Not-for-Publication Appendix of Tables for

"Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis"
Todd E. Clark
Federal Reserve Bank of Kansas City
Kenneth D. West
University of Wisconsin

February 2004

This appendix reports, in the tables listed below, the details of auxiliary Monte Carlo results referred to in the paper. The first four tables present versions of the paper's Tables $1,2,4$, and 5 augmented to include additional tests. Subsequent tables generally appear in the order in which the paper makes reference to the results contained in each table. In light of the volume of numbers reported, the legends to the appendix tables provide less detail than those in the paper.

Note that, in all cases, the reported results are based on 10,000 simulations. Unless otherwise indicated, the data are based on draws from the normal distribution.

Table of Contents

Page \#	Table \# Table	
1	A1	Augmented Results on Empirical Size, DGP 1
2	A2	Augmented Results on Empirical Size, DGP 2
3	A3	Augmented Results on Size-Adjusted Power, DGP 1
4	A4	Augmented Results on Size-Adjusted Power, DGP 2
5	A5	MSPE Summary Statistics for DGP 1 Size Experiments
6	A6	MSPE Summary Statistics (Size Experiments) from Varying k Version of DGP 1
7	A7	Empirical Size for DGP 1 Data with Fat Tails
7	A8	Empirical Size for DGP 2 Data with Fat Tails
8	A9	Empirical Size for DGP 1 at Nominal Size of 5%
8	A10	Empirical Size for DGP 2 at Nominal Size of 5%
9	A11	Empirical Size for DGP 1 Data with Heteroskedasticity
10	A12	Empirical Size for DGP 1 with Large R and P
10	A13	Empirical Size for DGP 1 with $R=120$ and Large P, Homosk. and Heterosk. Data
11	A14	Empirical Size for Varying k Version of DGP $1, R=120$
12	A15	Empirical Size, Long-Horizon Forecasts, $R=120$, DGP 1
13	A16	Empirical Size, Long-Horizon Forecasts, $R=120$, DGP 2
14	A17	Empirical Size, Null Model Includes Constant, DGP 1
14	A18	Empirical Size, Null Model Includes Constant, DGP 2
15	A19	Size-Adjusted Power, DGP 1 with $b=-1$
16	A20	Size-Adjusted Power at Empirical Size $=5 \%$, DGP 1
16	A21	Size-Adjusted Power at Empirical Size $=5 \%$, DGP 2
17	A22	Unadjusted Power for DGP 1
17	A23	Unadjusted Power for DGP 2
18	A24	MSPE Summary Statistics for DGP 1 Power Experiments

Table A1 Augmented Results on Empirical Size: DGP 1 Nominal Size $=10 \%$						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 074	. 072	. 072	. 075	. 080	. 092
MSPE:normal	. 009	. 002	. 000	. 000	. 000	. 000
MSPE:McCracken	. 085	. 072	. 048	. 052	. 037	. 025
CCS:robust	. 141	. 121	. 108	. 114	. 106	. 101
CCS:OLS	. 112	. 108	. 099	. 108	. 103	. 099
MSE-F:McCracken	. 084	. 071	. 045	. 045	. 027	. 007
ENC-F:Clark-McCracken	. 116	. 118	. 128	. 114	. 112	. 126
ENC-t:Clark-McCracken	. 105	. 110	. 106	. 101	. 096	. 105
				$R=120$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 069	. 068	. 063	. 065	. 069	. 081
MSPE:normal	. 020	. 009	. 003	. 001	. 000	. 000
MSPE:McCracken	. 088	. 090	. 076	. 070	. 062	. 050
CCS:robust	. 142	. 119	. 116	. 109	. 105	. 096
CCS:OLS	. 111	. 104	. 105	. 103	. 102	. 095
MSE-F:McCracken	. 088	. 087	. 076	. 068	. 056	. 037
ENC-F:Clark-McCracken	. 106	. 106	. 109	. 106	. 104	. 108
ENC-t:Clark-McCracken	. 100	. 097	. 099	. 095	. 095	. 095
				$R=240$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 082	. 074	. 071	. 070	. 066	. 076
MSPE:normal	. 040	. 022	. 014	. 006	. 001	. 000
MSPE:McCracken	. 106	. 099	. 095	. 100	. 081	. 074
CCS:robust	. 145	. 130	. 125	. 114	. 102	. 100
CCS:OLS	. 113	. 111	. 114	. 106	. 099	. 100
MSE-F:McCracken	. 103	. 099	. 094	. 102	. 079	. 070
ENC-F:Clark-McCracken	. 109	. 106	. 107	. 111	. 102	. 104
ENC-t:Clark-McCracken	. 112	. 107	. 100	. 112	. 096	. 099

Notes:

1. The results in the first four rows of each panel repeat the results in the paper's Table 1. The test CCS:robust is the heteroskedasticity-robust version of the CCS used in the paper and denoted in the paper's tables as simply $C C S$.
2. CCS:OLS refers to a CCS test computed imposing homoskedasticity (as default least-squares estimators do) in computing the variance matrix that enters the test statistic.
3. MSE-F:McCracken refers to the F-type test of equal MSPE developed by McCracken (2000), compared against McCracken's asymptotic critical values.
4. ENC-F:Clark-McCracken refers to the F-type test of forecast encompassing developed in Clark and McCracken (2001, 2003), compared against Clark and McCracken's (2001) asymptotic critical values.
5. ENC-t:Clark-McCracken refers to a t-test for forecast encompassing compared against Clark and McCracken's (2001) asymptotic critical values.

Table A2 Augmented Results on Empirical Size: DGP 2 $\text { Nominal Size }=10 \%$						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 094	. 081	. 079	. 083	. 084	. 089
MSPE:normal	. 019	. 005	. 001	. 000	. 000	. 000
MSPE:McCracken	. 131	. 097	. 060	. 056	. 037	. 018
CCS:robust	. 239	. 183	. 153	. 132	. 119	. 111
CCS:OLS	. 188	. 157	. 140	. 124	. 115	. 111
MSE-F:McCracken	. 122	. 097	. 057	. 052	. 026	. 004
ENC-F:Clark-McCracken	. 128	. 129	. 140	. 124	. 123	. 133
ENC-t:Clark-McCracken	. 134	. 124	. 116	. 107	. 100	. 102
				$R=120$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 098	. 085	. 080	. 074	. 077	. 086
MSPE:normal	. 040	. 018	. 008	. 002	. 000	. 000
MSPE:McCracken	. 140	. 117	. 104	. 083	. 065	. 043
CCS:robust	. 249	. 179	. 163	. 137	. 120	. 110
CCS:OLS	. 200	. 155	. 148	. 128	. 115	. 108
MSE-F:McCracken	. 121	. 113	. 101	. 082	. 062	. 029
ENC-F:Clark-McCracken	. 119	. 117	. 126	. 119	. 118	. 124
ENC-t:Clark-McCracken	. 139	. 121	. 121	. 108	. 104	. 104
				$R=240$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 100	. 085	. 082	. 075	. 074	. 078
MSPE:normal	. 056	. 035	. 023	. 010	. 002	. 000
MSPE:McCracken	. 137	. 123	. 116	. 115	. 092	. 075
CCS:robust	. 245	. 177	. 157	. 131	. 120	. 110
CCS:OLS	. 197	. 154	. 142	. 122	. 116	. 109
MSE-F:McCracken	. 114	. 110	. 106	. 114	. 091	. 069
ENC-F:Clark-McCracken	. 109	. 111	. 111	. 111	. 112	. 113
ENC-t:Clark-McCracken	. 133	. 122	. 112	. 118	. 106	. 101

Notes:

1. The results in the first four rows of each panel repeat the results in the paper's Table 2.
2. See the notes to Table A1.

| Table A3 | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Augmented Results on Size-Adjusted Power: DGP 1 | | | | | | |
| Empirical Size $=\mathbf{1 0 \%}$ | | | | | | |

Notes:

1. MSE-F:McCracken refers to the F-type test of equal MSPE developed by McCracken (2000).
2. ENC-F:Clark-McCracken refers to the F-type test of forecast encompassing developed in Clark and McCracken (2001, 2003).

| Table A4 | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Augmented Results on Size-Adjusted Power: DGP 2 | | | | | | |
| Empirical Size $=\mathbf{1 0 \%}$ | | | | | | |

Notes:

1. See the notes to Table A3.

Table A5						
				$=60$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
$\hat{\sigma}_{1}^{2}$: mean	1.00156	1.00158	1.00022	1.00038	0.99987	1.00042
$\hat{\sigma}_{2}^{2}$: mean	1.04554	1.04591	1.04451	1.04469	1.04402	1.04454
adj.: mean	0.04419	0.04453	0.04423	0.04427	0.04422	0.04432
$\hat{\sigma}_{2}^{2}$-adj.: mean	1.00135	1.00138	1.00029	1.00042	0.99980	1.00022
$\hat{\sigma}_{1}^{2}$-($\hat{\sigma}_{2}^{2}$-adj.): mean	0.00021	0.00020	-0.00007	-0.00004	0.00007	0.00020
$\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}$: mean	-0.04398	-0.04433	-0.04429	-0.04431	-0.04415	-0.04412
$\hat{\sigma}_{1}^{2}$: median	0.98931	0.99400	0.99547	0.99788	0.99904	0.99989
$\hat{\sigma}_{2}^{2}$: median	1.03346	1.03887	1.03819	1.04169	1.04257	1.04400
adj.: median	0.03221	0.03696	0.03857	0.04070	0.04231	0.04348
$\hat{\sigma}_{2}^{2}$-adj.: median	0.99075	0.99619	0.99410	0.99767	0.99826	0.99966
$\hat{\sigma}_{1}^{2}$-($\hat{\sigma}_{2}^{2}$-adj.): median	-0.01176	-0.00779	-0.00627	-0.00397	-0.00209	-0.00076
$\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}:$ median	-0.04256	-0.04371	-0.04405	-0.04415	-0.04418	-0.04409
prob. $\left(\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)<0\right)$	0.85920	0.93560	0.96650	0.99270	0.99940	1.00000
	B. $R=120$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
$\hat{\sigma}_{1}^{2}$: mean	0.99861	1.00056	1.00119	1.00082	1.00089	1.00068
$\hat{\sigma}_{2}^{2}$: mean	1.01900	1.02098	1.02154	1.02107	1.02108	1.02078
adj.: mean	0.02027	0.02029	0.02016	0.02005	0.02026	0.02021
$\hat{\sigma}_{2}^{2}$-adj.: mean	0.99873	1.00070	1.00138	1.00101	1.00082	1.00057
$\hat{\sigma}_{1}^{2}$-($\hat{\sigma}_{2}^{2}$-adj.) : mean	-0.00012	-0.00014	-0.00019	-0.00020	0.00008	0.00011
$\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}$: mean	-0.02039	-0.02043	-0.02035	-0.02025	-0.02019	-0.02010
$\hat{\sigma}_{1}^{2}$: median	0.98479	0.99352	0.99624	0.99815	0.99933	1.00038
$\hat{\sigma}_{2}^{2}$: median	1.00542	1.01314	1.01677	1.01803	1.01982	1.02068
adj.: median	0.01320	0.01530	0.01620	0.01736	0.01891	0.01954
$\hat{\sigma}_{2}^{2}$-adj.: median	0.98431	0.99330	0.99624	0.99723	0.99978	1.00039
$\hat{\sigma}_{1}^{2}$-($\hat{\sigma}_{2}^{2}$-adj.): median	-0.00691	-0.00576	-0.00489	-0.00362	-0.00168	-0.00069
$\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}:$ median	-0.01981	-0.02057	-0.02045	-0.02040	-0.02032	-0.02018
prob. $\left(\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)<0\right)$	0.77780	0.85720	0.90300	0.95030	0.98810	0.99990
	C. $R=240$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
$\hat{\sigma}_{1}^{2}$: mean	1.00116	1.00088	1.00020	1.00073	1.00052	1.00042
$\hat{\sigma}_{2}^{2}$: mean	1.00998	1.00994	1.00922	1.00995	1.00982	1.00968
adj.: mean	0.00937	0.00934	0.00931	0.00936	0.00935	0.00932
$\hat{\sigma}_{2}^{2}$-adj.: mean	1.00061	1.00060	0.99991	1.00059	1.00047	1.00036
$\hat{\sigma}_{1}^{2}$-($\hat{\sigma}_{2}^{2}$-adj.) : mean	0.00056	0.00028	0.00029	0.00014	0.00005	0.00005
$\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}$: mean	-0.00881	-0.00906	-0.00902	-0.00922	-0.00930	-0.00926
$\hat{\sigma}_{1}^{2}$: median	0.98875	0.99387	0.99451	0.99692	0.99816	0.99969
$\hat{\sigma}_{2}^{2}:$ median	0.99704	1.00295	1.00335	1.00620	1.00720	1.00918
adj.: median	0.00538	0.00615	0.00660	0.00732	0.00815	0.00878
$\hat{\sigma}_{2}^{2}$-adj.: median	0.98795	0.99450	0.99462	0.99691	0.99789	0.99943
$\hat{\sigma}_{1}^{2}$-($\hat{\sigma}_{2}^{2}$-adj.): median	-0.00353	-0.00308	-0.00287	-0.00248	-0.00152	-0.00077
$\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}:$ median	-0.00838	-0.00904	-0.00914	-0.00939	-0.00942	-0.00936
prob. $\left(\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)<0\right)$	0.69420	0.75950	0.80320	0.86520	0.94440	0.99180

Table A6: MSPE Summary Statistics, Size Experiments: Varying k Version of DGP 1, $R=120$

Notes:

1. The DGP takes the same form as DGP 1, except that data are generated for a total of $10 x$ variables, $x_{i, t}, i=$ $1,2, \ldots, 10$, each following an $\operatorname{AR}(1)$ process with coefficient .9.
2. Each panel reports, for a different k, the results of comparing forecasts from the null "no change" model to an alternative model that includes a constant and $x_{1, t-1}, x_{2, t-1}, \ldots, x_{k-1, t-1}$.

Table A7 Empirical Size, Data with Fat Tails: DGP 1 Nominal Size $=\mathbf{1 0 \%}$							
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
	.076	.070	.069	.065	.072	.082	
MSPE-adjusted	.021	.009	.003	.001	.000	.000	
MSPE:normal	.091	.089	.078	.070	.064	.048	
MSPE:McCracken	.141	.116	.112	.106	.101	.102	
CCS	B. $R=240$						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.079	.068	.064	.063	.065	.074	
MSPE:normal	.037	.019	.011	.004	.000	.000	
MSPE:McCracken	.099	.093	.086	.093	.078	.071	
CCS	.133	.112	.109	.105	.101	.100	

Table A8 Empirical Size, Data with Fat Tails: DGP 2 Nominal Size $=\mathbf{1 0 \%}$						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
	.104	.091	.076	.074	.081	.085
MSPE-adjusted	.040	.014	.008	.001	.000	.000
MSPE:normal	.144	.126	.100	.082	.065	.042
MSPE:McCracken	.233	.181	.150	.127	.118	.102
CCS	B. $R=240$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	.098	.083	.077	.075	.071	.078
MSPE:normal	.052	.033	.018	.010	.001	.000
MSPE:McCracken	.138	.119	.114	.110	.085	.068
CCS	.236	.176	.149	.132	.116	.110

Notes:

1. The data are generated from innovations drawn from the $t(6)$ distribution, following the approach of Diebold and Mariano (1995). The forecast error e_{t} follows a $\mathrm{t}(6)$ distribution. The error v_{t} in the equation for x_{t} is $\mathrm{t}(6)$ distributed in the case of DGP 1 (for which e_{t} and v_{t} are uncorrelated) and a linear combination of $\mathrm{t}(6)$-distributed innovations in the case of DGP 2 (for which e_{t} and v_{t} are correlated).

Table A10 Empirical Size: DGP 2 Nominal Size $=5 \%$						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 049	. 040	. 039	. 039	. 042	. 045
MSPE:normal	. 008	. 002	. 000	. 000	. 000	. 000
MSPE:McCracken	. 073	. 057	. 035	. 030	. 018	. 006
CCS	. 157	. 108	. 093	. 074	. 062	. 059
	B. $R=120$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 050	. 042	. 039	. 036	. 038	. 041
MSPE:normal	. 018	. 006	. 003	. 000	. 000	. 000
MSPE:McCracken	. 085	. 067	. 060	. 049	. 032	. 020
CCS	. 163	. 109	. 096	. 077	. 059	. 057
	C. $R=240$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 051	. 044	. 040	. 036	. 036	. 038
MSPE:normal	. 025	. 014	. 011	. 003	. 001	. 000
MSPE:McCracken	. 077	. 072	. 066	. 059	. 053	. 037
CCS	. 154	. 105	. 088	. 072	. 064	. 055

Notes:

1. The results in Tables A9 and A10 come from the same experiments used in generating the results in the paper's Tables 1 and 2. In other words, compared to Tables 1 and 2, the simulated test statistics are the same, but the critical values are larger.

Table A11 Empirical Size: DGP 1 with Heteroskedasticity, R $=120$ Nominal Size $=\mathbf{1 0 \%}$							
	A. GARCH						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.077	.069	.064	.069	.074	.079	
MSPE:normal	.022	.008	.003	.001	.000	.000	
MSPE:McCracken	.091	.089	.080	.075	.070	.072	
CCS	.146	.128	.115	.107	.107	.102	
	B. Conditional heteroskedasticity						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.083	.071	.066	.065	.069	.079	
MSPE:normal	.024	.010	.005	.002	.000	.000	
MSPE:McCracken	.107	.103	.099	.107	.134	.201	
CCS	.159	.137	.125	.114	.108	.100	

Notes:

1. The GARCH model takes the form given in equation (4.2) (for DGP 2), except that $\rho=0$.
2. The conditional heteroskedasticity takes the form given in equation (4.3) (for DGP 2), except that $\rho=0$.

Table A12 Empirical Size, Large R and $P:$ DGP 1 Nominal Size $=\mathbf{1 0 \%}$			
	$R=600$	$R=1200$	$R=2500$
	$P=6000$	$P=12000$	$P=25000$
MSPE-adjusted	.080	.080	.085
MSPE:normal	.000	.000	.000
MSPE:McCracken	.080	.086	.095
CCS	.099	.093	.101
MSE-F:McCracken	.077	.084	.096
ENC-F:Clark-McCracken	.094	.094	.098
ENC-t:Clark-McCracken	.091	.095	.099

Notes:

1. MSE-F:McCracken refers to the F-type test of equal MSPE developed by McCracken (2000), compared against McCracken's asymptotic critical values.
2. ENC-F:Clark-McCracken refers to the F-type test of forecast encompassing developed in Clark and McCracken (2001, 2003), compared against Clark and McCracken's (2001) asymptotic critical values.
3. ENC-t:Clark-McCracken refers to a t-test for forecast encompassing compared against Clark and McCracken's (2001) asymptotic critical values.

| Table A13
 Empirical Size, $R=120, P$ Large: DGP 1
 Nominal Size $=10 \%$ | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | A. Homoskedasticity | | | | |
| | $P=240$ | $P=480$ | $P=1200$ | $P=12000$ | $P=24000$ |
| MSPE-adjusted | .077 | .076 | .083 | .094 | .101 |
| MSPE:normal | .002 | .000 | .000 | .000 | .000 |
| MSPE:McCracken | .084 | .063 | .044 | .000 | .000 |
| CCS | .142 | .119 | .105 | .101 | .095 |
| | B. Multiplicative conditional heteroskedasticity | | | | |
| | $P=240$ | $P=480$ | $P=1200$ | $P=12000$ | $P=24000$ |
| MSPE-adjusted | .069 | .056 | .051 | .073 | .082 |
| MSPE:normal | .003 | .000 | .000 | .000 | .000 |
| MSPE:McCracken | .103 | .116 | .210 | .003 | .000 |
| CCS | .161 | .134 | .118 | .099 | .100 |

Table A14 Empirical Size: Varying k Version of DGP 1, $R=120$ Nominal Size $=10 \%$						
	A. $k=2$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 073	. 067	. 065	. 066	. 076	. 086
MSPE:normal	. 021	. 009	. 003	. 001	. 000	. 000
MSPE:McCracken	. 093	. 090	. 080	. 073	. 067	. 055
CCS:robust	. 146	. 124	. 117	. 108	. 111	. 105
CCS:OLS	. 115	. 109	. 106	. 101	. 106	. 103
	B. $k=3$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted MSPE:normal MSPE:McCracken CCS:robust CCS:OLS	. 076	. 069	. 068	. 072	. 079	. 090
	. 012	. 004	. 002	. 000	. 000	. 000
	. 076	. 068	. 066	. 060	. 050	. 033
	. 185	. 140	. 129	. 120	. 114	. 108
	. 117	. 106	. 106	. 105	. 108	. 105
				$k=4$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted MSPE:normal MSPE:McCracken CCS:robust CCS:OLS	. 078	. 074	. 073	. 076	. 081	. 090
	. 010	. 002	. 001	. 000	. 000	. 000
	. 063	. 060	. 056	. 043	. 034	. 018
	. 225	. 160	. 143	. 123	. 113	. 108
	. 120	. 110	. 107	. 104	. 105	. 103
				$k=5$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted MSPE:normal MSPE:McCracken CCS:robust CCS:OLS	. 079	. 078	. 076	. 078	. 084	. 089
	. 008	. 001	. 000	. 000	. 000	. 000
	. 059	. 054	. 049	. 037	. 021	. 012
	. 269	. 184	. 152	. 132	. 120	. 108
	. 121	. 112	. 107	. 108	. 106	. 101
				$k=7$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted MSPE:normal CCS:robust CCS:OLS	. 081	. 082	. 084	. 084	. 087	. 096
	. 004	. 000	. 000	. 000	. 000	. 000
	. 377	. 235	. 187	. 153	. 131	. 112
	. 131	. 116	. 111	. 109	. 108	. 100
				$k=11$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted MSPE:normal CCS:robust CCS:OLS	. 085	. 086	. 089	. 090	. 091	. 098
	. 001	. 000	. 000	. 000	. 000	. 000
	. 625	. 370	. 275	. 200	. 150	. 120
	. 145	. 125	. 118	. 111	. 109	. 103

Notes:

1. See the notes to Table A6.
2. The results in panel A for $k=2$ are conceptually the same as the paper's Table 1 results for $R=120$ except that the results are based on different sets of random draws.

Table A15 Empirical Size, Long-Horizon Forecasts, $R=$ 120: DGP 1 Nominal Size $=10 \%$										
	A. Horizon (τ) = 6									
	West-Hodrick					QS-AR(1)				
	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 070	. 068	. 068	. 077	. 086	. 112	. 098	. 086	. 083	. 083
MSPE:normal	. 013	. 005	. 002	. 000	. 000	. 028	. 012	. 004	. 000	. 000
CCS	. 091	. 099	. 097	. 098	. 094	. 130	. 123	. 123	. 121	. 115
	West-Hodrick B. Horizon $(\tau)=12$ QS-AR(1)									
	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 073	. 068	. 068	. 078	. 088	. 151	. 125	. 106	. 095	. 089
MSPE:normal	. 015	. 005	. 003	. 000	. 000	. 046	. 020	. 007	. 001	. 000
CCS	. 091	. 094	. 094	. 100	. 099	. 187	. 177	. 156	. 133	. 126
	C. Horizon (τ) = 24									
	West-Hodrick					QS-AR(1)				
	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 078	. 068	. 066	. 072	. 084	. 205	. 163	. 126	. 105	. 091
MSPE:normal	. 024	. 011	. 003	. 001	. 000	. 077	. 038	. 013	. 003	. 000
CCS	. 099	. 095	. 090	. 100	. 098	. 277	. 268	. 256	. 202	. 139
	D. Horizon (τ) = 36									
	West-Hodrick					QS-AR(1)				
	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 092	. 072	. 062	. 069	. 081	. 260	. 199	. 147	. 115	. 090
MSPE:normal	. 033	. 015	. 004	. 001	. 000	. 118	. 061	. 020	. 003	. 000
CCS	. 143	. 105	. 092	. 098	. 098	. 245	. 314	. 313	. 281	. 185

Notes:

1. The underlying data are the same as those used in generating the one-step ahead forecast results in the paper's Tables 1 and 2.
2. For a given forecast horizon τ, the variable being forecast is $y_{t+\tau, \tau} \equiv y_{t+\tau}+y_{t+\tau-1}+\cdots y_{t+1}$. The null model is "no change." The alternative model regresses $y_{t+\tau, \tau}$ on $X_{t+1}=\left(1, x_{t}\right)^{\prime}$.
3. The left or West-Hodrick side of the table reports results for test statistics computed with variances estimated by the method of West (1997) and Hodrick (1992), as described at the end of section 3.
4. The right or $Q S-A R(1)$ side of the table reports results for test statistics computed with variances estimated with the quadratic spectral kernel and bandwidth chosen as recommended in Andrews (1991).

Notes:

1. See the notes to Table A15.

Table A17 Empirical Size, Null Model Includes Constant: DGP 1 Nominal Size $=10 \%$						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 070	. 069	. 070	. 076	. 082	. 095
MSPE:normal	. 015	. 003	. 002	. 000	. 000	. 000
MSPE:McCracken	. 093	. 077	. 056	. 059	. 037	. 023
CCS	. 121	. 112	. 104	. 103	. 103	. 102
	B. $R=120$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 072	. 065	. 064	. 065	. 071	. 079
MSPE:normal	. 030	. 011	. 007	. 002	. 000	. 000
MSPE:McCracken	. 105	. 096	. 088	. 079	. 067	. 049
CCS	. 118	. 109	. 109	. 105	. 102	. 098
	C. $R=240$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 082	. 073	. 062	. 059	. 066	. 077
MSPE:normal	. 051	. 033	. 021	. 011	. 003	. 000
MSPE:McCracken	. 123	. 108	. 096	. 099	. 092	. 082
CCS	. 123	. 119	. 113	. 105	. 101	. 104

Table A18 Empirical Size, Null Model Includes Constant: DGP 2 Nominal Size $=10 \%$						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 101	. 088	. 093	. 100	. 111	. 135
MSPE:normal	. 028	. 007	. 002	. 001	. 000	. 000
MSPE:McCracken	. 135	. 103	. 070	. 060	. 036	. 014
CCS	. 118	. 105	. 106	. 104	. 103	. 106
			B.	$R=120$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 103	. 086	. 079	. 079	. 086	. 100
MSPE:normal	. 055	. 025	. 015	. 004	. 000	. 000
MSPE:McCracken	. 151	. 124	. 113	. 088	. 065	. 041
CCS	. 127	. 108	. 111	. 108	. 105	. 103
			C.	$R=240$		
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 105	. 084	. 075	. 070	. 067	. 076
MSPE:normal	. 071	. 044	. 031	. 015	. 003	. 000
MSPE:McCracken	. 152	. 124	. 113	. 114	. 093	. 070
CCS	. 121	. 103	. 104	. 104	. 104	. 106

Notes:

1. In these experiments, the null model relates the predictand y_{t+1} to a constant, rather than taking the "no change" form used throughout the paper.

Notes:

1. In these power experiments, the slope coefficient b on x in the DGP for y is set to -1 rather than -2 as in the paper's Table 4 results.

Table A20 Size-Adjusted Power: DGP 1 Empirical Size $=\mathbf{5 \%}$							
	$R=60$						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
	.187	.273	.336	.442	.638	.900	
MSPE-adjusted	.154	.247	.322	.430	.639	.909	
MSPE	.146	.265	.378	.576	.865	.998	
CCS	$R=120$						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.235	.352	.434	.571	.783	.971	
MSPE	.183	.286	.373	.530	.757	.970	
CCS	.146	.260	.364	.569	.865	.998	
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.254	.392	.507	.671	.869	.991	
MSPE	.190	.280	.384	.546	.823	.986	
CCS	.137	.242	.352	.560	.859	.998	

Table A21 Size-Adjusted Power: DGP 2 Empirical Size $=\mathbf{5 \%}$							
	$R=60$						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
	.053	.052	.057	.054	.054	.056	
MSPE-adjusted	.055	.059	.063	.066	.068	.071	
MSPE	.055	.058	.061	.072	.103	.215	
CCS	R						
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.060	.066	.064	.073	.078	.096	
MSPE	.066	.065	.069	.075	.086	.107	
CCS	.053	.060	.064	.076	.115	.221	
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$	
MSPE-adjusted	.065	.069	.079	.087	.103	.147	
MSPE	.073	.073	.080	.091	.105	.148	
CCS	.065	.069	.079	.087	.103	.147	

Notes:

1. The results in Tables A20 and A21 come from the same experiments used in generating the results in the paper's Tables 4 and 5 . In other words, compared to Tables 4 and 5, the simulated test statistics are the same, but the critical values are larger.

Table A23 Unadjusted Power: DGP 2 Nominal Size $=10 \%$						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 098	. 087	. 085	. 088	. 089	. 097
MSPE:normal	. 022	. 006	. 002	. 000	. 000	. 000
MSPE:McCracken	. 142	. 111	. 072	. 074	. 054	. 029
CCS	. 255	. 209	. 190	. 186	. 220	. 363
	B. $R=120$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 117	. 103	. 101	. 102	. 118	. 147
MSPE:normal	. 052	. 025	. 013	. 003	. 000	. 000
MSPE:McCracken	. 165	. 150	. 139	. 122	. 106	. 095
CCS	. 260	. 200	. 194	. 196	. 224	. 360
	C. $R=240$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
MSPE-adjusted	. 130	. 120	. 120	. 123	. 140	. 202
MSPE:normal	. 080	. 053	. 038	. 019	. 006	. 000
MSPE:McCracken	. 180	. 170	. 164	. 175	. 169	. 192
CCS	. 257	. 198	. 188	. 188	. 219	. 361

Notes:

1. The results in Tables A22 and A22 come from the same experiments used in generating the results in the paper's Tables 4 and 5. In other words, compared to Tables 4 and 5, the simulated test statistics are the same, but the critical values are asymptotic rather than simulated.

Table A24 MSPE Summary Statistics, Power Experiments: DGP 1						
	A. $R=60$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
$\hat{\sigma}_{1}^{2}$: mean	1.02685	1.02770	1.02603	1.02612	1.02557	1.02611
$\hat{\sigma}_{2}^{2}$: mean	1.04555	1.04592	1.04452	1.04469	1.04402	1.04454
$\hat{\sigma}_{1}^{2}$: median	1.01395	1.02056	1.02162	1.02345	1.02398	1.02552
$\hat{\sigma}_{2}^{2}$: median	1.03302	1.03874	1.03835	1.04169	1.04256	1.04401
prob. $\left(\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)<0\right)$	0.68040	0.71020	0.73850	0.77270	0.83500	0.92500
	B. $R=120$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
$\hat{\sigma}_{1}^{2}$: mean	1.02492	1.02704	1.02743	1.02682	1.02678	1.02635
$\hat{\sigma}_{2}^{2}$: mean	1.01900	1.02099	1.02154	1.02107	1.02108	1.02078
$\hat{\sigma}_{1}^{2}$: median	1.01042	1.01961	1.02305	1.02389	1.02579	1.02639
$\hat{\sigma}_{2}^{2}$: median	1.00506	1.01314	1.01673	1.01812	1.01982	1.02067
prob. $\left(\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)<0\right)$	0.52100	0.50630	0.49430	0.47090	0.41520	0.32780
	C. $R=240$					
	$P=48$	$P=96$	$P=144$	$P=240$	$P=480$	$P=1200$
$\hat{\sigma}_{1}^{2}$: mean	1.02678	1.02610	1.02552	1.02605	1.02592	1.02595
$\hat{\sigma}_{2}^{2}$: mean	1.00997	1.00993	1.00921	1.00995	1.00982	1.00968
$\hat{\sigma}_{1}^{2}$: median	1.01392	1.01927	1.02017	1.02311	1.02360	1.02567
$\hat{\sigma}_{2}^{2}:$ median	0.99709	1.00296	1.00338	1.00618	1.00717	1.00919
prob. $\left(\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)<0\right)$	0.41550	0.36480	0.32830	0.26620	0.16600	0.04860

