ENFV

Cash flows of one dollar invested in the productive capital of the economy whose rate of return is either 5% or 1% with equal probabilities.

Time horizon		F		
	r = 5%	r=1%	Ee^{rt}	r_t^F
1 year	1.05	1.01	1.03	3.00 %
10 years	1.63	1.10	1.37	3.17 %
100 years	131.50	2.70	67.10	4.30 %
200 years	17 292.58	7.32	8 649.95	4.64 %

Christian Gollier

ENPV

Loan that can be obtained with a repayment of one dollar in *t* years when the interest rate is either 5% or 1% with equal probabilities

Time horizon	Loan			r_{t}^{P}
	r = 5%	r=1%	Ee^{-rt}	' t
1 year	0.95	0.99	0.97	2.96 %
10 years	0.61	0.91	0.76	2.79 %
100 years	7.60 10-3	0.37	0.19	1.68 %
200 years	5.78 10-5	0.14	0.07	1.35 %

First-order stochastic correlations

Definitions

- $c_t = c_0 + x_1 + x_2.$
- $G(x) = \Pr[x_1 \le x]$ and $F(x|x_1) = \Pr[x_2 \le x|x_1]$.
- (x_1, x_2) are "positively first-order stochastically correlated" (FSC) if F is non-increasing in x_1 for all x_2 .
- Example: AR(1): $x_2 | x_1 = \phi x_1 + \varepsilon$ with $\phi > 0$.
- Let y_2 denote the independent r.v. whose CDF is H, with $H(y) = \int F(y|x_1) dx_1$.

Isolating the effect of FSC

We compare

$$r_{t} = \delta - \frac{1}{t} \ln \frac{Eu'(c_{0} + x_{1} + x_{2})}{u'(c_{0})}$$

$$\hat{r}_t = \delta - \frac{1}{t} \ln \frac{Eu'(c_0 + x_1 + y_2)}{u'(c_0)}.$$

$$r_t \le \hat{r}_t \iff Eu'(c_0 + x_1 + x_2) \ge Eu'(c_0 + x_1 + y_2)$$

Two results

• Lemma 1: Consider any positive FSC pair (x_1, x_2) .

$$Eh(x_1, x_2) \ge Eh(x_1, y_2) \Leftrightarrow h \text{ is supermodular: } \frac{\partial^2 h}{\partial x_1 \partial x_2} \ge 0.$$

- Proposition 1: The presence of a positive FSC correlation in changes in consumption reduces the long-term efficient discount rate if and only if the representative agent is prudent (u' convex).
- Corollary: CRRA+FSC implies decreasing term structure

Intuition

• The positive FSC correlation in Δc raises the risk of the distant future compared to the i.i.d. case.

$$E(c_0 + x_1 + x_2) = E(c_0 + x_1 + y_2)$$
$$E(c_0 + x_1 + x_2)^2 \ge E(c_0 + x_1 + y_2)^2$$

• Under prudence, it is efficient to make more efforts for that distant future. This is done by reducing the long-term discount rate.

Remark: De-correlation of growth *rates*

We compare

$$r_{t} = \delta - \frac{1}{t} \ln \frac{Eu'(c_{0}e^{x_{1} + x_{2}})}{u'(c_{0})} \quad to \quad \hat{r_{t}} = \delta - \frac{1}{t} \ln \frac{Eu'(c_{0}e^{x_{1} + y_{2}})}{u'(c_{0})}$$

- Proposition 2: The presence of a positive FSC correlation in changes in <u>log</u> consumption reduces the long-term efficient discount rate if and only if -u'''/u''>1.
- Notice that $Ec_0e^{x_1+x_2} \ge Ec_0e^{x_1+y_2}$.

Second-order stochastic correlations

Definitions

• (x_1,x_2) are positive SSC if an increase in x_1 raises the riskiness of the $x_2|x_1$.

• Example:
$$x_2 | x_1 = \mu + \varepsilon \sqrt{x_1}$$

• Lemma 2: Consider any positive SSC pair (x_1, x_2) .

$$Eh(x_1, x_2) \ge Eh(x_1, y_2) \Leftrightarrow -\frac{\partial h}{\partial x_2}$$
 is supermodular: $\frac{\partial^3 h}{\partial x_1 \partial x_2^2} \le 0$.

Results

- Proposition 3: The presence of a positive SSC correlation in changes in consumption raises the long-term efficient discount rate if and only if u'''<0.
- Intuition: Increased skewness reduces $Eu'(c_t)$ if u''''<0.

Results

- Proposition 4: The presence of a positive SSC correlation in changes in log consumption raises the long-term efficient discount rate if and only if $f(c) = u''(c) + 3cu'''(c) + c^2u''''(c) \le 0$.
- Intuition: increased skewness reduces $Eu'(c_t)$ if u''''<0.