) perform very poorly and
are very different from other estimation methods. In all the other daily re-
turn based covariance matrix estimates, the sample covariance matrix has the
out-of-sample tracking error as small as those from the optimal shrinkage esti-
mator (LW) and the rolling sample estimator (FKO) with the optimal decay rate
0.01. Including the overnight returns, the lag one autocovariances and cross-
covariances between intraday five-minute returns in the realized daily volatility
will lead the sample covariance matrix to have comparable performance to its
daily return based counterpart when only contemporaneous daily returns are
used. In addition, there is an apparent difference when the manager rebalances
daily rather than monthly. In the former case, the high-frequency rolling sam-
ple estimator with the optimal decay rate has a standard deviation 0.53% lower
than the daily return based sample covariance matrix. In contrast, when the
manager rebalances his portfolio monthly, the sample covariance matrix with
daily returns performs at least as well as all kinds of sample covariance matrices
with high-frequency returns.
Table 5 confirms the above findings with the t-tests for the difference between

the mean returns and mean squared returns on the portfolios constructed from
different kinds of covariance matrix estimators and the benchmark - the sample
covariance matrix using daily returns. Here I exclude the sample covariance ma-
trix (SW), the sample covariance matrix (CHMSW), and the sample covariance
matrix (JM) since they have very different performances from other estimators.
The differences in mean returns for all the other estimators are insignificant,
therefore the t-test for the difference in mean squared returns can be used as a
test for the difference in return variances, which is exactly what the manager
wants to minimize. Panel A indicates that all the covariance estimators perform
as well as the benchmark, whether daily returns or high-frequency data are used
if the minimum tracking error portfolio is rebalance monthly. If it is daily rebal-
anced, panel B shows that rolling sample estimators, when including overnight
returns and lag 1 covariances between intraday returns, perform better than
17Higher order ( from 2 to 9 ) autocovariances and cross-covariances are also experimented

to be included in the realized volatility. They give roughly close performances as only lag one
period is included.
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the daily return based sample covariance matrix estimator if appropriate decay
rates are selected.
Table 6 further illustrates the relationship between the performance of a

sample covariance estimator and its sample size. Here I only include the daily
sample covariance matrix and the high-frequency sample covariance matrix -
with or without adjustment for microstructure effects. As the estimation pe-
riod shrinks, the standard deviation of the minimum tracking error portfolio
constructed from the daily sample covariance matrix increases. In the extreme
case, when only one month of daily returns are used to construct a 30× 30 co-
variance matrix, there is huge estimation error. On the contrary, the standard
deviation from the sample covariance matrix using one month of high-frequency
data is significantly smaller than that using one year of high-frequency data
whether I incorporate the corrections for microstructure effects. In addition, as
the estimation period is less than 6 months, the microstructure-adjusted high-
frequency sample covariance matrix estimator always performs significantly bet-
ter than its daily counterpart. With the shortening of the estimation horizon,
the performance gains from using high-frequency data rather than daily data
increase sharply.

5. Robustness Checks and Simulation Results

In this section, I compare the out-of-sample performance of minimum vari-
ance portfolios formed using different covariance matrix estimators to assess the
robustness of my results. By constructing the minimum variance portfolios, I
only use the thirty DJIA stocks, not the S&P 500 cash index. The construction
method is the same, except excess returns relative to the index are replaced with
raw returns. Since the five-minute S&P 500 index returns have high positive
first order autocorrelation while most of the individual stocks are significantly
negative correlated at lag one, by forming the minimum variance portfolios, it
may help to alleviate the microstructure contamination from the S&P 500 cash
index.18

From Table 7, if the manager rebalances his minimum variance portfolio
monthly with the previous 12 months of data, the daily sample covariance ma-
trix still performs the best among all the estimators from daily returns or high-
frequency returns. The minimum out-of-sample standard deviation among all
the high-frequency based estimators is 14.18% per year, while that of the daily
sample covariance matrix estimator is 13.51% annualized. If the manager rebal-
ances daily, then the standard deviation of the sample covariance matrix using

18When I construct the minimum tracking error portfolios, I also experimented with using
the S&P 500 futures contracts instead of the S&P 500 cash index. Unlike the cash index, the
first order autocorrelation of the five-minute S&P 500 futures returns is small. The results
indicate that when I use the sample covariance matrix estimator adjusted by overnight returns,
the tracking errors from using cash index and futures are very close. But if I take account of
the autocorrelation between the five-minute returns, the standard deviation from using cash
index is always smaller in all the cases. Therefore, I only report the results from using the
S&P 500 cash index.
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five-minute returns and overnight returns is smaller than its daily counterpart;
14.36% vs 14.65%. If the optimal decay rate is chosen, the rolling sample esti-
mator with high-frequency data performs much better than that based on daily
returns; 13.12% vs 14.90%.
If the manager only has past 3 months of data to estimate, then the stan-

dard deviation of high-frequency sample covariance matrix using five-minute
returns and overnight returns is substantially lower than its daily based estima-
tor, 13.73% vs 16.45%, even he rebalances monthly. This is strikingly different
when the manager has one year data to use.
The only difference between the minimum variance portfolio and the min-

imum tracking error portfolio lies in the weights on the component stocks.
Among all the stocks, only MMM and XON have positive weights in the full
sample period in the minimum variance portfolio constructed from the sample
covariance matrix using daily returns. Besides, across all the stocks, the maxi-
mum long position is 27.16% while the maximum short position is 23.53%. The
average short interest is 28.50% per month, which is in significant contrast to
the minimum tracking error portfolio and consistent with the Green and Holli-
field (1992) explanation for the presence of a large number of negative weights
in mean-variance efficient portfolios.
How precisely can we estimate a large covariance matrix using high-frequency

financial data if the asset prices follow the geometric Brownian motion? The
following simulation exercise in Table 8 sheds a light on this problem. I set the
population covariance matrix to be the sample covariance matrix of the daily
excess returns of the 30 DJIA stocks relative to the S&P 500 index from Jan-
uary 2, 1993 to June 30, 2000. Then a random sample of intraday returns is
drawn assuming that the daily returns which are the sum of 72 intraday returns
have a joint Normal distribution with this covariance matrix.19 The intraday
return series for an individual asset is independent and normally distributed. I
then use the simulated return data to estimate the covariance matrix and form
the minimum tracking error portfolios. Two minimum tracking error portfo-
lios are constructed: one is based on covariance matrix estimate from intraday
returns, another is from daily returns which are obtained from the sum of the
intraday returns in the same day. As what has been done before, the portfo-
lio is rebalanced monthly based on past 12 months of data, 6 months of data
and 3 months of data, respectively in Panel A, B and C. Panel D, E and F
report similar results for the daily rebalancing case. The out-of-sample means
and standard deviations of these two portfolios are calculated. I repeat the
exercise 1000 times and compute the average of these means and standard de-
viations. The results of this simulation exercise indicate that if the portfolios
are rebalanced monthly and the covariance matrix is estimated with 12 months
of data, the average annualized standard deviation of the tracking errors from
the daily sample covariance matrix is 4.82%, and is 4.51% if I use the sample
covariance matrix estimate based on intraday returns. There is not much dif-

19With this assumption, I ignore the difference between the overnight returns and the in-
traday returns in the simulated data set.
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ference in the mean of these two portfolios: the former is -0.04% and the latter
is 0.16%. Simple t-tests for the difference between the mean returns and mean
squared returns of the two portfolios show that the difference in mean returns
is insignificant, while the minimum tracking error from high-frequency returns
is significantly smaller than that from daily returns. With the shortening of the
estimation horizon, the performance of the portfolios constructed from intraday
returns is rather stable, with the standard deviation increases from 4.51% to
4.58%, if I use three months as the estimation window. The standard deviation
from daily returns increases 30%, from 4.82% to 6.28% if only three months
of daily returns are used. Another significant difference is that when intraday
returns are used, almost all the stocks have positive weights every month in the
full sample. In contrast, if three months of daily returns are used to estimate
the covariance matrix, on the average, the sum of the negative portfolio weights
will be about 10% every month.
The daily rebalancing experiment reports very similar results. Consistent

with the monthly rebalancing case, as the estimation window changes from 12
months to 3 months, the standard deviation of the portfolio from high-frequency
returns is roughly the same, changing from 4.56% to 4.57%. It increases about
29%, from 4.84% to 6.24%, if daily returns are used. At the same time, the
average short interest will change from 0% to about -10%.
Compared with the empirical results in Table 4, I find that under the ideal

condition that the asset prices follows a geometric Brownian motion, the stan-
dard deviation of the minimum tracking error portfolio is reduced by 6%, if 12
months of intraday returns instead of daily returns are used to estimate the
covariance matrix. If only three months of data are used, about 30% standard
deviation reduction can be obtained from using high-frequency data. These
results clearly demonstrate the substantial benefit obtained from using high-
frequency data to estimate the covariance matrix under the situation as sug-
gested by Merton (1980). Unlike the empirical results, the larger sample size
always leads performance gains in the simulation exercise. This is confirmed
by the smaller tracking error from using a longer time span of data to estimate
the covariance matrix. The difference lies in the assumptions in generating the
data: the simulated return series are drawn i.i.d from a multivariate Normal
distribution. There is a tradeoff from using the larger sample size in the em-
pirical analysis. It can also bring more noise induced by market microstructure
frictions that are difficult to clean from the data set. Therefore, it is not strange
that the out-of-sample performance from using three months of data is better
than that from 12 months of data.

6. Conclusion and Future Research

In this paper, I consider the problem faced by a professional investment
manager who wants to track the return of the S&P 500 index with 30 DJIA
stocks. The manager constructs many covariance matrix estimators, based on
daily returns and high-frequency returns, to form his optimal portfolio, and tries
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to find a best estimator to minimize tracking errors. Although prior research has
documented that realized volatility based on intraday returns is more precise
than daily return constructed volatility, my experiment indicates that when
the manager rebalances his portfolio monthly, he will not switch from daily to
intraday returns to estimate the conditional covariance matrix if he has past
12 months of data to use. He will switch to intraday returns only when his
estimation horizon is shorter than 6 months or he rebalances his portfolio daily.
Following the work of Merton (1980) and Nelson (1992), it is known that

precise estimation of volatility can be obtained from an arbitrarily short span of
data in theory provided that returns are sampled sufficiently frequently. With
this, one may wonder why my empirical results cannot substantiate this view.
In fact, BRT (2001) find that the prominent high-frequency data characteris-
tics such as leptokurtosis, autocorrelation in the returns, deterministic patterns
and volatility clustering in intraday variance will significantly reduce the pre-
cision of volatility estimates that use high-frequency data. Moreover, market
microstructure features such as price discreteness, nonsynchronous trading, and
bid-ask spread will further contaminate the data used in empirical research. Un-
der the ideal situation in which the asset prices follow the geometric Brownian
motion, my Monte Carlo simulation exercise indicates that there is substantial
benefit in using intraday returns to estimate a large covariance matrix compared
with using daily returns. Even with the real data, there will be benefit from
using high-frequency data with the appropriate selection of covariance matrix
estimator and adjustment for microstructure effects as can be seen in the daily
rebalance case. Moreover, it is not always better in using high-frequency data
with larger size. My experiment illustrates that one month to six months high-
frequency data have better performances in estimating conditional covariance
matrix than one year data. But with one year data to use, my empirical ev-
idence indicates that it is difficult to beat the sample covariance matrix using
daily returns by using high-frequency data after having experimented many es-
timators suggested in the literature if the performance measurement horizon is
as long as one month.
Several issues will be considered in the future research. First, variance is

used as a measure of risk in this paper. But it is correct only under some spe-
cific conditions, such as the normality of the distributions of returns or when the
investor has the quadratic utility. For occasionally occurring extreme events, the
Value at Risk (VaR) is a better measure of risk, especially for the thick-tailed
distributions commonly used in the empirical research. It is very useful to con-
struct Value at Risk efficient portfolios and explore whether there is incremental
benefit from using high-frequency data under this new measure. Second, there
may exist a frequency beyond which the manager would like to use intraday
returns rather than daily returns. I will use different rebalancing and sampling
frequencies to further test the critical frequency. Note that the 30 DJIA stocks
are only the representative stocks that can be used in tracking the S&P 500
cash index, it is also useful to do the analysis with a larger or smaller set of
stocks. The problem can be more interesting by including transaction costs and
having an objective function that minimizes the tracking errors as well as the
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transactions costs that arise due to rebalancing. And it is also important to
include the price impacts in the asset allocation problem.
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Stock mean std skewness kurtosis 1st autocorrelation
AA 0.0009 0.0199 0.5549 6.3938 0.0040
AXP 0.0013 0.0206 0.2147 5.4276 -0.0134
BA 0.0006 0.0193 -0.0560 10.5091 0.0001
CAT 0.0008 0.0208 0.0494 6.1556 -0.0059
CCI 0.0016 0.0231 0.4190 6.8107 0.0347
DD 0.0006 0.0184 0.1155 5.2288 0.0229
DIS 0.0007 0.0193 0.5177 8.9438 -0.0300
EK 0.0006 0.0180 -0.2987 11.1385 0.0576
GE 0.0013 0.0153 0.1671 4.8579 0.0166
GM 0.0007 0.0190 0.1094 4.2659 -0.0278
HD 0.0010 0.0207 0.1308 5.0781 0.0297
HON 0.0007 0.0195 -0.5064 10.0622 0.0050
HWP 0.0015 0.0250 0.3268 7.7697 -0.0417
IBM 0.0014 0.0211 0.4350 7.9558 -0.0253
INTC 0.0020 0.0255 0.0687 5.0046 -0.0393
IP 0.0002 0.0194 0.2609 5.4030 -0.0327
JNJ 0.0009 0.0169 0.1120 5.1286 0.0405
JPM 0.0006 0.0183 0.1816 5.6875 -0.0324
KO 0.0007 0.0169 0.1661 6.2156 0.0250
MCD 0.0007 0.0170 0.2781 7.1575 0.0001
MMM 0.0005 0.0158 0.0137 6.1164 -0.0224
MO 0.0004 0.0212 -0.4424 16.7330 -0.0536
MRK 0.0009 0.0182 0.1394 4.9344 0.0102
MSFT 0.0017 0.0223 -0.1639 5.8424 -0.0270
PG 0.0007 0.0186 -2.6223 47.7644 -0.0307
SBC 0.0007 0.0179 0.2508 5.3705 -0.0527
T 0.0004 0.0194 0.3705 9.7474 -0.0031
UTX 0.0011 0.0170 0.1156 4.9028 0.0377
WMT 0.0009 0.0210 0.1889 5.0038 0.0071
XON 0.0007 0.0143 0.3517 6.0071 -0.0671
SP 0.0007 0.0096 -0.3248 8.5479 -0.0008

Median 0.0007 0.0193 0.1528 6.0617 -0.0045
Mean 0.0009 0.0193 0.0483 8.2539 -0.0071
Min. 0.0002 0.0143 -2.6223 4.2659 -0.0671
Max. 0.0020 0.0255 0.5549 47.7644 0.0576

Table 1
Summary  Statistics of Daily Returns

Note: The summary statistics are based on the daily returns for each of the thirty DJIA stocks and the 
S&P 500 cash index obtained from the CRSP daily data files. The sample covers the period from 
January 2, 1993 through June 30, 2000, for a total of 1894 daily observations. The mean and median 
are computed using only 30 DJIA stocks.



Stock mean*100 std*100 skewness kurtosis 1st autocorrelation
AA 0.0002 0.1922 0.1139 9.7813 -0.0806
AXP 0.0000 0.2277 -0.0167 9.3334 -0.1375
BA -0.0003 0.2013 -0.0263 13.9602 -0.1611
CAT -0.0001 0.2062 0.1134 10.7671 -0.0828
CCI -0.0004 0.2439 0.1034 13.3525 -0.1319
DD 0.0000 0.2129 0.0366 10.5078 -0.1589
DIS -0.0006 0.2093 -0.1108 15.8356 -0.1673
EK -0.0001 0.1745 -0.0234 10.3928 -0.1266
GE 0.0003 0.1718 0.5323 27.6815 -0.0979
GM -0.0017 0.1912 0.0313 11.4834 -0.1281
HD 0.0001 0.2454 0.0442 9.9248 -0.2078
HON 0.0003 0.2348 0.1174 20.7058 -0.1431
HWP -0.0002 0.2157 0.1005 10.8100 -0.0304
IBM -0.0006 0.1907 0.2505 17.7498 -0.0828
INTC -0.0001 0.2038 -0.0010 16.4542 0.0658
IP -0.0007 0.2196 0.0311 10.4674 -0.1471
JNJ 0.0005 0.1809 0.0392 7.9636 -0.1222
JPM 0.0000 0.1755 0.2518 13.7114 -0.0950
KO 0.0009 0.1900 0.0985 8.4408 -0.1798
MCD 0.0004 0.2022 0.0609 9.7339 -0.1765
MMM -0.0003 0.1725 0.0379 9.7560 -0.0894
MO -0.0012 0.2203 0.8891 45.9282 -0.1780
MRK 0.0006 0.1930 -0.0155 9.2887 -0.1546
MSFT 0.0007 0.1796 -0.0304 9.8343 0.0775
PG 0.0017 0.1878 0.5999 29.6588 -0.1022
SBC 0.0003 0.1916 0.0361 9.9103 -0.1340
T -0.0011 0.1837 0.0843 9.2763 -0.1509
UTX 0.0006 0.1887 -0.1201 18.7408 -0.0535
WMT -0.0001 0.2474 0.0512 9.9494 -0.1798
XON 0.0006 0.1600 0.0220 8.8862 -0.1335
SP 0.0001 0.0796 0.1053 15.4402 0.1259

Median 0.0000 0.1926 0.0417 10.4876 -0.1327
Mean 0.0000 0.2005 0.1100 14.0095 -0.1163
Min. -0.0017 0.1600 -0.1201 7.9636 -0.2078
Max. 0.0017 0.2474 0.8891 45.9282 0.0775

Table 2
Summary  Statistics of Five-minute Returns

Note: The summary statistics are based on the five-minute returns within the day for each of the thirty 
DJIA stocks and the S&P 500 cash index as detailed in the main text. The sample covers the period 
from January 2, 1993 through June 30, 2000.The mean and median are computed using only 30 DJIA 
stocks.



Covariance Matrix Estimator Mean Std Max. Weight Min. Weight Short Interest
Panel A: Daily Returns
Sample Covariance Matrix 6.20 4.51 12.86 -3.53 -0.23
Sample Covariance Matrix (CHMSW) 16.47 69.96 981.74 -713.50 -262.23
Sample Covariance Matrix (SW) 53.81 83.08 636.20 -543.59 -91.79
Sample Covariance Matrix (NW, L=1) 5.98 4.74 14.64 -3.35 -0.45
Sample Covariance Matrix (NW, L=3) 5.96 5.04 13.84 -6.38 -1.34
Sample Covariance Matrix (JM) 12.97 51.72 1264.70 -729.99 -93.23
Optimal Shrinkage Estimator (Ledoit) 6.10 4.63 13.18 -2.81 -0.17
Rolling Sample Estimator (FKO, 0.01) 6.45 4.58 12.63 -2.72 -0.12
Panel B: Five-minute Returns
Sample Covariance Matrix (ex. Overnight) 5.44 5.09 8.81 0.71 0.00
Sample Covariance Matrix 5.65 4.84 8.88 0.74 0.00
Sample Covariance Matrix (AT) 5.24 5.22 8.56 0.72 0.00
Sample Covariance Matrix ( Lag 1) 5.63 4.60 10.52 -0.60 -0.06
Rolling Sample Estimator (FKO, 0.03) 5.82 4.48 13.36 -2.35 -0.11
Rolling Sample Estimator (AG) 5.81 4.91 8.68 0.70 0.00
Rolling Sample Estimator (FN, 0.01) 5.68 4.45 10.55 -1.46 -0.06
Rolling Sample Estimator (FN, 0.04) 5.71 4.34 12.68 -3.63 -0.24
Rolling Sample Estimator (FN, 0.1) 5.47 4.60 14.48 -4.28 -0.77
Rolling Sample Estimator (FN, 0.04, 0.95) 5.59 4.33 11.24 -1.73 -0.09
Rolling Sample Estimator (FN, 0.04, 0.5) 5.56 4.40 10.69 -1.35 -0.05
Rolling Sample Estimator (FN, 0.04, 0.1) 5.58 4.54 10.62 -0.74 -0.06

Table 3
Out of Sample Performance of Minimum Tracking Error Portfolios (Monthly Rebalance)

Mean and standard deviation are those of the tracking errors when tracking the S&P 500 index. Both are in 
percentage per year. Maximum and minimum portfolio weights and short interest are in percentages. Short 
interest is the sum of negative portfolio weights. The portfolio is monthly rebalanced based on past 12 months 
of data. In the last three estimators, the first parameter is the decay rate, and the second is the autoregressive 
coefficient.



Covariance Matrix Estimator Mean Std Max. Weight Min. Weight Short Interest
Panel A: Daily Returns
Sample Covariance Matrix 6.37 4.44 13.78 -3.72 -0.25
Sample Covariance Matrix (CHMSW) -31.77 218.93 26321.13 -27500.02 -530.01
Sample Covariance Matrix (SW) 6.09 17.47 636.20 -543.59 -21.30
Sample Covariance Matrix (NW, L=1) 6.27 4.56 14.65 -3.89 -0.48
Sample Covariance Matrix (NW, L=3) 6.19 4.88 13.84 -13.97 -1.36
Optimal Shrinkage Estimator (Ledoit) 6.37 4.43 13.31 -2.97 -0.18
Rolling Sample Estimator (FKO, 0.01) 6.57 4.42 14.36 -4.52 -0.31
Panel B: Five-minute Returns
Sample Covariance Matrix (ex. Overnight) 5.52 5.09 9.13 0.66 0.00
Sample Covariance Matrix 5.79 4.70 8.82 0.68 0.00
Sample Covariance Matrix ( Lag 1) 5.54 4.42 10.53 -0.68 -0.06
Rolling Sample Estimator (FKO, 0.03) 6.69 4.26 14.04 -2.97 -0.16
Rolling Sample Estimator (FN, 0.01) 5.69 4.20 10.69 -2.36 -0.08
Rolling Sample Estimator (FN, 0.04) 5.65 3.91 11.93 -4.66 -0.53
Rolling Sample Estimator (FN, 0.1) 6.61 4.06 12.74 -8.28 -3.44

Table 4
Out of Sample Performance of Minimum Tracking Error Portfolios (Daily Rebalance)

Mean and standard deviation are those of the tracking errors when tracking the S&P 500 index. Both are in 
percentage per year. Maximum and minimum portfolio weights and short interest are in percentages. Short 
interest is the sum of negative portfolio weights. The portfolio is daily rebalanced based on past 12 months of 
data. 



Covariance Matrix Estimator Equality in Mean Return Equality in Mean Squared Return
Panel A: Monthly Rebalance
Daily Returns
Sample Covariance Matrix (NW, L=1) -0.7087 1.2705
Sample Covariance Matrix (NW, L=3) -0.4303 1.8586
Optimal Shrinkage Estimator (Ledoit) -0.4801 1.1456
Rolling Sample Estimator (FKO, 0.01) 0.8872 0.8123
Five-Minute  Returns
Sample Covariance Matrix (ex. Overnight) -0.6631 1.3430
Sample Covariance Matrix -0.6107 0.9204
Sample Covariance Matrix (AT) -0.8672 1.7428
Sample Covariance Matrix ( Lag 1) -0.8005 0.1050
Rolling Sample Estimator (FKO, 0.03) -1.1042 -0.4680
Rolling Sample Estimator (AG) -0.4376 1.2065
Rolling Sample Estimator (FN, 0.01) -0.7730 -0.4425
Rolling Sample Estimator (FN, 0.04) -0.6052 -0.6215
Rolling Sample Estimator (FN, 0.1) -0.7368 0.0135
Rolling Sample Estimator (FN, 0.04, 0.95) -0.8573 -0.7857
Rolling Sample Estimator (FN, 0.04, 0.5) -0.9487 -0.6854
Rolling Sample Estimator (FN, 0.04, 0.1) -0.8863 -0.1655
Panel B: Daily Rebalance
Daily Returns
Sample Covariance Matrix (NW, L=1) -0.2570 3.7712
Sample Covariance Matrix (NW, L=3) -0.2348 7.4103
Optimal Shrinkage Estimator (Ledoit) -0.0038 -0.6595
Rolling Sample Estimator (FKO, 0.01) 1.6463 -2.0711
Five-Minute  Returns
Sample Covariance Matrix (ex. Overnight) -0.7445 6.8456
Sample Covariance Matrix -0.6458 3.5229
Sample Covariance Matrix ( Lag 1) -1.1475 -0.5138
Rolling Sample Estimator (FKO, 0.03) 0.6164 -4.0195
Rolling Sample Estimator (FN, 0.01) -0.9148 -4.2934
Rolling Sample Estimator (FN, 0.04) -0.7065 -6.0286
Rolling Sample Estimator (FN, 0.1) 0.1983 -1.7805

Table 5
Test for Equality of Means of Minimum Tracking Error Portfolios 

This table reports the t-tests of equal mean returns and equal mean squared returns of the minimum tracking 
error portfolios. For each such portfolio, I test whether its mean return and mean squared return are 
statistically different from those of the portfolio constructed from the sample covariance matrix of daily 
returns. The t-tests are calculated as mean(r1-r2)/std(r1-r2)*sqrt(No of Obs), where r2 is either the return (in 
testing the equality of mean return) or squared return (in testing the equality of mean squared return) of the 
portfolio constructed the sample covariance matrix of daily returns, r1 is either the return or squared return of 
the portfolio constructed from another covariance matrix estimator. 



Covariance Matrix Estimator Mean Std Max. Weight Min. Weight Short Interest
Panel A: Past 12 months of Data
Daily Sample Covariance Matrix 6.20 4.51 12.86 -3.53 -0.23
HF Sample Covariance Matrix (ex. Overnight) 5.44 5.09 8.81 0.71 0.00
HF Sample Covariance Matrix 5.65 4.84 8.88 0.74 0.00
HF Sample Covariance Matrix ( Lag 1) 5.63 4.60 10.52 -0.60 -0.06

Panel B: Past 6 months of Data
Daily Sample Covariance Matrix 7.14 4.63 16.55 -8.56 -1.42
HF Sample Covariance Matrix (ex. Overnight) 5.50 4.96 9.68 0.17 0.00
HF Sample Covariance Matrix 5.58 4.66 9.43 0.36 0.00
HF Sample Covariance Matrix ( Lag 1) 5.71 4.12 10.74 -1.71 -0.10

Panel C: Past 3 months of Data
Daily Sample Covariance Matrix 7.65 5.52 21.36 -20.10 -6.16
HF Sample Covariance Matrix (ex. Overnight) 5.49 4.61 10.24 -0.80 -0.06
HF Sample Covariance Matrix 5.58 4.29 10.02 -0.50 -0.01
HF Sample Covariance Matrix ( Lag 1) 5.75 3.95 12.19 -3.60 -0.28

Panel D: Past 2 months of Data
Daily Sample Covariance Matrix 7.57 7.39 29.94 -27.11 -22.70
HF Sample Covariance Matrix (ex. Overnight) 5.64 4.55 10.55 -1.76 -0.12
HF Sample Covariance Matrix 5.84 4.30 10.53 -1.47 -0.06
HF Sample Covariance Matrix ( Lag 1) 5.92 4.07 13.89 -5.66 -0.56

Panel E: Past 1 month of Data
Daily Sample Covariance Matrix -90.02 204.59 2589.01 -2206.50 -733.70
HF Sample Covariance Matrix (ex. Overnight) 5.14 4.62 12.70 -3.92 -0.21
HF Sample Covariance Matrix 5.19 4.45 12.82 -3.80 -0.23
HF Sample Covariance Matrix ( Lag 1) 5.93 3.99 36.72 -48.83 -2.34

Table 6
Out of Sample Performance of Minimum Tracking Error Portfolios (Monthly Rebalance)

Mean and standard deviation are those of the tracking errors when tracking the S&P 500 index. Both are in 
percentage per year. Maximum and minimum portfolio weights and short interest are in percentages. Short 
interest is the sum of negative portfolio weights. The portfolio is monthly rebalanced. Daily estimator uses daily 
returns, while HF estimator uses five-minute and/or overnight returns.



Covariance Matrix Estimator Mean Std Max. Weight Min. Weight Short Interest

Daily Returns
Sample Covariance Matrix 15.27 13.51 27.16 -23.53 -28.50
Rolling Sample Estimator (FKO, 0.01) 6.74 33.04 29.48 -24.90 -30.46
Five-minute Returns
Sample Covariance Matrix (ex. Overnight) 18.08 15.19 15.93 -7.45 -11.00
Sample Covariance Matrix 17.73 14.36 17.28 -9.86 -11.23
Sample Covariance Matrix ( Lag 1) 16.44 14.18 23.89 -11.81 -20.30
Rolling Sample Estimator (FKO, 0.03) 14.27 14.27 28.60 -27.00 -31.42
Rolling Sample Estimator (FN, 0.01) 16.92 14.26 25.48 -14.68 -21.31
Rolling Sample Estimator (FN, 0.04) 17.37 14.70 27.35 -16.17 -23.48
Rolling Sample Estimator (FN, 0.1) 17.78 16.38 37.07 -22.73 -29.90
Rolling Sample Estimator (FN, 0.04, 0.95) 17.19 14.95 28.81 -15.68 -22.75
Rolling Sample Estimator (FN, 0.04, 0.5) 16.77 14.52 25.97 -14.43 -20.76
Rolling Sample Estimator (FN, 0.04, 0.1) 16.49 14.23 24.15 -12.56 -20.24

Daily Returns
Sample Covariance Matrix 16.58 14.65 27.86 -23.87 -28.70
Rolling Sample Estimator (FKO, 0.01) 17.24 14.90 32.64 -27.63 -33.31
Five-minute Returns
Sample Covariance Matrix (ex. Overnight) 18.88 15.12 16.17 -8.08 -11.01
Sample Covariance Matrix 18.74 14.36 17.43 -10.73 -11.25
Sample Covariance Matrix ( Lag 1) 17.29 14.29 24.05 -11.87 -20.35
Rolling Sample Estimator (FKO, 0.03) 17.55 14.73 32.01 -32.96 -31.89
Rolling Sample Estimator (FN, 0.01) 17.65 13.82 25.78 -14.97 -21.64
Rolling Sample Estimator (FN, 0.04) 17.68 13.28 27.96 -16.70 -24.09
Rolling Sample Estimator (FN, 0.1) 17.71 13.12 32.45 -20.60 -28.06

Daily Sample Covariance Matrix 12.56 16.45 42.78 -43.73 -77.19
HF Sample Covariance Matrix (ex. Overnight) 17.60 14.34 19.20 -10.72 -11.43
HF Sample Covariance Matrix 17.17 13.73 22.06 -12.48 -13.46
HF Sample Covariance Matrix ( Lag 1) 17.05 14.17 36.07 -16.90 -25.44

Panel C: Monthly Rebalance ( Past 3 months of Data )

Mean and standard deviation are those of the minimum variance portfolios. Both are in percentage per year. 
Maximum and minimum portfolio weights and short interest are in percentages. Short interest is the sum of 
negative portfolio weights. In the last three estimators of Panel A, the first parameter is the decay rate, and the 
second is the autoregressive coefficient. In Panel C, HF estimator uses five-minute and overnight returns.

Table 7
Out of Sample Performance of Minimum Variance Portfolios 

Panel A: Monthly Rebalance ( Past 12 months of Data )

Panel B: Daily Rebalance ( Past 12 months of Data )



Covariance Matrix Estimator Mean Std Max. Weight Min. Weight Short Interest
Monthly Rebalance
Panel A: Past 12 months of Data
Daily Sample Covariance Matrix -0.04 4.82 13.35 -2.35 -0.88
HF Sample Covariance Matrix 0.16 4.51 10.24 0.33 0.00

Panel B: Past 6 months of Data
Daily Sample Covariance Matrix 0.16 5.25 15.98 -4.67 -2.90
HF Sample Covariance Matrix 0.08 4.54 10.48 0.17 0.00

Panel C: Past 3 months of Data
Daily Sample Covariance Matrix -0.12 6.28 21.58 -10.08 -10.40
HF Sample Covariance Matrix -0.01 4.58 10.76 -0.02 -0.01

Daily Rebalance
Panel D: Past 12 months of Data
Daily Sample Covariance Matrix -0.20 4.84 13.64 -2.60 -0.85
HF Sample Covariance Matrix -0.20 4.56 10.29 0.31 0.00

Panel E: Past 6 month of Data
Daily Sample Covariance Matrix -0.44 5.19 16.68 -5.18 -2.78
HF Sample Covariance Matrix -0.32 4.57 10.54 0.13 0.00

Panel F: Past 3 months of Data
Daily Sample Covariance Matrix -0.29 6.24 23.86 -11.67 -10.26
HF Sample Covariance Matrix -0.29 4.57 10.90 -0.12 0.00

Table 8
Out of Sample Performance of Minimum Tracking Error Portfolios (Simulation Exercise)

The sample covariance matrix of the daily excess returns of the 30 DJIA stocks relative to the S&P 500 index 
from January 2, 1993 to June 30, 2000 is used as the true covariance matrix. Intraday returns are simulated 
using the true covariance matrix. Daily returns are constructed with the sum of 72 intraday returns. Mean and 
standard deviation are those of the tracking errors when tracking the S&P 500 index. Both are in percentage per 
year. Maximum and minimum portfolio weights and short interest are in percentages. Short interest is the sum 
of negative portfolio weights. The portfolio is monthly rebalanced in panel A, B, C and daily rebalanced in panel 
D, E, F. Daily estimator uses daily returns, while HF estimator uses intraday returns. The results are averages 
over 1000 independent replications.



 
 
 
 
 
 
 

 
 
 
 
 
Note: This figure shows the monthly weights on GE and XON from January 1994 to June 
2000, when the minimum tracking error portfolios are formed using 30 DJIA stocks to 
tracking the S&P 500 index. The monthly covariance matrix estimator is constructed 
using the sample covariance matrix based on daily returns. “-” stands for GE, and “*” 
stands for XON. 



 
 
 
 
 
 

 
 
 
 
 
 
Note: This figure shows the monthly weights on GE and XON from January 1994 to June 
2000, when the minimum tracking error portfolios are formed using 30 DJIA stocks to 
tracking the S&P 500 index. The monthly covariance matrix estimator is constructed 
using the sample covariance matrix based on five-minute returns and overnight returns, 
adjusted by their first order autocorrelations and cross-correlations. “-” stands for GE, 
and “*” stands for XON. 
 



 
 
 
 
 

 
 
 
 
 
 
 
Note: The figure shows the return volatility of the S&P 500 cash index over the trading 
day. Intraday volatility is computed based on 72 five-minute returns from 10:00 EST to 
16:00 EST each trading day.  
 
 




