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The Value of Liquidity and Option 
Timing from a Simple Game
Niall Whelan, ScotiaBank, Toronto and 
Ranjan Bhaduri, AlphaMetrix Alternative Investment Advisors, Chicago

Introduction

In a previous paper, Bhaduri and Whelan (2008), we presented a simple model of hedge fund liquidity. That 
paper explored the fact that not being able to pull one’s money out of an investment instantaneously at a fair 
price can have a powerful impact on the portfolio. Real world examples include the 1993 Metallgesellschaft 
debacle (Smithson, 1998) and the recent difficulties experienced by the Bank of Montreal (Perkins and Stewart, 
2007), as they attempt to exit from some thinly traded OTC energy derivatives. As we pointed out in our earlier 
paper, liquidity is a growing issue in the hedge funds arena; increased regulatory pressure has led various 
hedge funds to extend their lock-up period to avoid more scrutiny. Locking up investments represents a loss of 
liquidity to the investors and, despite its growing importance, very little quantitative work has been done to 
understand it in the context of hedge funds. In this paper, we explore the impact of liquidity in a simple model.

To address this question in a tractable, heuristic setting we created a model which is intended as an analogy 
to the liquidity question. It is not difficult to understand that the value of liquidity can also be thought of as 
an option value, since liquidity gives the holder of a position the right, but not the obligation, to act, which 
is the classic feature of an option. Whether one chooses to think in terms of liquidity value or option value is 
largely dictated by context. At the end of this paper, we make the connection between the two interpretations
explicit in the context of our specific model.

To recall our model, we consider a hat with b black balls worth -$1 each and w white balls worth $1 each. 
On each turn, the player chooses whether to draw a ball from the hat and gains $1 if a white ball is drawn, 
and loses $1 if a black ball is drawn. The selection is done without replacement of balls and the player can 
elect to stop playing whenever they like. We would like to determine the expected payoff of this game. The 
role of liquidity is that the player can choose to exit as they please. We showed in Bhaduri and Whelan 
(2008) that the value of this game exceeds the intrinsic value of the hat itself, which is w – b. Subsequent 
to that paper, we learned of the seminal work of Shepp (Shepp, 1969) who analysed the same game and 
attained the same expected payoff. (Interestingly, the motivation related to accounting for biases in ESP 
experiments arising from preferential stopping.) The work we present here extends from that by considering 
higher moments and the full distribution of values, as well as relating it to topics in finance.

In this paper, we focus on analyses of the payoff and risk-return profiles. We work almost exclusively in the 
asymptotic limit of large hat size. This is for the three reasons: i) that limit is tractable; ii) it is most meaningful 
since it relates to long time horizons; and iii) it is indicative of what happens even for small hats, as we showed 
in Bhaduri and Whelan (2008).

Niall Whelan is the director of analytics and structured transations at ScotiaBank in Toronto. Ranjan Bhaduri 
is the managing director and the head of research at AlphaMetrix Alternative Investment Advisors in Chicago. 
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First, we determine the expected value of the game 
and then introduce the concept of a ‘strategy’ of 
play. We then determine the standard deviation 
of the returns from playing, which permits an 
exploration of the Sharpe ratio. We then generalise 
the analysis by deriving the entire distribution of 
returns by way of the characteristic function. We find 
highly nonnormal value distributions, which argues 
against use of the Sharpe Ratio. We explore use 
of the Ω function (Keating and Shadwick, 2002) 
applied to this problem. We conclude the paper 
with a brief reinterpetation of the problem as 
an asset option. This then singles out one of the 
strategies as corresponding to the risk neutral value.

The game

We start by presenting some numerical results. Each 
cell in Table 1 represents the expected value of 
employing an optimal strategy to the corresponding 
hat. Here, optimal strategy is defined as playing 
if the expected value is greater than zero, and 
stopping if the expected value is zero. The table 
indicates how to effectively play the game and can 
obviously be extended to larger hats.

Consider the hat with six black balls and four white 
balls, highlighted in Table 1. Intuitively, one might 
think that it is not worth playing since there are more 
black balls than white balls. However, we observe 
the counterintuitive result that the expected value 
is positive (equal to 1/15). Thus, it makes sense 

to play even with a significant preponderance of 
black balls. The reason for the positive value is that 
the right to stop playing at any time overcomes the 
negative imbalance of black balls to white balls. 
The player’s advantage of getting to choose to stop
picking balls at any time is clearly large. We 
identify this to be a liquidity/option effect.

The best way to calculate the expected value of a 
given hat is by iteration, as we argued in Bhaduri 
and Whelan (2008). Owing to the fact that the 
probabilities of getting white or black balls is 
directly related to their numbers, the recursion 
relation is

The expression above, together with the boundary 
conditions that E(0,w) = w and E(b,0) = 0, completely 
specifies the problem. Starting with the boundary 
cases, we can solve recursively for arbitrary values 
of w and b. These are the results presented in 
Table 1.

Asymptotic analysis of the value

It is natural to inquire what happens as the number 
of balls gets larger. For this purpose, it is useful 
to reparameterise as N = b+w and r = b/N. In 
particular, N  ∞ will play the role of an asymptotic 
parameter as we hold r fixed. When expressed 
in the new variables, we call the expected value 

Table 1: The expected results of playing the game for a variety of hats.

w/b 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 1.00 0.5 0 0 0 0 0 0 0 0 0

2 2.00 1.33 0.67 0.20 0 0 0 0 0 0 0

3 3.00 2.25 1.50 0.85 0.34 0 0 0 0 0 0

4 4.00 3.20 2.40 1.66 1.00 0.44 0.07 0 0 0 0

5 5.00 4.17 3.33 2.54 1.79 1.12 0.55 0.15 0 0 0

6 6.00 5.14 4.29 3.45 2.66 1.91 1.23 0.66 0.23 0 0

7 7.00 6.13 5.25 4.39 3.56 2.76 2.01 1.33 0.75 0.30 0

8 8.00 7.11 6.22 5.35 4.49 3.66 2.86 2.11 1.43 0.84 0.36

9 9.00 8.10 7.20 6.31 5.43 4.56 3.75 2.95 2.21 1.52 0.92

10 10.00 9.09 8.18 7.28 6.39 5.52 4.66 3.83 3.04 2.30 1.61

(1)
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EN(r). We can think of EN(r) as a function of r, 
parameterised by N. The recursion relation in the 
new representation is

where r1 =  b/(b+w –1) and r2 = (b–1)=(b+w–1). 
The leading order expression (in N) are r1 ≈  r+r/N 
and r2 ≈ r–(1–r)/N. 

Now we expand the first argument of the max 
function. We account for the small differences in 
N and r by way of Taylor series expansions. To be 
consistent in our powers of N, we need to expand to 
first order in the derivatives with respect to N and 
to second order in the derivatives with respect to r. 
The consistency of this will be demonstrated below.

The term involving the first derivative with respect 
to r vanishes since the two terms inside the bracket 
sum to zero. The second derivative does not vanish, 
however, so the above expression simplifies to

Henceforth, we dispense with the approximation 
symbol, the large N approximation being implicit.
Intuitively, if r is close to ½, the process of drawing 
balls means that the cumulative winnings is smilar to 
a Brownian process. We expect that in O(N) draws, 
the winnings will diffuse by an amount which scales 
as O(√N). Equivalently, after O(N) draws, r will 
diffuse by an amount of order O(1= √N). We are, 
therefore, motivated to apply the ansatz:

where f(t) is a function to be determined. The 
consistency of this ansatz will be shown in the 
subsequent analysis. If we apply that expression 
to the relation above, we find that the derivate 
with respect to N gives two terms, while the second 
derivative with respect to r gives one term:

where primes denote derivatives.

We also define t = √N(r–1/2) so that

Putting this together, we have

If we now assume that EN(r) > 0 or equivalently 
that f  > 0, this is the term that dominates the max 
function. The EN(r) cancels from each side of the 
recursion relation. What remains has a common 
power of N, which justifies the use of our ansatz and 
the consistency of Taylor expanding to two terms 
in r and only one term in N. Had we included more 
terms of either, or expanded r1 and r2 to higher 
order, we would have generated correction terms 
of higher order in N.

The expression then simplifies to

To be precise, (9) is only valid when f>0; otherwise, 
f is identically zero. The equation above has a 
particular solution, which is fp(t) = –2t, corresponding 
to E = N(1–2r) = w–b. This is, of course, just the 
value of the game when there is no choice to exit. 
To this solution we can add any solution to the 
homogeneous differential equation

The equation (10) is the Hermite differential 
equation (Abramowitz and Stegun,1965) with 
index -1. The first solution has various equivalent 
expressions

where   is the standard normal cdf function. The 
prefactor of 4 is for normalisation purposes. This 
particular combination is sometimes referred to as 
the Mill’s ratio. The second independent solution 
of (10) is simply g(t) = g(–t). For t large and 
negative, g(t) decreases like a power law, while for 
t large and positive, it increases exponentially. The 
converse is true for g(t). In particular, limt∞g(t) ≈ 
1/|t|–1/4|t|3 and limt∞g(t) ≈ √8πe2t2.

~

~

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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As yet, we have no boundary conditions. For t large 
and negative, the function f should approach the 
function fp. By the previous discussion, this means 
that we can have no amount of the second solution 
g(t). The second boundary condition is that for the 
value of t = tc such that f(tc) = 0 we should also 
have f'(tc) = 0, as we show in the next section (where 
we also argue that the strategy we have outlined 
is optimal). The value for t > tc is then identically 
zero and our global solution is C1.

Our solution to (9) (globally extended as per the 
clarification immediately after (9) is

where A is a constant to be determined. (While we 
have explicitly put in the condition of being zero 
for t ≥ tc, we will forego doing so henceforth for 
f(t) and other quantities depending on t.) The final 
step is to vary the coefficient A, so that the second 
boundary condition is satisfied. We find that the 
solution is A ≈ 0.14653 for which tc ≈ 0.42. In 
conclusion, our solution is

The second term has the interpretation of the 
additional value associated with the option to stop 
playing at a time of the player’s choosing. We can 
also express this in terms of how many black balls 
there can be for a given number of white balls such 
that the value is positive. It is not difficult to show 
that this is b ≤ w+2√2tc√w = w+1.189√w.

In Figure 1, we show the value for a hat with 
100 balls obtained from exact implementation 
of the recursion relation as well as via the large 
N approximation derived above. Clearly, the 
approximation has converged very well to the 
exact result. For reference, we also show the result 
from playing only as long as w > b, which returns 
max(w–b,0). That can be thought of as a ‘risk-free’ 
approach, since the outcome is certain. It can also 
be understood as the pay-off of an option to take 
possession of the entire hat.

There are two noteworthy features about our 
solution. The first is that the game has nonzero value 
even when there are more black balls than white 
balls. However, the domain over which the value is 
nonzero is limited. The other feature is that when 
there are more white balls than black balls, the 
game has more value than we might have otherwise 
thought.

The amount by which the value exceeds the risk-
free value of w–b is simply A/(1/2–r), as long as 
r is not too close to either 1 or 1/2. We get this 
by considering the ansatz (5), and the fact that 
g1/|t| as t–∞. In particular, this deviation is 
universal and independent of N (although there 
are higher order corrections which depend on N).

The second boundary condition and 
specifying the strategy

Let us consider what happens to the value function 
when the value of r (equivalently t) is right at the 
value for which f  = 0. We seek to demonstrate 

~

Figure 1: The value as a function of b for an N = 100 hat

(12)

(13)
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that the derivative is also zero at that point (the 
same conclusion is reached in a different manner 
in Shepp, 1969).

For a given (large) value of N, we evaluate Eq. (2). 
We imagine that the left hand side is evaluated 
exactly at the smallest value of r for which EN(r) = 0. 
Then it is clearly true that taking a white ball away 
will mean that EN–1(r1) must also be zero, since it can 
be no more valuable than EN(r). However, EN–1(r2)> 
0, since we have removed a black ball and the value 
before was just critical so, for this term, it must be 
slightly larger than zero.

Therefore Eq. (2) becomes

For this to be exactly critical requires the two 
arguments of the max function be equal, so that

To leading order in N, 1–2r = –2t/√N, 1/r = 2 and 
r2 = r – (1– r)/N. We also make use of the ansatz 
(5), so that this equation can be expressed as

We then proceed by Taylor expanding the right 
hand side. We note that by assumption t is such that 
f(t) = 0 and to leading order in N, we can assume 
r = 1/2. We then have

so that f'(t)0 in the limit of large N. Therefore, we 
have demonstrated that when t is such that f(t) = 0, 
we also require f ’(t) = 0 in order for the recursion 
relation to be satisfied at the boundary.

While the demonstration above is complete, it is not 
particularly enlightening. We now provide a more 
heuristic interpretation of that boundary condition 
and, in the course of doing so, provide an argument 
that the strategy we have devised for playing this 
game is optimal. To proceed, consider risk-free 
strategy which is simply that we keep playing as 
long as r < 1/2. As we have demonstrated, it is 
possible to play with positive value even when r 
> 1/2 so that we are in a suboptimal strategy. 
Nevertheless, there is a value associated with it.

In fact, all of the analysis holds in terms of the 
differential equations. The only difference is in the 
boundary conditions. For the risk-free strategy, the 
value would necessarily go to zero for r = 1/2 
or equivalently for t = 0. In that case. the solution 
of the ODE is simply the pure particular solution 
with no component of g or, equivalently, A = 0. In 
other words, the value is w–b for w > b and zero 
otherwise.

That example suggests a powerful paradigm. 
Associated with each strategy there is a value 
function which is determined by imposing a specific 
boundary condition. The optimal strategy is the one 
with the largest value for all r or, equivalently, the 
one with the largest value of A.

Suppose we then devise a third strategy where we 
keep playing as long as t is less than some specified 
value, 0.2 for the sake of argument. In that case, we 
would again have the same differential equation 
but with the boundary condition that f(0.2)=0 
which would entail some value of A. However, 
this would be less than the A associated with the 
solution described in the main text. As a result, the 
payoff would be smaller than that in the text for 
all values of r.

Therefore, we imagine a family of strategies, 
parameterised by the critical value of t where 
we are willing to keep playing (this is presented 
graphically in Figure 2 on the following page). 
However, if we get greedy and try for too large 
a value of t (0.5 for the sake of argument), we 
will find that the solution will be such that f will be 
negative for some values of t and will be less than 
the optimal strategy for all values of t. Clearly, the 
optimal strategy is the one for which the critical 
value of t is as large as possible, while still keeping 
f nonnegative. This largest value occurs when the 
function is just tangent to the t axis, which is the 
boundary condition we have specified. In the last 
section of this paper, we will demonstrate how this 
strategy can also be understood as a risk-neutral 
strategy in the sense of derivative valuations.

We can define a strategy function s(b,w) which 
equals unity if based on the value of b and w, 
the player continues. Equivalently, we can use 
the alternate variables and define the function 
to be sN(r). Then the recursion relation (2) can be 
generalised as

(14)

(15)

(16)

(17)

(18)
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The strategy we have focused on, which we call the 
optimal strategy, has s = 1, if the first argument 
of (1) is larger than the second argument, and                          
s = 0 otherwise. There are other strategies one 
can envisage:

i) 	 the player chooses never to play; s(b,w) = 0;
ii) 	 the player chooses always to play; s(b,w) = 

1; and
iii) 	the player chooses to play if w > b; s(b,w) = 1 

for w > b and zero otherwise.

The third of these is the risk-free strategy and 
is clearly preferable to the other two, since it is 
never less than either of them in all situations. In 
the language of game theory, the third strategy 
(weakly) dominates the other two (Thomas, 1986). 
The second strategy has the interpretation of being 
the intrinsic value of the hat. The other interesting 
aspect of these three strategies is that there is 
nothing random about the outcome. Under these 
strategies, the player will finish with 0, w–b and 
max(w–b,0) respectively. Also, in general, we see 
that there is nothing preventing the value of the 
game from being negative, for example, with the 
second strategy when w < b. The condition of having 
a positive value is a property of the strategy and 
not of the game itself. Of course, any reasonable 
strategy will have this property. We also point 
out that the second and third strategies exactly 
correspond to the particular solution fp(t); the only 
difference being that, for the third strategy, we 
impose the additional condition that f   0 for t > 
0 so that the solution has a kink at t = 0. The first 
strategy of course has a trivial solution of f(t)   0 
for all values of t.

Altogether, then, we have explicitly explored four 
strategies: the ‘optimal’ one, as well as the three 
enumerated in the previous paragraph. The optimal 
strategy is constructed to maximise the expected 
payoff of the game. However, it can be risky. For 
example, with six black balls and four white balls, 
there is a small positive expected payoff but one 
is assured of getting this only on average. In any 
given play the player may get more or less. A risk-
averse player may not feel that the small expected 
payoff is worth the large downside risk of losing a 
substantial sum. Therefore, there may be risk-averse 
strategies intermediate between risk-free one and 
the optimal one. We explore this question in the 
following sections.

In Figure 2, we show the function f(t) for a variety of 
choices of tc. Clearly, the optimal strategy exceeds 
all others for all t, while the risk-free strategy is less 
than all others for all t. We show two intermediate 
values of tc. From these examples, it is simple to 
understand the general behaviour.

The second moment

As we discuss above, a risk-averse player may be 
willing to forego some expected payoff in order 
to lessen the downside risk of his play. The classical 
way to quantify this is through the Sharpe Ratio 
(Sharpe, 1966 and later clarified in Sharpe, 1994), 
ie, the ratio of expected earnings (relative to some 
‘risk-free’ benchmark) to the standard deviation 
of earnings. This requires that we determine the 
second moment, which is the focus of this section. 
A more refined approach is to consider the Ω 

Figure 2: f(t) for a variety of strategies
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function (Keating and Shadwick, 2002) invented 
by mathematicians Keating and Shadwick in 2002, 
which is sensitive to the entire distribution and which 
we explore in a subsequent section. 

To pursue the calculation, we extend the notation 
slightly. We introduce the variable UN(r) which is the 
actual realised value of playing the game. It is a 
random variable which has EN(r) as its expectation. 
We also introduce a Boolean random number x, 
which equals one if the next draw is black and 
equals zero if the next draw is white. The UN(r) 
satisfy the recursion relation

as long as the strategy function says to proceed, 
otherwise UN(r) = 0.

We can then take the expectation of both sides of 
the relation above. Since subsequent draws are 
independent, x is independent of both UN–1(r1) and 
UN–1(r2), so that the expectation of the products is 
the product of the expectations. Using the fact that 
the probability that x = 1 is r, we recover Eq.(2).

This slightly more general foundation allows us to 
extend the calculation to other statistical measures 
than the expectation. A natural question is to 
determine the second moment of the value. We start 
by considering the square of the Eq.(19). By the 
nature of Boolean random variables (specifically, 
x(1–x)   0), we do not need to consider the cross 
term so that

The fact that x2 = x is also useful. We then take the 
expectation of both sides, definingWN(r)    E[U2(r)] 
so that

We now invoke the same large N expansion as 
before. Also, we use a similar ansatz as before: 
WN(r) = Nh(√N(r–1/2)) (the rationale being that 
the scale of r should as before, but the magnitude 
is now of order O(N) since WN is related to the 
square of the EN, which is O(√N)). We arrive at the 
equation for h which is

where f is already determined from the first moment. 
As before, we can think in terms of a particular plus 
homogeneous solution. The left hand side is, in fact, 
the Hermite differential equation with index –2.

We first focus on the particular solution, which 
requires some analysis of the right hand side. We 
start by focusing on the first two terms of the right 
hand side of (22). Note that

where, in the second line, we have Eq.(9). We 
integrate both sides of the equation and pick up 
an integration constant which must equal –f'(0), as 
determined by considering t = 0. Consideration of 
Eq.(12) and Eq.(11) differentiated at zero argument 
shows that f'(0) = –2+4A. We conclude that

This has a particular solution of hp(t) = 4t2+4A.

Now, of course, to hp we can add any amount of a 
homogeneous solution to the differential equation 
for h. As we mentioned, that equation is the Hermite 
equation of index –2. We seek a similar boundary 
condition as for f, that the homogeneous solution 
vanish as t  –∞. It is not difficult to see that the 
function g'(t) is a solution to the homogeneous 
equation where g(t) is the solution for the first 
moment discussed above.

Therefore, in total, we have a solution of

We fix B such that h(tc) = 0 where tc is the boundary 
condition which defines where we stop playing since, 
if we do not play, all moments are trivially zero. B 
is defined with a factor of 4 for later convenience 
(whereas for f(t), we recall that h(t)   0 for t > tc). 

We can also express the variance (divided by N) 
as σ2 = (h–f2). An explicit expression is 

If we want to follow strategy 3, which is risk-free, 
then we need to set tc = 0 which, in turn, requires 
both A and B to be zero which, in turn, implies the 
variance is zero. This is consistent since, with that 
strategy, we will play until the number of each 

N

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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colour is the same, at which point we will have 
realised exactly w–b, with no uncertainty. It is 
gratifying that this has dropped out of the analysis 
in such a natural manner.

It is fair to say that the ‘risk-free’ return is that from 
playing strategy 3, which is simply max(–2t,0). Then, 
using that as the point of reference, we can express 
the Sharpe ratio as

In Figure 3, we show the Sharpe Ratio as a function 
of t for a variety of choices of tc. We observe a kink 
at t = 0, due to the abrupt change in the definition 
of the risk-free return. We also note that the curve 
for the ‘risk-free’ Sharpe is defined as a limit as   
tc 0. In practise, this is not a useful investment, 
since both the reward and the risk go to zero. The 
others all show a more meaningful behaviour. In 
particular, at t = 0, we observe that the Sharpe 
Ratio decreases with tc. (We have also confirmed 
agreement with direct application of the recursion 
relation (21) as in Figure 1 but we forego presenting 
results.)

In all cases, the Sharpe Ratio goes to zero at t = tc, 
typically, as a square root in tc– t. This is because 
the numerator has a linear behaviour, but the 
denominator has a square root behaviour (since s(t) 
is defined as the square root of a linear function). 
For tc = 0.42, the numerator has a quadratic 

behaviour and the approach to zero is as a 3/2 
power. The fact that the Sharpe Ratio approaches 
zero means that it is impossible to define a strategy 
that mandates playing, as long as the Sharpe Ratio 
exceeds some critical value. The reason is that 
just prior to quitting, the Sharpe Ratio will always 
be arbitrarily small, whatever the strategy. It is 
then impossible to find a self-consistent strategy 
other than the risk-free strategy or the optimal 
strategy (the latter being realised if the critical 
Sharpe Ratio is zero.) As we shall see, the Sharpe 
Ratio is actually not a particularly good metric for 
performance anyway, so this behaviour is not a 
serious shortcoming.

We can also consider the limit of the Sharpe Ratio 
in the limit of t large and negative. In the limit, we 
recall that g ≈ –1/t +1/4t3 so 

which is nonzero corresponding to a possibly good 
investment. This limiting value decreases as a 
function of tc from √π/(π–2) ≈ 1.66 for tc = 0 to 
about 0.82 for tc = 0.42. However, in this limit, both 
reward and risk go to zero so this is not particularly 
meaningful.

The characteristic function

If we are interested in the entire distribution, as 
opposed to the first couple of moments, one efficient 
way to proceed is to determine the characteristic 

Figure 3: The Sharpe Ratio as a function of t for a variety of strategies

(27)

(28)
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function. It has the double interpretation of being 
the Fourier transform of the probability distribution 
function (pdf) and of being the expectation of 
exp(izUN(r)). Eq. (19) implies that

Noting that there are only two possible values for 
x and further defining FN(z,r)   E[exp(izUN(r)], we 
conclude

We know that the risk-free strategy would have 
a characteristic function of exp(izN(1–2r)) so we 
will define

and seek a solution for GN.

Substitution of the previous equation into the earlier 
recursion relation gives the expression

Clearly, G is of order unity (and must be identically 
unity for the risk-free strategy). We have already 
established that a natural scale for r is in terms of
√N times the deviation from 1/2. Also, the scale of 
U is √N, so we expect z to have a corresponding 
scale. This motivates an ansatz of

where H is a universal function. We again define t =
√N(r–1/2), as well as ζ = √Nz, and invoke a similar 
Taylor expansion as for the first and second moments 
to arrive at the partial differential equation in the 
limit of large N

Now, we need to define the boundary conditions. 
As r  0 (equivalently t  –∞), FN is just exp(izN). 
Together, this implies H(ζ,–∞) = 1. The other limit 
is for t = tc, for which F   1, meaning that H(ζ,tc) 
= exp(2iζtc). An interesting result is that from 
the boundary conditions alone and the nature 
of (34), we can infer the entire behaviour for 
ζ = 0. In that limit, the third term of (34) drops 
out and the boundary conditions imply H(0,–∞) 
= H(0,tc) = 1. The only function consistent with 

the reduced differential equation, and the two 
boundary conditions just mentioned, is unity so we 
can immediately state H(0,t)   1. Of course, this 
could also be derived directly from the fact that the 
distribution is normalised, but it is reassuring that it 
also falls out of the analysis.

To solve (34) we make a separability ansatz that 
H(ζ,t) = Z(ζ)T(t). Dividing through by H, we conclude

where k is a separation constant. Clearly the solution 
to the first equation is Z(ζ) = ζk. The second equation 
can be recast as

This is the Hermite differential equation with index 
–k. This only has solutions consistent with t  –∞ for 
k       . We will label the solution corresponding to k 
as Tk. We note that T0 = 1 and, from our analysis of 
the first two moments, we see that T1(t) = g(t), and
T2(t) = g'(t) = 4tT1+4. In general, we find that

which can easily be seen by recursion. Another 
useful recursion relation comes from repeated 
differentiation of T2(t):

In general, any linear combination of solutions 
(corresponding to different values of k) is possible, 
so we write

By virtue of the solutions Tk which we selected, 
we have already imposed the t  –∞ boundary 
condition, so we only need to consider the one at 
t = tc. We recall that H(ζ,t) = exp(2itcζ) and, by 
matching powers of z, we conclude

leading to the final compact expression

There are a number of interesting things to be 
drawn out of this solution. The first is that for the 
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(33)

(34)
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(36)

(37)
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(39)
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risk-free strategy of tc = 0, only the k = 0 term is 
nonzero and we conclude H = 1, as we expect. For 
the same reason, we find that H(0,t) = 1, which we 
earlier argued must be the case.

Among other features, the characteristic function 
can be thought of as a moment generating function. 
Due to the rescalings we have applied, H(ζ,t) is the 
characteristic function corresponding to the random 
variable V = U/√N + 2t. Therefore, we identify 
E[Vk]� = (2tc)

kTk(t)/Tk(tc). This is consistent with our 
derivations of the first and second moment, but is 
more general since it includes all moments.

Numerically determined distributions

The solution of the distribution of values discussed 
in the previous section, while gratifying, is not easy 
to implement numerically. The reason being that 
the characteristic function is oscillatory in ζ, while 
our representation of it is in terms of a power 
series in ζ. For large values of ζ, this requires 
precise cancellation of alternating terms which 
are very large in absolute value. Such an exercise 
is notoriously difficult and, in practice, we lose all 
numerical precision for |ζ| larger than about 40.

Our difficulty is related to the famous ‘moment 
problem’ (Shohat and Tamarkin,  1943) of 
determining a distribution from its moments (since 
knowledge of the powers series in ζ is one and 
the same as knowledge of all moments of the 

distribution). This is a notoriously difficult problem. 
For example, we could represent the distribution 
as a sum over finely spaced delta functions 
whose coefficients will be fixed by specifying the 
moments. Such a process leads to needing to invert 
a Vandermonde matrix, which is intrinsically ill-
conditioned. The problem is not specific to the delta 
function representation. Any representation in terms 
of a sum over representative basis functions will 
lead to inversion of a near-singular matrix.

What is required is to derive a complementary 
representation of the characteristic function valid 
for |ζ|>>1. While we have not succeeded in doing 
that completely, we have determined the general 
functional form, and by ‘glueing’ it onto the small 
|ζ| representation, we have an approximate 
representation valid for all ζ. The details are 
presented in the appendix and theoretical (as well 
as simulated) distributions are presented in Figure 
4 for t = 0 and two values of tc.

Leaving aside the numerical considerations, the 
distributions of values are clearly very interesting. 
They have the following features: 

i)	 they have finite support, specifically 0 < V 
< 2tc;

ii)	 they have peaks at the two edges of the 
domain of support; and

iii)	 they are strongly bimodal.

Figure 4: The probability distribution of the scaled value V for t = 0 and 
two choices of strategy, the optimal strategy and the tc = 0.20 strategy

Please note that for each, we show the result of a simulation as well as the theoretically 
derived distributions.
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The first point is understood by recalling that players 
always have the right to continue playing. Playing 
to exhaustion of the hat will lead to V = 0 and 
the player can never do worse than that. Similarly, 
the largest possible outcome is to draw a string of 
white balls at inception until the threshold is hit. It 
is not difficult to show that this will lead to V = 2tc. 
The second and third points are, of course, related, 
and show that the expected value is actually not a 
typical value. Instead, we will typically have either 
substantially more or less than the expected value 
in any given simulation.

To explore the second two features a bit more 
closely, in Figure 5, we show three scenarios for an 
N = 100 hat. These are representative of finishing 
with large value, near-average value and small 
value (the final scaled values were 0.8, 0.4 and 
0, respectively). Of course, just seeing these three 
representative trajectories on their own do not 
immediately explain the relative frequencies of the 
different results. For that, it is useful to consider the 
limiting cases of t  ∞ and t  tc. In the first case, 
the trajectories start well off to the right and it is 
exceedingly improbable for any one of them to 
encounter the threshold. The bulk of them will finish 
at the origin with a game value equal to the initial 
value of w–b. In the other limit, the problem looks 
locally like a Brownian motion with a stopping time 
given by hitting a threshold. It is well known that, 
with probability unity, a given path will hit a given 
threshold and, in our case, this will result in a scaled 

value very close to 2tc. For general values of t (such 
as t = 0), the paths can be crudely classified into 
one of the two types corresponding to the limiting 
behaviours and the resulting distribution is bimodal.

In Figure 4, we show the distributions for two choices 
of tc. We also show the results of direct simulation. 
For these, we ran with very large hats consisting of 
100,000 balls of each colour. For each case, we 
ran 100,000 simulations and binned the results. We 
make a few comments about the distributions. Firstly, 
both distributions are bounded between V = 0 and
V = 2tc, for reasons discussed above. We also note 
that both distributions are bimodal, but that tc = 
0.42 is more symmetric whereas tc = 0.20 is more 
weighted towards the upper end. This is due to the 
greater relative ease of hitting the threshold as 
discussed in the context of Figure 5, specifically, 
the  t  tc limit. For both cases, there is a finite 
probability of finishing with zero value, which is 
reflected in a large weight in the first bin at V = 
0 (representing 4.3% and 0.7% of the simulations 
for tc = 0.42 and tc = 0.20, respectively). These 
are from simulations which never hit the threshold. 
We observe this fraction to decrease with N and 
we expect it to approach zero as N  ∞, but 
extremely slowly since it is related to the probability 
distribution of a Brownian stopping time, which is 
extremely fat-tailed. The final observation is that 
there is a low amplitude, high-frequency oscillation 
in the distribution. This we also believe to be a finite 
N effect and choose not to explore in this article.

Figure 5: Three different realisations of the game with the optimal strategy
(the smooth curve is the threshold boundary where play is stopped)
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From a risk-return perspective, these results are 
quite interesting. While a straight analysis of the 
Sharpe Ratio would indicate that tc = 0.20 is the 
superior strategy, as seen in Figure 3, this clearly 
misses the fact that the optimal strategy has much 
more upside potential, while no worse downside 
potential. This is actually a tailor-made application 
for the more sophisticated Ω analysis and we 
explore that in the following section.

Ω analysis

As discussed above, the Sharpe Ratio is a popular 
performance measure for risk-adjusted return in 
the finance community. It is a rankings function to 
compare investment strategies. Increasingly, the 
investment community is recognising that it has 
serious shortcoming. By only making use of the first 
two moments of the distribution, it is not sensitive 
to other important statistical features such as skew, 
fat-tails or if the distribution is bimodal or has only 
finite support, as in our problem. Therefore, the 
Sharpe Ratio can be misleading if the underlying 
investment’s return distribution is non-normal, 
and it is well known that alternative investments 
demonstrate non-normal distributions. For example, 
employing the Sharpe Ratio for a distribution that is 
bimodal can clearly be misleading. Consequently, 
the use of the Sharpe Ratio in this arena is not ideal. 
Moreover, the Sharpe Ratio does not distinguish 
between upside and downside volatility and, thus, 
penalises for upside volatility.

The Omega function does not suffer from any of the 
problems of the Sharpe Ratio. That is, the Omega 
function is a rankings function, which naturally 
incorporates all features of the distribution, and it 
does not penalise for upside volatility. It is defined 
as

F(x) refers to the cumulative distribution function 
of the investment and r is the selected threshold. In 
addition to its other properties, by being a function 
of the threshold r, it is ‘tunable’ in a way that 
the Sharpe Ratio is not. In particular, the relative 
rankings of different strategies is a function of the 
target threshold r (Ω has itself been generalised to 
a still more general statistic called Kappa (Kaplan 
and Knowles, 2004), but we defer from an analysis 
of it).

The Omega function captures upside versus 
downside in a mathematically precise way that has 
finance intuition. Kazemi, Schneeweis, and Gupta 
(Kazemi, et al, 2003) showed that the mathematical 
definition of the Omega value is equivalent to 
the value of a call over the value of a put. More 
precisely,

where r is the threshold value, C(r) and P(r) are 
prices of European call and put prices with strike 
r. Normally, variable r refers to the return of the 
strategy. We work, instead, in terms of the value 
of the strategy. The return is defined as the value 
divided by the initial value. However, that is not 
a well-defined notion for our game, so we work 
exclusively in terms of value. One nice aspect of 
that is that the interpretation in terms of the ratio of 
option values is even more immediate than usual. As 
it turns out, working in terms of instrument values and 
not returns does not affect the rankings of distinct 
strategies. Ω(r) can be thought of as the quality 
of a bet on a return above a given level; ‘quality’ 
is upside versus downside. No special assumptions, 
such as those needed for the Black-Scholes-Merton 
option-pricing model, are needed.

This elegant result of  math-finance duality 
demonstrates that the Omega function has strong 
mathematical foundations and a solid finance 
meaning. The use of the Omega function is not 
limited as a performance measure. By plotting 
Omega as a function of threshold, one can gain 
insights about the interplay between risk and return. 
We will see some simple examples of this soon.

Recall that the Sharpe ranking for tc = 0.2 was 
higher than the Sharpe ranking for tc = 0.42. One 
should expect the Omega and Sharpe rankings 
to be different in cases of high non-normality or 
upside volatility, though of course the choice of the 
threshold is an important factor as well. The results 
are shown in Figure 6, on the following page, and 
indicate that for a very risk-averse investor, tc = 
0.2 is more suitable, but for most risk appetites, tc 
= 0.42 is superior.

We have also plotted the Omega graphs for the 
corresponding normal distributions with the same 
means and standard deviations. Note that, by 
definition, Ω = 1 when evaluated at the mean of 
the distribution (a result which can be understood 
as a manifestation of put-call parity), so the 
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normal Omega graphs cross the actual ones at 
the respective means (indicated by vertical bars 
in the graph.) Interestingly, the cross-over value 
of V is virtually the same (V ≈ 0.2) for the actual 
and normal distributions. Also, the actual Omega 
graphs are much larger than the normal ones for 
small argument (a consequence of the fact that 
they diverge for V = 0) and contrariwise for large 
argument. It is interesting to note that for the actual 
distributions, the values for small argument are not 
very different, in contrast to the large differences 
between the corresponding normal values. This 
means that the Omega analysis suggests that 
generally the tc = 0.42 strategy is never very much 
worse than the tc = 0.2 strategy, but where it is 
better, it is very much better. This is a consequence 
of the highly non-normal value distribution.

The Omega graph of tc = 0.42 has a smaller slope 
than that of tc = 0.2. Consequently, the upside 
potential for tc = 0.42 is larger. We define the 
robustness at a given threshold as the exponential 
of the derivative of the Omega function, so defined 
so that it is between zero and unity and the higher 
the value the more robust the result (ie, the smaller 
the slope.)

Use of the robustness coefficient could serve to 
deter hedge fund managers from smoothing results. 

Smoothing is a problem that can be associated with 
hedge funds that trade in illiquid instruments (such 
as distressed securities or OTC derivatives). Hedge 
funds that trade in highly liquid instruments do not 
have the scope to smooth their results. Smoothing 
refers to adjusting the return series to decrease 
the perceived volatility. For example, in a positive 
month, the hedge fund might report a slightly 
lower return than it actually achieved, while in a 
negative month, it might report a slightly better 
return. By decreasing the volatility of the reported 
return series, this in turn increases the Sharpe Ratio. 
Smoothing is not ethical and the majority of hedge 
funds do not smooth. However, there still exists the 
problem that some do — and it is not always easy 
to detect.

While the effect of smoothing is to spuriously 
increase the Sharpe Ratio, the effect on the 
Omega function is mixed. (Here we envisage that 
the distribution from which Omega is determined 
is obtained by consideration of the history of 
returns.) Smoothing increases the Omega value for 
lower thresholds, but decreases the Omega value 
for higher thresholds. The Omega graph then has 
a steeper slope than it otherwise would and, thus, 
a lower robustness. Consequently, if analysis is 
using Omega, then a hedge fund manager has less 
incentive to smooth their results.

Figure 6: Ω(V) for two choices of strategy
(for reference we show corresponding Ω curves for normal value distributions with the 

same means and standard deviations;  the means are indicated by vertical bars)



28

Interpretation as an asset option

We now briefly outline how this game can be thought 
of as an option on an asset. We envisage an asset 
whose value is An(ω) where n indicates the number 
of timesteps (where there is one draw per timestep) 
and ω   Ω is a label indicating the particular path 
in our probability space. In particular, An equals 
the number of white balls which have been drawn 
up to time n.

We then further imagine that there is an option on 
the asset whose payoff function is

In particular, the strike is time dependent. To 
complete the model, we need to specify the 
dynamics of An. In any given timestep, it either 
increases in value by one dollar or stays the same 
with probabilities pn(ω) and 1–pn(ω), respectively, 
where

and w and N represent the initial attributes of the 
corresponding hat. Of course, this problem can be 
thought of without reference to any hat, in which 
case, w and N are simply values parameterising 
the initial moneyness and term. In particular, the 
dynamics is only defined as long as n < N, after 
which everything is frozen. Henceforth, we assume 
the option maturity is also N.

If the option is European in style, then the option 
value is the same as the value of the hat game 
following the risk-free strategy discussed above. If 
the option is American in style, meaning we can stop 
playing whenever we like, then the option value is 
the same as the value of the hat game following 
the optimal strategy. This follows from the fact that 
to evaluate we can use standard arbitrage-free 
hedging arguments, where we use the asset to 
hedge the option. The smooth boundary condition at 
tc ≈ 0.42 is a standard result of risk-neutral pricing 
(Dixit, 1993). Therefore, in this interpretation, where 
we can trade the asset as well as the derivative, 
we find that the only strategies of interest are the 
risk-free and the risk neutral (optimal) strategies.

This suggests an extension of the problem as well, 
where the option maturity is at some time M < N. 
In that case, even the European option will have a 

nontrivial value. This generalisation will break the 
scaling of Eq. (5) and we will need an additional 
parameter to represent remaining term in the 
expression for the value. Assuming this can be done, 
we then have an interesting limit, since for 1<< M << 
N, we recover a standard binary tree model for 
which the relative value of an American put option 
is a non-trivial problem.

Conclusion

We have presented results for an interesting single 
player game with analogies to finance. In particular, 
while the rules of the game are simple to state, 
the results are extremely nontrivial and display 
a rich set of behaviours. In particular, we have 
derived the first and second moments as well as the 
characteristic function. Doing so required derivation 
of a differential equation. Assigning boundary 
conditions to that equation led to a rich question 
about the strategies which a player would invoke 
which in turn depends on his risk-return profile.

We have demonstrated that this is a good 
laboratory for exposition of the Ω function as a 
performance measure as opposed to the Sharpe 
Ratio. This is a highly nonnormal context where 
downside risk is inherently limited but upside risk can 
be substantial. The Sharpe Ratio fails to properly 
account for these features.

We have also mapped the problem onto one of 
a standard option valuation. The usefulness of this 
is firstly to further motivate the optimal strategy 
as deserving of special attention since it results in 
the arbitrage-free risk neutral option price. This 
mapping also provides an interpretation of the 
game’s value in terms of the difference between 
American-style and European-style option values.

This problem displays a surprising array of rich 
behaviours. Possibilities for further study include 
exploring finite N effects, including understanding 
the apparent delta function peak in the distributions 
at V = 0 and the oscillations observed in the 
numerically simulated distributions. Better numerical 
determination of the probability densities is also an 
interesting problem as is extending the problem to 
allow for the term of the game to be smaller than the
number of balls in the hat, as mentioned in the final 
section.
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Appendix A:
Numerical determination of the characteristic function

As we discussed, numerical determination of the characteristic function is not trivial. Our solution (41) is a Taylor 
expansion in ζ, which is well adapted for small to intermediate values of ζ. While it is formally convergent for 
all values of ζ, that actually does not help much for numerically determining F(ζ,t) for large values of ζ. What 
is required is a representation adapted for large values of ζ. For a general discussion of these sort of issues
see Press et al, 1992.

We appeal back to the differential equation (34) and express H with the ansatz H = exp(2itc ζ+a(t– tc)√|ζ|) 
where a is a constant to be determined. Then to leading order in ζ, the second derivative with respect to t 
and the first derivative with respect to ζ both generate terms of order ζ. These are the leading order terms, 
but there are corrections of higher order in 1/ζ. Further, imposing the condition that the solution should 
vanish for t large and negative gives a = ± √8itc where the sign of the root is the same as the sign of ζ. As 
mentioned, this is not a complete solution, but is only the leading order solution. We empirically observe a 
second component which behaves as b(t)/√|ζ| where b is a solution of the Hermite equation of order 1/2. 
Unfortunately, there is no way to make this solution consistent with the boundary condition at t  –∞ so this 
is, at best, a leading order term in an asymptotic expansion of a solution which does satisfy that boundary 
condition. Therefore, we can say that approximately

In practise, we use the power series expansion (41) out to some large value of |ζ| and then fit the value of 
b(t) to the above expression which we then use for larger values of |ζ|. This provides us with an expression 
for the characteristic function which is more universally valid. This is not perfect, since it is based only on a 
leading order asymptotic expansion in ζ where ideally we would have it to arbitrary order. Also, we have no 
self-contained manner of determining the coefficient b(t). The ultimate problem is that the implicit condition that
|ζ|>>|t| is inconsistent with a boundary condition imposed at t  –∞.

(A.1)
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