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In This Talk . . .

[1] Properties ofrealized variancein the presence of market microstructure

pure jump process extending Press (1967) model
closed form expressions for the bias and mean squared error
determine optimal sampling frequency
analyze alternative sampling schemes: BTS versus CTS

IBM sampling frequency:3 minutes, decay over time, noise ratio
IBM sampling scheme: BTS always outperforms CTS (!)

[2] Properties ofbias corrected realized variancein the presence of market microstructure

build on French, Schwert, and Stambaugh (1987), Hansen and Lunde (2004)
different (semi-parametric) price process, analysis of different sampling schemes

IBM sampling frequency:12 seconds(bias and MSE reduction over 65%!)
IBM sampling scheme: BTS always outperforms CTS
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Motivation & Related Literature

• Realized variance (RV) defined as thesum of squared intra-period returnsas a “feasi-
ble” or “discretized” version of the quadratic variation process
see e.g. Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-

Nielsen and Shephard (2003), French, Schwert, and Stambaugh (1987), Hsieh (1988), Meddahi (2002),

Merton (1980)
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Merton (1980)

• Microstructure inducedserial correlationrenders realized variancebiased

bias⇓ by samplinglessfrequent⇔ variance⇓ by samplingmorefrequent

• This tradeoffmotives search foroptimal sampling frequency
see e.g. Andersen, Bollerslev, Diebold, and Labys (2000), Andreou and Ghysels (2001), Bai, Russell,

and Tiao (2001), Bandi and Russell (2003), Oomen (2002a)

X What I do here is (i) to characterize bias and MSE of RV and (ii) provide a flexible
semi-parametric framework to determine optimal sampling frequency (iii) do all this
under alternative sampling schemes
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• Aggregation(to optimal samp freq) may be “model-free” but is inefficient.

(1) filter (full use of information but model risk and measurement error)
(Andersen, Bollerslev, Diebold, and Ebens 2001)

(2) modeland bias correct (full use of information but model-risk)
(Corsi, Zumbach, M̈uller, and Dacorogna 2001)

(3) subsampling(full use of information but only asymptotic results)
(Zhang, Mykland, and Ait-Sahalia 2003)

(4) Newey-West stylebias correction(some inefficiency, concentrated on bias)
(Hansen and Lunde 2004)

X What I do here is (i) to characterize bias and MSE of bias corrected RV and (ii) provide
a flexible semi-parametric framework to determine optimal sampling frequency (iii)
do all this under alternative sampling schemes
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A Pure Jump Process For High Frequency Financial Data

• Let the logarithmic price at timet, P (t), follow CPP-MA(s), i.e.

P (t) = P (0) +
M(t)∑

j=1

(εj + ηj) where ηj = ρ0νj + ρ1νj−1 + . . . + ρsνj−s

whereεj ∼iid N (
µε, σ

2
ε

)
, νj ∼ iid N (

µν, σ
2
ν

)
, andM (t) is a Poisson process with

instantaneous intensityλ (t) > 0
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• Let the logarithmic price at timet, P (t), follow CPP-MA(s), i.e.

P (t) = P (0) +
M(t)∑

j=1

(εj + ηj) where ηj = ρ0νj + ρ1νj−1 + . . . + ρsνj−s

whereεj ∼iid N (
µε, σ

2
ε

)
, νj ∼ iid N (

µν, σ
2
ν

)
, andM (t) is a Poisson process with

instantaneous intensityλ (t) > 0

• Pure jump processes not widely used in finance(that is relative to for example SV and
ARCH) . . . notable exceptions include:

Low Frequency: Press (1967), Maheu and McCurdy (2003, 2004), Piazzesi (2004)
High Frequency: Bowsher (2002), Oomen (2002b), Rogers and Zane (1998)

Rydberg and Shephard (2003)
Option Pricing: Barndorff-Nielsen and Shephard (2004), Carr and Wu (2003)

Geman, Madan, and Yor (2001), Mürmann (2001)
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Market Microstructure Noise Interpretation of the Model

• Let Pk denote the logarithmic price after thekth transaction, i.e.

Pk = P0 +
k∑

j=1

εj +
k∑

j=1

ηj = P e
k +

k∑

j=1

ηj

“CONTAMINATED PRICE” = “E FFICIENT PRICE” + “A CCUMULATED NOISE”
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Market Microstructure Noise Interpretation of the Model

• Let Pk denote the logarithmic price after thekth transaction, i.e.

Pk = P0 +
k∑

j=1

εj +
k∑

j=1

ηj = P e
k +

k∑

j=1

ηj

“CONTAMINATED PRICE” = “E FFICIENT PRICE” + “A CCUMULATED NOISE”

• Restrict MA(s) parameters to avoid accumulation of noise. For example, for MA(1)
imposeρ0 = −ρ1 = 1

ηk = (νk − νk−1) ⇒
k∑

j=1

ηj = (νk − ν0)

X Negative serial correlation of returns (OK for transaction data)

X Higher order MA(s) and different restrictions can lead to positive serial correlation
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Properties of the Price Process

• In transaction time returns are normal (Ané and Geman 2000).

• In calendar time returns are (highly) non-normal
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Properties of the Price Process

• In transaction time returns are normal (Ané and Geman 2000).

• In calendar time returns are (highly) non-normal

• The joint characteristic function of{R(t1|τ1), R(t2|τ2), R(t3|τ3), R(t4|τ4)} condi-
tional on intensity processfor the restricted CPP-MA(1) can be derived as:
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e
c1λ1

)
Υ (4) Λ1

(
e
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Properties of the Price Process

• Stochasticintensityfor the CPP-MA(s)⇔ stochasticvolatility for SV

• CPP-MA(s) can capture seasonals, ACD& ARCH effects, serial correlation, fat tails

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



7

Properties of the Price Process

• Stochasticintensityfor the CPP-MA(s)⇔ stochasticvolatility for SV

• CPP-MA(s) can capture seasonals, ACD& ARCH effects, serial correlation, fat tails

• A fundamental difference with diffusive process: CPP-MA(s) is offinite variation
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Alternative Sampling Schemes

? General Time Sampling: UnderGTSN , the price process is sampled at time points
{tg0, . . . , tgN} over the interval[t0, t0 + T ] such thattg0 = t0 , tgN = t0 + T , and
tgi < tgi+1.
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Alternative Sampling Schemes

? General Time Sampling: UnderGTSN , the price process is sampled at time points
{tg0, . . . , tgN} over the interval[t0, t0 + T ] such thattg0 = t0 , tgN = t0 + T , and
tgi < tgi+1.

? Calendar Time Sampling: UnderCTSN , the price process is sampled at equidistantly
spaced points in calendar time over the interval[t0, t0 + T ], i.e. tpi = t0 + iδ for
i = {0, . . . , NT} whereN = δ−1.

? Business Time Sampling: Under BTSN , the price process is sampled at equidis-
tantly spaced points in business time over the interval[t0, t0 + T ], i.e. tbi for i =
{0, . . . , NT} such thattb0 = t0, tbN = t0 + T and

∫ tb
i+1

tb
i

λ(u)du =
1

NT

∫ t0+T

t0

λ(u)du ≡ λN

X Throughout I translateN to corresponding sampling frequency in minutes
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RV in Absence of Market Microstructure Noise

• To set the stage I first consider the CPP-MA(0) (RV is unbiased)

MSE (GTSN) =
N∑

i=1

(
3σ4

ελ
2
i + 3σ4

ελi

)
+ 2σ4

ε

N−1∑

i=1

N∑

j=i+1

λiλj − λ2
(0,1)σ

4
ε

? Notation:λi =
∫ ti

ti−τi
λ(u)du andλ(0,1) =

∫ 1

0
λ(u)du
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• To set the stage I first consider the CPP-MA(0) (RV is unbiased)

MSE (GTSN) =
N∑

i=1

(
3σ4

ελ
2
i + 3σ4

ελi

)
+ 2σ4

ε

N−1∑

i=1

N∑

j=i+1

λiλj − λ2
(0,1)σ

4
ε

. . . which simplifies under BTS to:

MSE (BTSN) = 2N−1
(
λ(0,1)σ

2
ε

)2
+ 3σ2

ε

(
λ(0,1)σ

2
ε

)

? Notation:λi =
∫ ti

ti−τi
λ(u)du andλ(0,1) =

∫ 1

0
λ(u)du
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RV in Absence of Market Microstructure Noise

• To set the stage I first consider the CPP-MA(0) (RV is unbiased)

MSE (GTSN) =
N∑

i=1

(
3σ4

ελ
2
i + 3σ4

ελi

)
+ 2σ4

ε

N−1∑

i=1

N∑

j=i+1

λiλj − λ2
(0,1)σ

4
ε

. . . which simplifies under BTS to:

MSE (BTSN) = 2N−1
(
λ(0,1)σ

2
ε

)2
+ 3σ2

ε

(
λ(0,1)σ

2
ε

)

• RV is inconsistentunder pure jump process

• Consistency in “diffusion” limit whereλ →∞ while λσ2
ε constant

? Notation:λi =
∫ ti

ti−τi
λ(u)du andλ(0,1) =

∫ 1

0
λ(u)du
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Absence of Market Microstructure Noise

• The difference in MSE among different sampling schemes can be derived as:

MSE (GTSN)−MSE (BTSN) = 3σ4
ε

N∑

i=1

(
λ2

i − λ2
N

)
+ 2σ4

ε

N−1∑

i=1

N∑

j=i+1

(
λiλj − λ2

N

)

= 2σ4
ε

N∑

i=1

ϑ2
i > 0

whereϑi =
∫ ti

ti−τi
λ (u) du− λN
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Absence of Market Microstructure Noise

• The difference in MSE among different sampling schemes can be derived as:

MSE (GTSN)−MSE (BTSN) = 3σ4
ε

N∑

i=1

(
λ2

i − λ2
N

)
+ 2σ4

ε

N−1∑

i=1

N∑

j=i+1

(
λiλj − λ2

N

)

= 2σ4
ε

N∑

i=1

ϑ2
i > 0

whereϑi =
∫ ti

ti−τi
λ (u) du− λN

• In the absence of market microstructure noise, the realized variance measure under
BTS is more efficient than under any other conceivable sampling scheme
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Absence of Market Microstructure Noise

• The difference in MSE among different sampling schemes can be derived as:

MSE (GTSN)−MSE (BTSN) = 3σ4
ε

N∑

i=1

(
λ2

i − λ2
N

)
+ 2σ4

ε

N−1∑

i=1

N∑

j=i+1

(
λiλj − λ2

N

)

= 2σ4
ε

N∑

i=1

ϑ2
i > 0

whereϑi =
∫ ti

ti−τi
λ (u) du− λN

• In the absence of market microstructure noise, the realized variance measure under
BTS is more efficient than under any other conceivable sampling scheme

• The efficiency gain associated with BTS, relative to CTS, increases with

(i) an increase in the variability of trade intensity
(ii) an increase in the variance of the price innovations
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Integrated Incremental Intensity under BTS and CTS: ϑ
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Integrated Incremental Intensity under BTS and CTS: ϑ
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Presence of Market Microstructure Noise – The Bias . . .

• Now move on to the CPP-MA(1), i.e. first order dependence in noise component

Bias (GTSN) = Eλ

[
N∑

i=1

R (ti|τi)
2

]
− λ(0,1)σ

2
ε = 2σ2

ν

N∑

i=1

(
1− e−λi

)
> 0
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• Now move on to the CPP-MA(1), i.e. first order dependence in noise component

Bias (GTSN) = Eλ

[
N∑

i=1

R (ti|τi)
2

]
− λ(0,1)σ

2
ε = 2σ2

ν

N∑

i=1

(
1− e−λi

)
> 0

. . . and the difference in bias between two sampling schemes is:

Bias (GTSN)−Bias (BTSN) = 2e−λNσ2
ν

N∑

i=1

(
1− e−ϑi

)
< 0

• In the presence of first order market microstructure noise, the bias of the realized
variance measure under BTS is larger than under any other sampling scheme
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• Now move on to the CPP-MA(1), i.e. first order dependence in noise component

Bias (GTSN) = Eλ

[
N∑

i=1

R (ti|τi)
2

]
− λ(0,1)σ

2
ε = 2σ2

ν

N∑

i=1

(
1− e−λi

)
> 0

. . . and the difference in bias between two sampling schemes is:

Bias (GTSN)−Bias (BTSN) = 2e−λNσ2
ν

N∑

i=1

(
1− e−ϑi

)
< 0

• In the presence of first order market microstructure noise, the bias of the realized
variance measure under BTS is larger than under any other sampling scheme

• WhenN = 1 or N →∞ all sampling schemes are equivalent.

lim
N→∞

Bias (GTSN) = 2σ2
νλ(0,1)
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Presence of Market Microstructure Noise – The MSE . . .

• For CPP-MA(1), CTS may perform better than BTS in terms of MSE. . .

. . . compute%-loss in MSE under CTS relative to BTS (i.e. “CTS loss”)
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• For CPP-MA(1), CTS may perform better than BTS in terms of MSE. . .

. . . compute%-loss in MSE under CTS relative to BTS (i.e. “CTS loss”)

• CTS loss at different sampling fre-
quencies and noise ratios (σν/σε)

• Asterisks indicate optimal sampling
frequency

5 sec 2 min 4 min 6 min 8 min 10 min

1.0

2.0

3.0

4.0

−1 0 0.25 1 2

4

8

11

12

12.25

12
12

11

11

11

8

8

8

4

4

4

2

2

1

1

0.25

−1

−1

0

0

0

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



13

Presence of Market Microstructure Noise – The MSE . . .

• For CPP-MA(1), CTS may perform better than BTS in terms of MSE. . .

. . . compute%-loss in MSE under CTS relative to BTS (i.e. “CTS loss”)

• CTS loss at different sampling fre-
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BTS always outperforms CTS along
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• For CPP-MA(1), CTS may perform better than BTS in terms of MSE. . .

. . . compute%-loss in MSE under CTS relative to BTS (i.e. “CTS loss”)

• CTS loss at different sampling fre-
quencies and noise ratios (σν/σε)

• Asterisks indicate optimal sampling
frequency

BTS always outperforms CTS along
“optimal sampling frequency”!

• Similar results for higher order de-
pendence, i.e. CPP-MA(q)
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Empirical Analysis

• Estimate the model parameters of the restricted CPP-MA(1) and CPP-MA(2) using
IBM transaction data

(i) determine theoptimal sampling frequency

(ii) measure theimprovement in MSEresulting from BTS relative to CTS.
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Empirical Analysis

• Estimate the model parameters of the restricted CPP-MA(1) and CPP-MA(2) using
IBM transaction data

(i) determine theoptimal sampling frequency

(ii) measure theimprovement in MSEresulting from BTS relative to CTS.

• Data available through Trade and Quote (TAQ) database from NYSE.

January 1, 2000 until 31 August 2003 (917 days)

Transactions from all exchanges between 9.45 and 16.00

Filter for instantaneous price reversals (detect 1358)

Total number of transactions is 5,522,929
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Empirical Analysis – Parameter Estimation

• σε, σν, andρ estimated in “business time” using all transactions

Cov (Rk, Rk−1) = − (1− ρ)2 σ2
ν

Cov (Rk, Rk−2) = −ρσ2
ν

V ar (Rk) = σ2
ε +

(
2 + 2ρ2 − 2ρ

)
σ2

ν

• Solve system of equations (choose solution withσ2
ν > 0 and|ρ| < 1)
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• σε, σν, andρ estimated in “business
time” using all transactions

Cov (Rk, Rk−1) = − (1− ρ)2 σ2
ν

Cov (Rk, Rk−2) = −ρσ2
ν

V ar (Rk) = σ2
ε +

(
2 + 2ρ2 − 2ρ

)
σ2

ν

• Solve system of equations (choose
solution withσ2

ν > 0 and|ρ| < 1) 10:00 11:00 12:00 13:00 14:00 15:00 16:00
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• λ (t) is estimated using non-parametric smoothing techniques (Cowling, Hall,
and Phillips 1996) similar to density estimation
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• λ (t) is estimated using non-parametric smoothing techniques (Cowling, Hall,
and Phillips 1996) similar to density estimation

(i) Bias at the edges!
(ii) How significant?
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Empirical Analysis – Parameter Estimation

• σε, σν, andρ estimated in “business
time” using all transactions

Cov (Rk, Rk−1) = − (1− ρ)2 σ2
ν

Cov (Rk, Rk−2) = −ρσ2
ν

V ar (Rk) = σ2
ε +

(
2 + 2ρ2 − 2ρ

)
σ2

ν

• Solve system of equations (choose
solution withσ2

ν > 0 and|ρ| < 1) 10:00 11:00 12:00 13:00 14:00 15:00 16:00
3000

4000

5000

6000

7000

8000

9000

10000

• λ (t) is estimated using non-parametric smoothing techniques (Cowling, Hall,
and Phillips 1996) similar to density estimation

(i) Bias at the edges! (“mirror image” correction Diggle and Marron (1988))
(ii) How significant? (bootstrap based on Cowling, Hall, and Phillips (1996))

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



16

Impact of Measurement Error on Optimal Sampling Frequency

1 Simulate transaction data based
on the CPP-MA(2) model (ρ =
0.6, λ(0,1) = 5000, σν/σε =
1.1, annualized return volatility
of 25%)

2 Estimate model parameters as
outlined above

3 Determine optimal sampling
frequency under BTS by
minimizing the MSE overN
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Impact of Measurement Error on Optimal Sampling Frequency

1 Simulate transaction data based
on the CPP-MA(2) model (ρ =
0.6, λ(0,1) = 5000, σν/σε =
1.1, annualized return volatility
of 25%)

2 Estimate model parameters as
outlined above

3 Determine optimal sampling
frequency under BTS by
minimizing the MSE overN

125 sec 150 sec 175 sec 200 sec 225 sec

100

200

300

400

500

• No bias due to measurement error!(this is particularly important when analyzing
illiquid securities)

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



17

Optimal Sampling Frequency and Sampling Scheme Efficiency

Optimal Sampling Frequency

2000 2001 2002 2003

2 min

5 min

8 min

11 min

14 min

• Considerable day-to-day variation

• Downward trend
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Optimal Sampling Frequency and Sampling Scheme Efficiency

Optimal Sampling Frequency

2000 2001 2002 2003

2 min

5 min

8 min

11 min

14 min

• Considerable day-to-day variation

• Downward trend

CTS loss

2000 2001 2002 2003

5

15

25

35

45

• Largest on days with highly irregular
trading patterns, early market clo-
sures, or sudden moves in market ac-
tivity
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CTS loss on Irregular Trading Days

• On June 7, 2000 Dow Jones Business News headlined:

“Wall Street Closes Higher, Paced By IBM Rebound On Goldman Sachs Comments”
“. . . A late-day rally in IBM shareshelped push stocks higher Wednesday. . . International Business Machines (IBM) jumped 8 3/8 to 120 3/4 after

Goldman Sachs analyst Laura Conigliaro told CNBC that the computer maker should see revenue improvements in the second half of the year”

10:00 11:00 12:00 13:00 14:00 15:00 16:00
0

2000

4000

6000

8000

10000

12000

14000

16000
June 7, 2000 (CTS loss of 35.9%)
August 21, 2001 (CTS loss of 16.7%)
July 5, 2002 (CTS loss of 29.5%)
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Summary

• So far I have analyzed RV under alternative sampling schemes

Bias and MSE in closed form⇒ day-to-day optimal sampling frequency
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Summary

• So far I have analyzed RV under alternative sampling schemes

Bias and MSE in closed form⇒ day-to-day optimal sampling frequency

BTS is superior to CTS along optimal sampling frequency (theory and practice)

CTS loss particularly large on days with irregular trading patterns

Downward trend in optimal sampling frequency

Close relation of optimal sampling frequency to noise ratio

• Now turn to Newey-West typebias corrected realized variance(Hansen and Lunde
2004):

RV ACN,q =
N∑

i=1

R (ti|τi)
2 +

N∑

i=1

R (ti|τi)
q∑

k=1

(R (ti−k|τi−k) + R (ti+k|τi+k))

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



20

Bias and MSE of RVAC(q) for CPP-MA(1)

Bias of RVAC(q)

1 sec 30 sec 1.0 min 1.5 min 2.0 min 2.5 min
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RVAC(0) 

RVAC(3) 

RVAC(1) 

RVAC(2) 

Bias = 2Nσ
2
ν

(
1− e

−λN
)

e
−qλN
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Bias and MSE of RVAC(q) for CPP-MA(1)

Bias of RVAC(q)
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Bias = 2Nσ
2
ν

(
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−λN
)

e
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lim
N→∞

(
Bias

λ(0,1)σ2
ε

) = 2(σν/σε)
2
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MSE of RVAC(q)
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•

•••
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RVAC(1) 

RVAC(3) 

At given frequency, bias decreases but
MSE increases with increase inq
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CTS loss of RVAC(1) for CPP-MA(1)

• Compare MSE under BTS and CTS for RV (left graph) and RVAC(1) (right graph)
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• Compare MSE under BTS and CTS for RV (left graph) and RVAC(1) (right graph)
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X BTS superior to CTS along optimal sampling frequency

X Optimal sampling frequency much higher for RVAC(1) than for RV

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



22

Empirical Results for IBM

CPP-MA(1) RVAC(0) RVAC(1)
IBM σν/σε σε λ(0,1) Freq. Bias MSE CTSloss Freq. Bias MSE CTSloss

Jan 03 1.66 1.27 8583 170 8.61 5.14 2.51 12 1.23 1.59 2.63
Feb 03
Mar 03
Apr 03
May 03
Jun 03
Jul 03
Aug 03

Jan 03 - Aug 03

• 166 days with 1,224,127 transactions. Relative bias and MSE in percentage points.
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Empirical Results for IBM

CPP-MA(1) RVAC(0) RVAC(1)
IBM σν/σε σε λ(0,1) Freq. Bias MSE CTSloss Freq. Bias MSE CTSloss

Jan 03 1.66 1.27 8583 170 8.61 5.14 2.51 12 1.23 1.59 2.63
Feb 03 1.51 1.38 7698 162 8.35 5.57 1.99 13 1.41 1.76 2.71
Mar 03 1.46 1.42 8408 146 7.95 7.41 2.16 11 1.42 2.27 2.85
Apr 03 1.48 1.25 7772 156 8.22 3.43 3.09 12 1.43 1.09 4.14
May 03 1.35 1.14 7391 143 7.90 2.09 2.30 12 1.59 0.67 3.28
Jun 03 1.37 1.25 7053 150 8.05 3.08 3.24 13 1.60 1.02 4.15
Jul 03 1.22 1.34 6203 140 7.78 2.67 2.19 14 1.79 0.96 3.55
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Jan 03 - Aug 03

• 166 days with 1,224,127 transactions. Relative bias and MSE in percentage points.
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Empirical Results for IBM

CPP-MA(1) RVAC(0) RVAC(1)
IBM σν/σε σε λ(0,1) Freq. Bias MSE CTSloss Freq. Bias MSE CTSloss

Jan 03 1.66 1.27 8583 170 8.61 5.14 2.51 12 1.23 1.59 2.63
Feb 03 1.51 1.38 7698 162 8.35 5.57 1.99 13 1.41 1.76 2.71
Mar 03 1.46 1.42 8408 146 7.95 7.41 2.16 11 1.42 2.27 2.85
Apr 03 1.48 1.25 7772 156 8.22 3.43 3.09 12 1.43 1.09 4.14
May 03 1.35 1.14 7391 143 7.90 2.09 2.30 12 1.59 0.67 3.28
Jun 03 1.37 1.25 7053 150 8.05 3.08 3.24 13 1.60 1.02 4.15
Jul 03 1.22 1.34 6203 140 7.78 2.67 2.19 14 1.79 0.96 3.55
Aug 03 1.05 1.15 5907 119 7.20 1.25 2.66 14 1.93 0.44 4.71

Jan 03 - Aug 03 1.39 1.28 7377 148 8.01 3.83 2.52 13 1.55 1.22 3.50

• 166 days with 1,224,127 transactions. Relative bias and MSE in percentage points.

• First order correction⇒ bias↓, MSE↓, optimal sampling frequency↑

• BTS superior to CTS for each month in sample
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Empirical Results for S&P500 Spiders

CPP-MA(1) RVAC(0) RVAC(1)
SPY σν/σε σε λ(0,1) Freq. Bias MSE CTSloss Freq. Bias MSE CTSloss

Jan 03 2.24 0.74 19666 147 8.01 2.94 5.72 7 0.41 0.76 3.64
Feb 03 2.23 0.78 23454 130 7.51 4.47 5.64 6 0.38 1.08 3.67
Mar 03 2.15 0.83 27747 112 6.98 9.13 5.24 5 0.41 2.00 3.56
Apr 03 2.13 0.70 24087 120 7.24 2.51 6.95 6 0.47 0.61 4.12
May 03 2.18 0.60 22819 128 7.48 1.37 6.56 6 0.43 0.34 4.37
Jun 03 1.99 0.59 24467 108 6.87 1.21 6.59 5 0.57 0.29 5.20
Jul 03 1.72 0.75 28043 82 5.95 8.29 4.52 4 0.69 2.76 3.76
Aug 03 1.78 0.55 24736 95 6.42 1.03 4.77 5 0.72 0.23 3.99

Jan 03 - Aug 03 2.05 0.69 24389 115 7.05 3.86 5.75 6 0.51 1.01 4.04

• 166 days with 4,048,665 transactions. 25K transaction per day!

• Higher noise ratio than for IBM but downward trend (market efficiency improved?)

• Bias correction leads to 60%-80% reduction in MSE!
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The End. . .

• Flexible and easy-to-implement framework for studying properties of RV and bias
corrected RV under alternative sampling schemes
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• Allows for straightforward analysis of optimal sampling frequency on a day-to-day
basis
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The End. . .

• Flexible and easy-to-implement framework for studying properties of RV and bias
corrected RV under alternative sampling schemes

• Allows for straightforward analysis of optimal sampling frequency on a day-to-day
basis

• BTS superior to commonly used CTS although gains in MSE are modest

• Substantial gains associated with bias correction
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Carr, P., and L. Wu, 2003, “Time-Changed Lévy Processes and Option Pricing,” forthcomingJournal of Financial Economics.

Corsi, F., G. Zumbach, U. A. M̈uller, and M. Dacorogna, 2001, “Consistent High-Precision Volatility from High-Frequency Data,” Olsen Group Working
Paper.

Cowling, A., P. Hall, and M. J. Phillips, 1996, “Bootstrap Confidence Regions for the Intensity of a Poisson Point Process,”JASA, 91 (436), 1516–1524.

ROEL OOMEN MARKET M ICROSTRUCTURENOISE & PROPERTIES OFREALIZED VARIANCE



References 26

Diggle, P., and J. Marron, 1988, “Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation,”JASA, 83 (403), 793–800.

French, K. R., G. W. Schwert, and R. Stambaugh, 1987, “Expected Stock Returns and Volatility,”Journal of Financial Economics, 19, 3–29.

Geman, H., D. B. Madan, and M. Yor, 2001, “Time Changes for Levy Processes,”Mathematical Finance, 11 (1), 79–96.

Hansen, P. R., and A. Lunde, 2004, “An Unbiased Measure of Realized Variance,” manuscript Department of Economics, Brown University.

Hsieh, D., 1988, “The statistical properties of daily foreign exchange rates: 1974-1983,”Journal of International Economics, 24, 129–145.

Maheu, J. M., and T. H. McCurdy, 2003, “Modeling Foreign Exchange Rates with Jumps,” manuscript University of Toronto.

, 2004, “News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns,”Journal of Finance, 59 (2).

Meddahi, N., 2002, “A Theorical Comparison Between Integrated and Realized Volatility,”Journal of Applied Econometrics, 17, 479–508.

Merton, R. C., 1980, “On Estimating the Expected Return on the Market; An Exploratory Investigation,”Journal of Financial Economics, 8, 323–361.
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