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Abstract

Defaults in a credit portfolio of many obligors or in an economy populated with firms
tend to occur in waves. This may simply reflect their sharing of common risk factors
and/or manifest their systemic linkages via credit chains. One popular approach to
characterizing defaults in a large pool of obligors is the Poisson intensity model coupled
with stochastic covariates. A constraining feature of such models is that defaults of
different obligors are independent events after conditioning on the covariates, which
makes them ill-suited for modeling clustered defaults. Although individual default
intensities under such models can be high and correlated via the stochastic covariates,
joint default rates will always be zero, because the joint default probabilities are in the
order of the length of time squared or higher. In this paper, we develop a hierarchical
intensity model with three layers of shocks – common, group-specific and individual.
When a common (or group-specific) shock occurs, all obligors (or group members)
face individual default probabilities, determining whether they actually default. The
joint default rates under this hierarchical structure can be high, and thus the model
better captures clustered defaults. This hierarchical intensity model can be estimated
using the maximum likelihood principle. Its predicted default frequency plot is used
to complement the typical cumulative accuracy plot (CAP) in default prediction. We
implement the new model on the US corporate default/bankruptcy data and find it
superior to the standard intensity model.
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1 Introduction

Understanding the determinants of defaults is critical to many business and policy decisions.
Credit analysis beyond single names is at the heart of credit portfolio management, and also
has important regulatory policy implications. From a policy perspective, the severe credit
crunch in the early phase of the recent financial crisis has particularly driven home the
message that system-wide corporate defaults in a scale unprecedented is not only possible
but also quite likely. Adding to this is a widely acknowledged role of credit rating agencies
in fueling this financial crisis. Credit rating models used by the key rating agencies have
been seriously questioned. As part of the remedial solutions, better credit analytical tools
for modeling multiple obligors together are needed.

Defaults in a credit portfolio of many obligors or in an economy populated with firms
tend to occur in waves. This may simply reflect their sharing of common risk factors and/or
manifest their systemic linkages via credit chains. Two broad categories of modeling ap-
proaches in dealing with a credit portfolio have emerged in the literature – top-down and
bottom-up. The top-down approach directly models the aggregate behavior at the portfolio
level, and is intended for answering questions only concerning the overall portfolio. Examples
are Arnsdorf and Halperin (2007), Cont and Minca (2007), Giesecke and Kim (2007), and
Longstaff and Rajan (2007). In contrast, the bottom-up approach models individual names
together by specifying their joint behavior. Such a model offers a wealth of information, but
may deliver unsatisfactory performance at the aggregate level due to the built-in constraints
from modeling individual obligors. Examples abound; for example, Li (2000), Shumway
(2001), Andersen, et al (2003), Duffie, et al (2007), Duffie, et al (2008), and Peng and Kou
(2009).

One popular approach to characterizing defaults in a large pool of obligors is the Poisson
intensity model coupled with stochastic covariates, or the Cox process for short. Shumway
(2001) and Duffie, et al (2007) are such examples. Azizpour and Giesecke (2008) reported
24 rail firm defaults in a single day on June 21, 1970, and used that to motivate their use of
a self-exciting model (defaults generating more defaults) to deal with an abnormally large
number of clustered defaults. Peng and Kou (2009) constructed a bottom-up model by
observing that making cumulative intensity process jump, instead of jumps in the intensity
process, can create bursty defaults. Duffie, et al (2008) built “frailty” into the Poisson
intensity model by introducing a latent variable so as to increase default clustering.

A constraining feature of the Poisson intensity models in the bottom-up application is
that defaults of different obligors are independent events after conditioning on the covariates,
which makes them ill-suited for modeling clustered defaults. Das, et al (2007) showed by a
battery of tests that the standard intensity model such as Duffie, et al (2007) simply does
not generate enough default clustering as in the observed data. Although individual default
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intensities under the standard intensity models can be high and correlated via the stochastic
covariates, joint default rates will always be zero, because the joint default probabilities are
in the order of the length of time squared or higher. This conclusion applies to all Poisson
intensity models except that of Peng and Kou (2009). The Peng and Kou (2009) approach
with jump in the cumulative intensity process amounts to making the local intensity a Dirac
delta function, and thus the joint default intensity does not vanish locally.

In this paper, we develop a hierarchical intensity model with three layers of shocks –
common, group-specific and individual. When a common (or group-specific) shock occurs, all
obligors (or group members) face individual default probabilities, determining whether they
actually default. The joint default rates under this hierarchical structure can be high, and
thus the model better captures clustered defaults. We develop algorithm which can compute
the time-varying predicted default distribution for the credit portfolio for the standard and
hierarchical intensity models. Such predicted default distributions have many applications;
for example, one can compute the expected number of defaults for the next period. If
coupled with the prescribed dynamics of the stochastic covariates, these predicted default
distributions can be time aggregated via Monte Carlo simulations so as to cover multiple
periods ahead.

This hierarchical intensity model can be estimated using the maximum likelihood prin-
ciple. We implement the model on a US corporate data set with monthly frequency over
the period of January 1991 to December 2008. The analysis shows that common shock is
a statistically significant component. Adding a layer to create a hierarchical structure can
indeed better the performance of the intensity model.

2 A hierarchical intensity model for clustered defaults

2.1 The model

Consider a credit portfolio consisting of many obligors (firms, debt issues, or individuals).
For obligor (i, j), which is the j-th member of the i-the group where i = 1, · · · , K and
j = 1, · · · , ni, we assume that its default is governed by the following process: for t ≥ 0,

dMijt = χijtdNct + ζijtdNit + dNijt. (1)

where Nc0 = Ni0 = Nij0 = 0, and χijt (or ζijt) is a Bernoulli random variable taking value
of 1 with a probability of pijt (or qijt) and 0 with a probability of 1 − pijt (or 1 − qijt). χijt

and ζijt are independent of each other and also independent across different obligors. The
Poisson process Nct is a common process shared by all obligors in a credit portfolio which is
governed by the intensity λct. The Poisson process specific to a group is Nit which is shared
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by all its members and subject to the intensity λit. The Poisson process unique to obligor j
is the i-th group is Nijt. All different Poisson processes are independent of each other.

The way to understand the above setup is as follows. Nct captures the top hierarchy, say,
the global event like the 2008-09 financial crisis which has severe impact beyond national
boundaries. When there is no global event, obligors may still be subjected to a national event
that affects many firms and individuals in that country. This is reflected in Nit, the middle
hierarchy. When there is no common credit event globally or nationally, an individual entity
can still default which is captured by Nijt, the bottom hierarchy. Similarly, the three-layer
hierarchical setup is equally applicable to modelling defaults due to national, industry-wide,
and individual factors. Needless to elaborate, the three-layer model can be extended to more
layers or reduced to just two or one layer. In the case of one layer, the hierarchial intensity
model becomes exactly the standard intensity model for defaults such as that of Duffie, et
al (2007).

When a common jump occurs, (i, j)-th obligor may or may not default depending on the
value of χijt. When its value equals one, we say that obligor (i, j) defaults. For a group-
specific credit event, individual entities may react differently. The obligor (i, j) will default
if ζijt = 1. As to the individual jump, an obligor defaults if its own jump occurs.

Mathematically, individual jumps will not occur concurrently even if their intensities are
highly correlated. This is because the probability of a concurrent default of k obligors will
have a rate equal to the length of the time interval raised to the power of k − 1, which
becomes negligible when k > 1. Casting aside the limiting argument and fixing the time
interval at some fixed length, the clustered default probability can in principle be raised to
any desired level by increasing individual default intensities. Matching clustered default this
way will, however, come at the expense of overstating individual default probabilities. This
is in effect the modeling dilemma facing the default intensity models in the literature.

In our hierarchical intensity model, however, clustered defaults can occur via two channels
without disturbing individual default probabilities. The two channels are: the common
jump and the group-specific jump. Intuitively, defaults under the first channel will be more
widespread as compared to the second one. When a common or group-specific jump happens,
each obligor is facing a probability of default. If we assume for simplicity that the default
probability under a common credit event is same for all obligors, say p, then the number of
defaulted obligors can be described by a binomial distribution. Under such an assumption,
n obligors out of the survived population of size n∗ (n∗ ≤ ∑K

i=1 ni) default at the same time

has the probability of

(
n∗

n

)
pn(1 − p)n∗−n. The distribution for the number of defaults

in the credit portfolio, ranging from 0 to n∗, can be easily computed with this binomial
distribution. A similar calculation applies to a group-specific credit event.
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Following Duffie, et al (2007), an obligor may leave the population due to factors other
than default. For example, a firm can be de-listed from an securities exchange due to a
merger, or an individual credit card holder decides to terminate the use of a particular credit
card. A Poisson process Lijt with intensity δijt and Lij0 = 0 is used to model the exit for
reasons other than default. This Poisson process is assumed to be independent of all other
Poisson processes described earlier. Although we can also impose a hierarchical structure on
exits not due to default, we opt for simplicity by focussing on the more important issue of
clustered defaults.

Explicitly considering non-default exits, as opposed to simply ignoring them, is important
more for the reason of characterizing the default behavior, because it must occur before a
non-default exit. Interestingly, censoring does not affect the estimation of the parameters
in the default intensity functions when other forms of exits are assumed to be independent
of the default process. This feature comes from the fact that the overall likelihood function
can be decomposed into unrelated components, and was utilized in Duffie, et al (2007).

We let the Poisson intensities be functions of some common state variables Xt, group-
specific state variables Yit and obligor-specific factors Zijt. Although it is natural to think that
the common jump intensity is influenced by common state variables, it is conceivable that
some group-specific or even obligor-specific factors can affect the common jump intensity. In
that case, the group-specific or obligor-specific state variable is regarded as a common state
variable. Needless to say, the individual default probability under a common jump may be
affected by the common state variables, group-specific state variables and obligor-specific
factors. Thus, we have

λct = F (Xt−) (2)

λit = G(Xt− , Yit−), for i = 1, · · · , K (3)

λijt = H(Xt− , Yit− , Zijt−), for i = 1, · · · , K and j = 1, · · · , ni (4)

pijt = P (Xt− , Yit− , Zijt−), for i = 1, · · · , K and j = 1, · · · , ni (5)

qijt = Q(Xt− , Yit− , Zijt−), for i = 1, · · · , K and j = 1, · · · , ni (6)

δijt = R(Xt− , Yit− , Zijt−), for i = 1, · · · , K and j = 1, · · · , ni (7)

where t− denote the left limit, F , G, H and R must be non-negative functions, and P and
Q must be bounded between 0 and 1. Both of which can be easily accomplished with the
standard modelling techniques. The hierarchical intensity model thus far comprises a family
of doubly stochastic Poisson processes or Cox processes.

If all state variable processes have continuous sample paths, it makes no difference in
theory as to using t− or t. In practice, however, one only have discretely sampled data, and
t− means using the data available at time t−∆t.
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By the additivity of independent Poisson processes, the default component of the above
model viewed individually can be reduced to

dMijt
d
= χ∗ijtdN∗

ijt (8)

where
d
= stands for distributional equivalence; N∗

ijt is a Poisson process with the intensity
equal to λct + λit + λijt; and χ∗ijt is a Bernoulli random variable taking value of 1 with a
probability of p∗ijt and 0 with a probability of 1− p∗ijt. Note that

p∗ijt =
λct

λct + λit + λijt

pijt +
λit

λct + λit + λijt

qijt +
λijt

λct + λit + λijt

. (9)

It is clear that χ∗ijtdN∗
ijt is also equivalent in distribution to a Poisson process with

intensity of p∗ijt(λct + λit + λijt) with respect to the default time. Even though they are not
equivalent beyond the default time, it is irrelevant as far as modelling default is concerned.
Thus, if we look at an obligor individually, the hierarchical intensity model is equivalent to
the Duffie, et al (2007) model. But for two or more obligors considered together, the two

models are not equivalent, i.e., (Mijt,Mklt)
d

6= (
∫ t

0
χ∗ijsdN∗

ijs,
∫ t

0
χ∗klsdN∗

kls). The distinguishing
feature of the hierarchical intensity model is therefore its ability to better capture clustered
defaults.

2.2 Predicted default frequency on the the natural time scale

Perhaps, we might expect the common jump intensity to be low vis-a-vis the group-specific
jump, and the group-specific jump intensity is in turn lower than individual jump intensity.
But it is also plausible that common shocks actually occur more frequently, but upon occur-
rence, individual obligors face time varying default probabilities pijt which sometimes causes
many concurrent defaults whereas other times only generates few or no concurrent defaults.
In the case of a group-specific event, the concurrent defaults will be clustered in a group and
the size of the default cluster will naturally depend on the magnitude of qijt in that group.

One way to appreciate the difference between the hierarchical and standard intensity
models is to compare the distributions for the number of defaults when the hierarchical
intensity model (HIM) is to allow for common shocks but disable the group and individual
shocks. Let U be the number of defaults out of the obligor pool over the period of [t, t+∆t].
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The restricted hierarchical intensity model (rHIM) has the following distribution:

ProbrHIM(U = 0) = e−λct∆t + (1− e−λct∆t)
K∏

i=1

ni∏
j=1

(1− pijt)

ProbrHIM(U = 1) = (1− e−λct∆t)
K∑

i=1

ni∑
j=1

(
pijt

K∏
m=1

ni∏

l=1

(1− pmlt)
1{(m,l) 6=(i,j)}

)

...

The first part of ProbrHIM(U = 0) is the probability of no common shock, and hence no
default occurs. The second part is the probability of the event that the common shock
occurs but still no obligor defaults. This probability is in sharp contrast to the one under
the standard intensity model of Duffie, et al (2007) (DSW):

ProbDSW (U = 0) =
K∏

i=1

ni∏
j=1

e−λijt∆t

ProbDSW (U = 1) =
K∑

i=1

ni∑
j=1

(
(1− e−λijt∆t)

K∏
m=1

ni∏

l=1

e−λmlt∆t1{(m,l) 6=(i,j)}

)

...

It is evident from the above expressions, the probability of no default can be computed
rather easily by the analytical expression for either model, but for one, two more defaults,
the analytical expressions will become increasingly complex, and they will not useful for
computation. For the general hierarchical intensity model, adding to the complexity is the
existence of group-specific and individual shocks. Therefore, the default distributions will
need to be computed numerically. The exact numerical method based on the convolution
principle is described in Appendix, which is a very efficient algorithm for coming up with
the theoretical default distribution for either the standard or hierarchial intensity model.

The above predicted default distribution for the obligor pool is time-varying. By averag-
ing the theoretical default distributions over time, however, we can devise a useful theoretical
signature plot for the time series sample. It can then be compared to the the observed fre-
quency computed on the natural time scale.

It is worth noting that our predicted default distribution plot is fundamentally different
from the rescaled-time default distribution plot used in conjunction with the Fisher dispersion
test devised by Das, et al (2007). Our signature plot is based on the original time scale,
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which is arguably more natural. Perhaps more importantly, the rescaled-time approach is
not applicable to the hierarchical intensity model due to its lack of independence (conditional
on stochastic covariates) across obligors.

Use the parameter estimates obtained later in the empirical study of the US corporate
data, we compare one version of the hierarchical intensity model with the standard intensity
model, i.e, Duffie, et al (2007). In Figure 1, the bars represent the observed frequencies
corresponding to different numbers of defaults over the sample period (defaults per month).
The two curves correspond to the averaged predicted default distributions over time under
two models. Although two predicted distributions have some difference, both seem to predict
the observed frequency well. The two models differ in the way that the hierarchical intensity
model distributes weights more towards two ends.

If there is a variable informative of the common shock’s arrival, then one can hope to
reveal the difference between the the standard and hierarchical intensity models. Figures
2a and 2b are presented for this purpose. We use the average distance-to-default for the
financial firms in the sample to divide the time series sample into three equal-size groups.
The bottom third corresponds to the group with the lowest average distance-to-default. We
compute the observed frequency of this subsample and compare it to the averaged predicted
default distribution with the average taken over the subsample. The results for the bottom
third sample are presented in Figure 2a. It is evident that the predicted default distribution
under the hierarchical model shifts weights towards larger numbers of defaults. This is
consistent with the fact that this is the subsample facing smaller market-wide distance-to-
default for which we expect to see clustered defaults. The result for the top third subsample
is opposite of that for the bottom third, and works out as expected. Figure 2b suggests that
the hierarchical model leads to smaller numbers of defaults than does the standard intensity
model when the market-wide distance-to-default is bigger.

2.3 Default correlation and double default

Default correlation and double default are two informative ways of understand the model.
They are conceptually useful in examining a model’s suitability for analyzing credit portfo-
lios. The well-known default intensity model, for example, Duffie, et al (2007), yields too
low a default correlation and double default probability vis-a-vis the empirical observations.
In contrast, our hierarchical intensity model generates a much higher values in relative term
as shown below.

Let τij = inf(t; Mijt ≥ 1), i.e., the random default time for the j-th firm in the i-th

group. Similarly, let τ ∗ij = inf(t;
∫ t

0
χ∗ijsdN∗

ijs ≥ 1) and assume that N∗
ijs are independent

Poisson processes for different obligors to mimic the Duffie, et al (2007) model. We also
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need to define the non-default exit time, φij = inf(t; Lijt ≥ 1), to meaningfully describe the
joint default behavior.

A key element to understanding intensity models is the kill rate. First, let at(ij, kl) =
1− (1−pijt)(1−pklt) be the probability of two obligors fail to jointly survive with respect to
the common credit event. In other words, it is the probability that one of the two obligors
fails or both fail facing a common credit event. Similarly, bt(ij, kl) = 1− (1− qijt)(1− qklt)
is for the group-specific credit event. Define

αt(ij, kl) ≡ at(ij, kl)λct + 1{i=k}bt(ij, kl)λit + 1{i6=k}(qijtλit + qkltλkt) + λijt + λklt (10)

and

α∗t (ij, kl) ≡ (pijt + pklt)λct + qijtλit + qkltλkt + λijt + λklt (11)

It is clear that α∗t (ij, kl) ≥ αt(ij, kl).

Consider two obligors in the same group – (i, j) and (i, l). We now compute the kill rate
for determining joint survival over the interval [t, t + ∆t] for the hierarchical intensity model
and the Duffie, et al (2007) model, respectively. Under the hierarchical intensity model, the
kill rate for the joint survival probability is

lim
∆t→0

1− (1− at(ij, il)λct∆t)(1− bt(ij, il)λit∆t)(1− λijt∆t)(1− λilt∆t)

∆t
= αt(ij, il). (12)

Note that the numerator of the kill rate is the probability that two obligors fail to jointly
survive the interval after considering the common, group-specific and individual credit events
together. The kill rate can in turn be used to derive the joint survival probability as follows:

E0

(
1{τij>t}1{τik>t}

)
= E0

{
E0

(
1{τij>t}1{τik>t}

∣∣Xs, Yis, Zijs, Ziks; s ∈ [0, t]
)}

= E0

(
e−

∫ t
0 as(ij,ik)ds

)
. (13)

If two obligors – (i, j) and (k, l) – are from different groups (i.e., i 6= k), a similar result
can be derived:

lim
∆t→0

1− (1− at(ij, kl)λct∆t)[1− (qijtλit + λijt)∆t][1− (qkltλkt + λklt)∆t]

∆t
= αt(ij, kl). (14)

Under the Duffie, et al (2007) model and using the mimicking structure mentioned above,
the kill rate for any two obligors is always

lim
∆t→0

1− [1− (pijtλct + qijtλit + λijt)∆t][1− (pkltλct + qkltλit + λklt)∆t]

∆t
= α∗t (ij, kl). (15)
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Double default probability and default correlation from time 0 to t for two obligors, after
factoring in the censoring effect, can be computed. Their relationships to the counterparts
under the Duffie, et al (2007) model are given in the following proposition.

Proposition 1. Censored double default probability and default correlation

Double default probability:

E0

(
1{τij≤t∧φij}1{τkl≤t∧φkl}

) ≥ E0

(
1{τ∗ij≤t∧φij}1{τ∗kl≤t∧φkl}

)
(16)

Default correlation:

Corr0

(
1{τij≤t∧φij}, 1{τkl≤t∧φkl}

) ≥ Corr0

(
1{τ∗ij≤t∧φij}, 1{τ∗kl≤t∧φkl}

)
(17)

Proof: see Appendix

The censored double default probability and default correlation are what one cares about
because after an obligor exits for other reasons, default is no longer a relevant concept. By
the above results, the censored double default probability or default correlation between
two obligors under our hierarchical intensity structure is always higher than that under the
Duffie, et al (2007) model. Needless to say, the directional relationship still holds true when
one does not consider the effect of censoring. Moreover, it can be shown that the censored
double default probability or default correlation between two obligors in the same group will
be, under our hierarchical intensity model, higher than that for the two obligors in different
groups but otherwise comparable.

Double default probability and default correlation as functions of time horizon can be
analytically derived under either the Duffie, et al (2007) model or the hierarchial intensity
model. The exact expressions under the constant parameter assumption are provided in
Appendix. If parameters are time-varying, simulations can be used.

Another way of understanding the hierarchical intensity model vis-a-vis the Duffie, et al
(2007) model is through a double-survival hazard rate analysis. We define a hazard rate
that can be used to compute the double-survival probability in a usual way of linking the
hazard rate to the survival probability. Due to other exit factors, the survival here means
that neither default nor other types of exit has occurred.

The corresponding pair of hazard rates is

ht(u; ij, kl) = −∂Et

(
1{τij∧φij>u}1{τkl∧φkl>u}

)
/∂u

Et

(
1{τij∧φij>u}1{τkl∧φkl>u}

)

=
Et

(
(αu(ij, kl) + δiju + δklu)e

− ∫ u
t (αs(ij,kl)+δijs+δkls)ds

)

Et

(
e−

∫ u
t (αs(ij,kl)+δijs+δkls)ds

) (18)
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Its counterpart under the Duffie, et al (2007) model is

h∗t (u; ij, ik) = −
∂Et

(
1{τ∗ij∧φij>u}1{τ∗ik∧φik>u}

)
/∂u

Et

(
1{τ∗ij∧φij>u}1{τ∗ik∧φik>u}

)

=
Et

(
(α∗u(ij, kl) + δiju + δklu)e

− ∫ u
t (α∗s(ij,kl)+δijs+δkls)ds

)

Et

(
e−

∫ u
t (α∗s(ij,kl)+δijs+δkls)ds

) (19)

Recall that α∗s(ij, kl) ≥ αs(ij, kl). If these rates are deterministic, then h∗t (u; ij, kl) ≥
ht(u; ij, kl), implies that the Duffie, et al (2007) model will yield a smaller double-survival
probability than the hierarchical intensity model. When the rates are stochastic, a local
analysis is possible. Let u approaches t to give rise to h∗t (t; ij, kl) ≥ ht(t; ij, kl), which
implies that double survival locally is more likely under the hierarchical intensity model.

Note that αt(ij, kl)+δijt+δklt is the kill rate discussed earlier except that we have adjusted
for exiting due to non-default reasons. The comparison of the hazard rate and the kill rate
can be likened to the the fixed-term forward rate versus the instantaneous forward rate in the
term structure literature. When the kill rate is constant, it is the same as the hazard rate. In
our case where rates are stochastic, the kill rate is more helpful in assessing double survival.
Although we are unable to ascertain the directional relationship between two hazard rates,
we are able to determine the relationship between the double survival probabilities using the
kill rates. Since α∗t (ij, kl) ≥ αt(ij, kl) almost surely, the double survival probability, censored
or not, is always higher under the hierarchical intensity model that that under the Duffie, et
al (2007) model. Obviously, this conclusion applies to the case where two obligors are from
different groups.

It is worth noting that the complement of double survival is not double default. A defining
characteristic of the Duffie, et al (2007) model or other standard default intensity models is
that its concurrent double-default rate always equals zero regardless of how high the default
intensities of the two processes are. It is evident the concurrent double default occurs with a
positive rate under the hierarchical intensity model via the common or a group-specific shock.
Interestingly, both double default and double survival are more likely under the hierarchical
intensity model.

3 Estimation procedure

Let θ denote all parameters governing the Xt, Yit, and Zijt for i = 1, · · · , K and j = 1, · · · , ni.
The parameters governing F, G,H, R, P and Q functions are denoted by ϕ. The data set
related to Xt, Yit, and Zijt from time 1 to time T is denoted by DT . Let It be a matrix with
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rows representing different groups and the column dimension equals the maximum number
of obligors in groups. This matrix corresponds the status of all obligors. Prior to default
or other forms of exit for an obligor, its corresponding entry in It is assigned a value of 0.
If exiting by default at time t, the assigned value is switched to 1 and will remain fixed
thereafter. If exiting due to other reasons, the assigned value is 2 and remains fixed from
then on. In order to reflect the entry times of different obligors into the sample, we use V ,
a matrix matching the dimension of It, to capture these entry times.

The log-likelihood function can be decomposed into two parts:

L(θ, ϕ; DT , IT , V ) = L(ϕ; DT , IT , V ) + L(θ; DT ) (20)

Note that L(ϕ; DT , IT , V ) captures the default likelihood conditional on the state variables
DT , because the processes governing defaults and other forms of exit are assumed under the
model to be directed by the values of Xt, Yit, and Zijt, but not the parameters governing
their dynamics. The second term L(θ; DT ) is simply the log-likelihood function associated
with the state variables DT whose dynamics under the model are not affected by obligor
defaults.

In contrast to the Duffie, et al (2007) approach, we must express the default likelihood
function conditional on state variables cross-sectionally at one time point, and then aggregate
them over time. This is needed because of the hierarchical default structure. Specifically,

L(ϕ; DT , IT , V ) =
T∑

t=2

ln (At(ϕ; Dt, It, V )) (21)

where

At(ϕ; Dt, It, V )

= e−λc(t−1)∆t

K∏
i=1

(
e−λi(t−1)∆t

ni∏
j=1

BijtC
(1)
ijt + (1− e−λi(t−1)∆t)

ni∏
j=1

BijtC
(2)
ijt

)

+(1− e−λc(t−1)∆t)
K∏

i=1

(
e−λi(t−1)∆t

ni∏
j=1

BijtC
(3)
ijt + (1− e−λi(t−1)∆t)

ni∏
j=1

BijtC
(4)
ijt

)
(22)
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Bijt = 1{V (i,j)>t−1} + 1{V (i,j)≤t−1}[1{It−1(i,j)6=0} + 1{It−1(i,j)=0}1{It(i,j) 6=2}e
−δij(t−1)∆t

+1{It−1(i,j)=0}1{It(i,j)=2}(1− e−δij(t−1)∆t)]

C
(1)
ijt = 1{V (i,j)>t−1} + 1{V (i,j)≤t−1}[1{It−1(i,j)6=0} + 1{It−1(i,j)=0}1{It(i,j) 6=1}e

−λij(t−1)∆t

+1{It−1(i,j)=0}1{It(i,j)=1}(1− e−λij(t−1)∆t)]

C
(2)
ijt = 1{V (i,j)>t−1} + 1{V (i,j)≤t−1}{1{It−1(i,j) 6=0} + 1{It−1(i,j)=0}1{It(i,j)6=1}(1− qij(t−1))e

−λij(t−1)∆t

+1{It−1(i,j)=0}1{It(i,j)=1}[qij(t−1) + (1− e−λij(t−1)∆t)− qij(t−1)(1− e−λij(t−1)∆t)]}
C

(3)
ijt = 1{V (i,j)>t−1} + 1{V (i,j)≤t−1}{1{It−1(i,j) 6=0} + 1{It−1(i,j)=0}1{It(i,j)6=1}(1− pij(t−1))e

−λij(t−1)∆t

+1{It−1(i,j)=0}1{It(i,j)=1}[pij(t−1) + (1− e−λij(t−1)∆t)− pij(t−1)(1− e−λij(t−1)∆t)]}
C

(4)
ijt = 1{V (i,j)>t−1} + 1{V (i,j)≤t−1}{1{It−1(i,j) 6=0}

+1{It−1(i,j)=0}1{It(i,j)6=1}(1− pij(t−1))(1− qij(t−1))e
−λij(t−1)∆t

+1{It−1(i,j)=0}1{It(i,j)=1}[pij(t−1) + qij(t−1) + (1− e−λij(t−1)∆t)− pij(t−1)qij(t−1)

−pij(t−1)(1− e−λij(t−1)∆t)− qij(t−1)(1− e−λij(t−1)∆t) + pij(t−1)qij(t−1)(1− e−λij(t−1)∆t)]}
Note that ∆t is the length of one period; for example, monthly frequency corresponds to

∆t = 1/12. V (i, j) is used to control for some obligors that entered the sample later than
others. If the application is to track a portfolio over time without adding any new obligors
in the process, V (i, j) can be ignored because 1{V (i,j)≤t−1} = 1 and 1{V (i,j)>t−1} = 0.

At comprises two terms with the first one dealing with the event that the common
shock did not occur over the time period [t − 1, t], which has the probability of e−λc(t−1)∆t.
The second term is for the event that the common shock did occur with a probability of
1− e−λc(t−1)∆t.

Conditional on the event of non-occurrence of the common shock, group-specific shocks
can either occur or not. The first term inside the first term of At is for the non-occurrence
of that group-specific shock whereas the second term is for the occurrence of that group-
specific shock. Their respective probabilities follow the same principle as for the common
event. Similarly, the two terms inside the second term of At deal with two possible scenarios
for the group-specific shocks.

Under each of four possible combinations of common and group-specific events, we are
able to figure out the appropriate probability of the joint default-exit pattern of all obligors
in the sample. In the case of BijtC

(1)
ijt , neither the common nor group-specific shock occurred,

the probability of no default or exit over [t− 1, t] for the (i, j)-th obligor is governed by its
individual default and other exit intensities which equals e−(λij(t−1)+δij(t−1))∆t. Likewise, the
probability for default or other exit follows from the specification of our intensity model.

BijtC
(2)
ijt is the term specifically for the combination of no common shock but with a

group-specific shock. The probability for an obligor not to default or exit for other reasons
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naturally becomes (1 − qij(t−1))e
−(λij(t−1)+δij(t−1))∆t where the first item is the probability of

no default even when a group-specific shock has already occurred. The other two items
simply reflect the non-occurrence of the obligor-specific default or exit for other reasons. If
a particular obligor defaulted, its probability must be the sum of its default probability due
to the group-specific shock, i.e., qij(t−1), and its own shock, i.e., 1 − e−λij(t−1)∆t , minus the
probability of joint occurrence to avoid double counting. Conditional on the event that the
common shock did not occur, a group-specific shock can either occur or not. For a particular
default-exit pattern, the appropriate probability will thus be the sum of the two terms inside
the first term of At.

The idea behind the term BijtC
(3)
ijt is similar to that for BijtC

(2)
ijt . For the term BijtC

(4)
ijt ,

we consider the situation in which both the common and some group-specific shocks have
occurred. Thus, observing a particular obligor which neither defaulted nor exited for other
reasons over [t− 1, t], the probability must equal (1−pij(t−1))(1− qij(t−1))e

−(λij(t−1)+δij(t−1))∆t.
For a defaulted obligor, its probability will be the sum of three possible causes – common
shock, group-specific shock or individual shock. Since all three shocks could have all occurred
over [t − 1, t], we must adjust for double and triple counting, and thus have the result of
pij(t−1) + qij(t−1) + (1 − e−λij(t−1)∆t) − pij(t−1)qij(t−1) − pij(t−1)(1 − e−λij(t−1)∆t) − qij(t−1)(1 −
e−λij(t−1)∆t) + pij(t−1)qij(t−1)(1− e−λij(t−1)∆t). The remaining term in BijtC

(4)
ijt is for the prob-

ability of exiting for other reasons, its expression is straightforward.

It is fairly easy to see the above result contains that of Duffie, et al (2007) as a spe-
cial case. When the common and group-specific intensities are set to zero, At becomes∏K

i=1

∏ni

j=1 BijtC
(1)
ijt . In the case of Duffie, et al (2007), one first multiply over time for each

obligor and then over obligors. In our expression, we first multiply over obligors and then
over time. Note that (1 − e−λij(t−1)∆t) ∼= λij(t−1)∆t and (1 − e−δij(t−1)∆t) ∼= δij(t−1)∆t when
∆t is small. Using (1− e−λij(t−1)∆t) is more accurate because the default intensity model are
likely to be applied on data that are of monthly, quarterly or yearly frequency. In this more
accurate form, the only assumption is that the covariates do not change over the time period
[t− 1, t].

The intensity function for default and that for other forms of exit are expected to be
governed by different parameters. When there are no parametric restrictions linking two
sets of parameters together, the following decomposed likelihood function can be very useful
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in numerical optimization:

At(ϕ; Dt, It, V )

=

(
K∏

i=1

ni∏
j=1

Bijt

){
e−λc(t−1)∆t

K∏
i=1

(
e−λi(t−1)∆t

ni∏
j=1

C
(1)
ijt + (1− e−λi(t−1)∆t)

ni∏
j=1

C
(2)
ijt

)

+(1− e−λc(t−1)∆t)
K∏

i=1

(
e−λi(t−1)∆t

ni∏
j=1

C
(3)
ijt + (1− e−λi(t−1)∆t)

ni∏
j=1

C
(4)
ijt

)}
(23)

If we divide the parameter set ϕ into ϕB and ϕC , the term
∏K

i=1

∏ni

j=1 Bijt only contains ϕB,
and the remaining terms are functions of ϕC . This decomposition will reduce the effective
dimension in numerically maximizing the log-likelihood function, because ϕB and ϕC can be
optimized separately.

The likelihood associated with the state variables, i.e, L(θ; DT ) depends on the dynamic
models adopted for the state variables. Duffie, et al (2007) employed the vector autogression
model for the state variables. As discussed earlier, the state variable dynamics do not affect
the default process estimation. Unless one is interested in default prediction beyond one
period ahead, it is unnecessary to specify the state variable dynamics. Since the objective of
this paper is to introduce a new approach to default modeling, we will focus on the critical
difference in the default structures and avoid the complication caused by the choice of state
variable dynamics.

4 Empirical analysis

4.1 Data

The data set used to compare the hierarchical and standard intensity models is a sample of
US firms over the period of 1991-2008. The data frequency is monthly with the accounting
data are from the Compustat quarterly and annual database. The reported figures are lagged
for three months to reflect the fact that the accounting figures are typically released a couple
months after the period covered. The stock market data (stock prices, shares outstanding,
and market index returns) are from the CRSP monthly file. For the default/bankruptcy data,
we take from the CRSP file the de-listing information and couple them with the default data
obtained from the Bloomberg CACS function. Following Shumway (2001), the firms that
filed for any type of bankruptcy within 5 years of de-listing are considered bankrupt. There
are altogether 872 bankruptcies and defaults in the sample. Firms may exit the sample
due to reasons other than default or bankruptcy, and they are lumped together as other
exits. The firms with less than one year’s data over the sample period are removed. The
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interest rates are taken from the US Federal Reserve. While Duffie, et al (2007) restricted
to Moody’s “Industrial” category, we include all firms in the data base. After accounting for
missing values, there are 14,401 firms with 1,317,217 firm-month observations. Among them,
2,844 companies are financial (SIC code between 6000 and 6999) with 249,382 firm-month
observations.

We follow Duffie, et al (2007) to use the four covariates: trailing one-year S&P 500 index
return, three-month Treasury bill rate, firm’s trailing one-year return, and firm’s distance-to-
default in accordance with Merton’s model. Merton’s model is typically implemented with a
KMV assumption on the debt maturity and size. As described in Crosbie and Bohn (2002),
the KMV assumption sets the firm’s debt maturity to one year and size to the sum of the
short-term debt and 50% of the long-term debt. In the literature, this KMV assumption
is typically adopted only for non-financial firms because a financial company such as AIG
has significantly higher liabilities that are classified as neither short-term nor long-term debt.
Since we have included financial firms in our sample, we need to devise a way to handle other
liabilities. Specifically, we assign a firm specific fraction of other liabilities to be added to the
KMV liabilities. We then apply the maximum likelihood estimation method developed by
Duan (1994,2000) to estimate this unknown parameter along with the asset return’s unknown
mean and standard deviation. We allow such a liability adjustment factor for both financial
and non-financial firms.

In a recent article, Wang (2009) showed in the context of the Duffie, et al (2007) model
that using the cross-sectional average of firm’s distance-to-default can significantly improve
the model’s performance. When the average is low, individual firms are more likely to de-
fault. Since distance-to-default can be understood as an inverse of a firm’s standardized
leverage, Wang’s finding suggests that a higher economy-wide leverage leads to higher indi-
vidual defaults above and beyond the impact of their own leverages. Because our use of the
maximum likelihood estimation technique gives rise to a debt value adjustment for financial
firms, we can zero in on three market-wide averages of distance-to-default – financial, non-
financial and overall. We will show later that the average distance-to-default of the financial
firms plays a significant role in determining the arrival of common shock.

4.2 Empirical findings

The focus of our empirical analysis is on the default dynamics. We do not attempt to
prescribe a time series specification for the covariates, for which Duffie, et al (2007) have
already done. As shown earlier, the likelihood function is decomposable in a way that the
default intensity structure can be estimated by treating all covariates as exogenous variables.
Furthermore, the likelihood function can be decomposed in a way that the default dynamics
can be estimated without knowing the exact nature of exits that occur for reasons other
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than defaults. These two facts when taken together allow us to just focus on the default
dynamics.

All default intensity functions and individual default probability functions upon experi-
encing the common or group-specific shock are assumed to be exponential-linear in covariates.
In Duffie, et al (2007), all intensity functions are also assumed to be exponential-linear in
covariates.

The results for the standard intensity model using the same set of covariates as in Duffie,
et al (2007) are reported under DSW in Table 1. Our results confirms their finding that
these variables are all highly significant and their signs are also in agreement. When the
common shock is introduced, we let its intensity function to depend on the average distance-
to-default which is represented in three different ways – all firms, financial firms only, and
non-financial firms only. The individual default probability function corresponding to the
common shock occurs, i.e., p function, is specified as a function of individual distance-to-
default. The results reported in Table 1 under HIM show that the parameters define the
common shock are highly significant. The likelihood ratio test cannot be straightforwardly
applied, however, because there are two unidentified nuisance parameters in p function under
the null hypothesis of no common shock. The difference in the likelihood values between
HIM and DSW is so large that any adjustment to the critical value will still be significant.

The results for HIM show that the average distance-to-default of the financial firms works
just as well as the average computed using all firms, and its sign turns out as expected. But
the same cannot be said about the average obtained from the nonfinancial firms. This
suggests that a higher average leverage level in the financial sector is strongly indicative of
the overall economy’s stress level. It increases the chance of a common shock, which in turn
causes clustered defaults. The variable used in p function is the firm’s own distant-to-default.
This variable is highly significant, meaning that individual firm’s response to a common shock
depends on its own leverage. The higher the leverage (a lower distance-to-default), the more
likely the firm defaults upon experiencing a common shock.

The default signature plots discussed earlier are based on the parameters reported in
Table 1. For the hierarchical intensity model, the plot is based on the case using the financial
firms’ average distance-to-default. The structural difference between two modeling approach
is evident in Figures 2a and 2b, when periods are grouped according to the financial firms’
average distance-to-default.

In the study of rating/default prediction models, the cumulative accuracy plot (GAP),
also known as the power curve, is often employed. GAP is only concerned with rankings and
totally ignores the degrees of riskiness. It lines up the obligors ranging from the most risky
to least risky. Set a percentage and take a group of most risky obligors corresponding to this
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chosen percentage. Then, identify defaulted obligors among them, and compute the percent-
age represented by these defaulted ones in relation to the overall sample of defaulted obligors.
GAP is a plot that relates the percentage among defaulted obligors to the percentage among
the ranked obligors. GAP is a plot of the two percentages. For a large sample, the GAP
for a perfect risk ranking model will quickly rises to one and levels at one. A completely
uninformative risk ranking model will have the GAP plot being the line with a slope equal
to one. Figure 3 presents the GAP plots corresponding to the standard and hierarchical
intensity models. It is clear that the two models have highly close risk ranking performance
even though their predicted default distributions differ. Therefore, GAP is uninformative in
distinguishing these two models.

The two models are actually quite different if we compare their time-varying predicted
default distributions. The Kullback-Leibler (KL) distance is a popular way of measuring the
distance between two distribution functions at time t. We compute the KL distance using
the following formula:

KL =
∞∑
i=0

ln
pHIM

t (i)

pDSW
t (i)

pHIM
t (i). (24)

The KL distance is non-negative and its minimum value is zero which is attainable when
two distributions are identical. However, the KL distance is not a typical distance measure
because it is asymmetrical. We provide a time series plot of the KL distance in Figure 4.
To get a sense on how the magnitude of the KL distance translates, we note that the KL
distance of a normal distribution with mean 0 and standard deviation σ to the standard
normal distribution equals ln(σ) + 1−σ2

2σ2 . When σ = 0.75, the KL distance is 10%. But
for σ = 1.25, the KL distance becomes 4.3%. The plot indicates that the two predicted
default distributions are sometimes close, but at other times they can be quite different. The
difference peaks in the beginning of 2001. The KL distance is plotted alongside the average
financial firm’s distance-to-default. Their relationship appears to be nonlinear, reflecting the
fact that we have previously learned from Figures 2a and 2b; that is, two predicted default
distributions (averaged over periods with similar characteristics) differ more for either high
and low values of the average distance-to-default.

5 Conclusion

In this article, a hierarchical intensity model is proposed to deal with clustered defaults. This
model vis-a-vis the standard intensity model exhibits a feature that clustered defaults can
be generated through a common or group-specific shocks. In this exploratory study, we have
only implemented a version with a common shock and the covariate that drives the arrival
of a common shock is the average distance-to-default for all financial firms. Other variables
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may also be informative which in turn widens the difference between the hierarchical and
standard intensity models. Further exploration on potential explanatory variables may yield
good results.

This new model offers an interesting theoretical feature.The multiple-default probability
is proportional to the length of the measuring interval. In contrast, the standard intensity
model will have such probability proportional to the time length to the power of the number
of concurrent defaults. This feature should be of particular interest when one estimates the
model with one data frequency, say monthly, but want to consider joint defaults over a week.
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6 Appendix

6.1 Predicted default distributions

A. The standard intensity model

1. At time t−∆t, define the distribution for the cumulative number of defaults, after
considering up to and including the (i, j)-th obligor, by pij

t (k) for k = 0, 1, · · · .
Obviously, p11

t (0) = e−λ11(t−∆t)∆t, p11
t (1) = 1 − e−λ11(t−∆t)∆t, and p11

t (k) = 0 for
k = 2, · · · .

2. Perform convolution of pij
t (k) with the next obligor in the pool, i.e., the (i, j +1)-

th obligor. Its default distribution is q
i(j+1)
t (0) = e−λi(j+1)(t−∆t)∆t and q

i(j+1)
t (1) =

1 − e−λi(j+1)(t−∆t)∆t. Note that instead of tracking the cumulative number of de-
faults that have negligible probabilities, one can truncate the cumulative default
distribution at some k∗ beyond which the probability is, say, lower than 10−8.
The truncated default distribution needs to be normalized so as to to sum up to
1. The convolution calculation is illustrated in the following table:

k = 0 1 2 · · · k∗

pij
t (0) pij

t (1) pij
t (2) · · · pij

t (k∗)
q
i(j+1)
t (0) q

i(j+1)
t (1) 0 · · · 0

Row 1 q
i(j+1)
t (0)pij

t (0) q
i(j+1)
t (0)pij

t (1) q
i(j+1)
t (0)pij

t (2) · · · q
i(j+1)
t (0)pij

t (k∗)
Row 2 0 q

i(j+1)
t (1)pij

t (0) q
i(j+1)
t (1)pij

t (1) · · · q
i(j+1)
t (1)pij

t (k∗ − 1)

The new convoluted cumulative default distribution, i.e., p
i(j+1)
t (k), is the sum across

Rows 1 and 2 in the above table.

3. Repeat the above convolution calculation for all obligors remaining in the pool at time
t−∆t.

4. Denote the cumulative default distribution for the entire pool at time t by p̂t(k). Average
the adjusted default distributions over time to obtain P̂ (k) = 1

N

∑N
j=1 p̂j∆t(k) for k =

0, 1, 2, · · · where N is the number of periods of length ∆t. One can also restrict the
average to a subset of time periods defined by the values of some covariate.

B. The hierarchical intensity model

1. At time t − ∆t, assume that the common shock has occurred and perform the
convolution calculations similar to that described in the preceding subsection, but
use the default probability pij(t−∆t) in the hierarchical intensity model. Repeat
for all obligors remaining in the pool at time t−∆t, and denote the conditional
cumulative default distribution by at(0), at(1), at(2), · · · . Then, factoring in the
fact that this is a conditional distribution and zero default can also occur when
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there is no common shock, the cumulative default distribution due to the common
shock thus becomes

p̂ct(0) = e−λc(t−∆t)∆t + (1− e−λc(t−∆t)∆t)at(0)

p̂ct(k) = (1− e−λc(t−∆t)∆t)at(k) for k = 1, 2, · · · .

2. Assume that the group-specific shock has occurred and perform similar convo-
lution calculations using the default probability qij(t−∆t). Repeat for all obligors
remaining in the group at time t − ∆t, and denote the conditional cumulative
default distribution by bit(0), bit(1), bit(2), · · · . Then, factoring in the fact that
this is a conditional distribution and zero default can also occur when there is
no group-specific shock, the default distribution due to the group-specific shock
becomes

p̂it(0) = e−λi(t−∆t)∆t + (1− e−λi(t−∆t)∆t)bit(0)

p̂it(k) = (1− e−λi(t−∆t)∆t)bit(k) for k = 1, 2, · · · .

3. Perform the convolution calculation of p̂ct(k) with p̂1t(k) to yield the default dis-
tribution for the sum of the common and group 1-specific shocks. Note that p̂1t(k)
may take non-zero value for k ≥ 2, this convolution calculation needs more than
two rows. Suppose p̂ct(k) with p̂1t(k) are truncated at k∗ and k∗∗, respectively,
beyond which the probabilities are less than 10−8. We need to construct a table
similar to that in the preceding subsection, but with k∗∗ rows. After group 1, con-
tinue the convolution to group 2 with the default distribution of p̂2t(k). Repeat
convolutions until all groups are exhausted.

4. Perform convolution of the default distribution for the cumulative sum of common
and group-specific shocks with the individual default distributions. This can
be done one obligor at a time until all are exhausted. The individual default
probabilities are in the form of 1− e−λij(t−∆t)∆t which only needs two rows in the
convolution calculation. Denote the final default distribution, due to three types
of shocks, by p̂t(0), p̂t(1), p̂t(2), · · · .

5. Average the adjusted default distributions over time to obtain P̂ (k) = 1
N

∑N
j=1 p̂j∆t(k)

for k = 0, 1, 2, · · · where N is the number of periods of length ∆t. Again, one
can restrict the average to a subset of time periods defined by the values of some
covariate.

6.2 Proof of Proposition 1

First, consider

E0

(
1{τij≤t∧φij}1{τkl≤t∧φkl}

)

= 1 + E0

(
1{τij>t∧φij}1{τkl>t∧φkl}

)− E0

(
1{τij>t∧φij}

)− E0

(
1{τkl>t∧φkl}

)
(25)
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The second term in the above expression can be further developed into

E0

(
1{τij>t∧φij}1{τkl>t∧φkl}

)

= E0

(
1{φij≤φkl}1{τij>t∧φij}1{τkl>t∧φkl}

)
+ E0

(
1{φij>φkl}1{τij>t∧φij}1{τkl>t∧φkl}

)

= E0

[
1{φij≤φkl}E0

(
1{τij>t∧φij}1{τkl>t∧φkl}

∣∣ φij, φkl

)]

+E0

[
1{φij>φkl}E0

(
1{τij>t∧φij}1{τkl>t∧φkl}

∣∣φij, φkl

)]

= E0

[
1{φij≤φkl}E0

(
e
− ∫ t∧φij

0 αs(ij,kl)ds−∫ t∧φkl
t∧φij

(pklλc+qklλk+λkl)ds
)]

+E0

[
1{φij>φkl}E0

(
e
− ∫ t∧φkl

0 αs(ij,kl)ds−∫ t∧φij
t∧φkl

(pijλc+qijλi+λij)ds

)]

≥ E0

[
1{φij≤φkl}E0

(
e
− ∫ t∧φij

0 α∗s(ij,kl)ds−∫ t∧φkl
t∧φij

(pklλc+qklλk+λkl)ds
)]

+E0

[
1{φij>φkl}E0

(
e
− ∫ t∧φkl

0 α∗s(ij,kl)ds−∫ t∧φij
t∧φkl

(pijλc+qijλi+λij)ds

)]

= E0

(
1{τ∗ij>t∧φij}1{τ∗kl>t∧φkl}

)
(26)

The inequality is due to the fact that α∗s(ij, kl) ≥ αs(ij, kl).

Therefore,

E0

(
1{τij>t∧φij}1{τkl>t∧φkl}

) ≥ E0

(
1{τ∗ij>t∧φij}1{τ∗kl>t∧φkl}

)

because all terms involving only τij (or τkl) in the right-hand side of equation (25) can be
substituted with τ ∗ij (or τ ∗kl), a result due to our construction where an obligor individually
behaves the same way under two modelling approaches.

Recall the definition for default correlation:

Corr0

(
1{τij≤t∧φij}, 1{τkl≤t∧φkl}

)

=
E0

(
1{τij≤t∧φij}1{τkl≤t∧φkl}

)− E0

(
1{τij≤t∧φij}

)
E0

(
1{τkl≤t∧φkl}

)
√[

E0

(
1{τij≤t∧φij}

)− (
E0

(
1{τij≤t∧φij}

))2
] [

E0

(
1{τkl≤t∧φkl}

)− (
E0

(
1{τkl≤t∧φkl}

))2
]

Apart from E0

(
1{τij≤t∧φij}1{τkl≤t∧φkl}

)
, all other terms are the same when τij (or τkl) is

replaced with τ ∗ij (or τ ∗kl). Thus, the directional relation follows.
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6.3 Formulas for the components in the censored double default
probability and default correlation under the constant param-
eter assumption

Impose constant parameters and compute the components needed in equation (25). Note
that E0

(
1{τij≤t∧φij}

)
= 1− E0

(
1{τij>t∧φij}

)
. First,

E0

(
1{τij>t∧φij}

)

= E0

(
e−(pijλc+qijλi+λij)(t∧φij)

)

=
δij

pijλc + qijλi + λij + δij

+
pijλc + qijλi + λij

pijλc + qijλi + λij + δij

e−(pijλc+qijλi+λij+δij)t

Next and by a similar argument,

E0

(
1{τkl>t∧φkl}

)

=
δkl

pklλc + qklλk + λkl + δkl

+
pklλc + qklλk + λkl

pklλc + qklλk + λkl + δkl

e−(pklλc+qklλk+λkl+δkl)t

Thus, the remaining term to be computed is E0

(
1{τij>t∧φij}1{τkl>t∧φkl}

)
, which in turn

comprises the two terms as shown in equation (26).

E0

[
1{φij≤φkl}E0

(
e
− ∫ t∧φij

0 α(ij,kl)ds−∫ t∧φkl
t∧φij

(pklλc+qklλk+λkl)ds
)]

= E0

(
1{φij≤φkl}e

−α(ij,kl)(t∧φij)−(pklλc+qklλk+λkl)(t∧φkl−t∧φij)
)

=

∫ t

0

∫ s2

0

δijδkle
−[(α(ij,kl)+δij−pklλc−qklλk−λkl)s1+(δkl+pklλc+qklλk+λkl)s2]ds1ds2

+

∫ ∞

t

∫ t

0

δijδkle
−[(pklλc+qklλk+λkl)t+(α(ij,kl)+δij−pklλc−qklλk−λkl)s1+δkls2]ds1ds2

+

∫ ∞

t

∫ s2

t

δijδkle
−[α(ij,kl)t+δijs1+δkls2]ds1ds2

=
δijδkl

(α(ij, kl) + δij + δkl)(pklλc + qklλk + λkl + δkl)

+
δij(pklλc + qklλk + λkl)

(α(ij, kl) + δij − pklλc − qklλk − λkl)(pklλc + qklλk + λkl + δkl)
e−(pklλc+qklλk+λkl+δkl)t

+
δij [α(ij, kl)(α(ij, kl) + δij)− (α(ij, kl) + δij + δkl)(pklλc + qklλk + λkl)]

(δij + δkl)(α(ij, kl) + δij + δkl)(α(ij, kl) + δij − pklλc − qklλk − λkl)
e−(α(ij,kl)+δij+δkl)t
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By a similar argument, we have

E0

[
1{φij>φkl}E0

(
e
− ∫ t∧φkl

0 α(ij,kl)ds−∫ t∧φij
t∧φkl

(pijλc+qijλi+λij)ds

)]

=
δijδkl

(α(ij, kl) + δij + δkl)(pijλc + qijλi + λij + δij)

+
δkl(pijλc + qijλi + λij)

(α(ij, kl) + δkl − pijλc − qijλi − λij)(pijλc + qijλi + λij + δij)
e−(pijλc+qijλi+λij+δij)t

+
δkl [α(ij, kl)(α(ij, kl) + δkl)− (α(ij, kl) + δij + δkl)(pijλc + qijλi + λij)]

(δij + δkl)(α(ij, kl) + δij + δkl)(α(ij, kl) + δkl − pijλc − qijλi − λij)
e−(α(ij,kl)+δij+δkl)t

Similarly, we can compute E0

(
1{τ∗ij≤t∧φij}1{τ∗kl≤t∧φkl}

)
by noting that the only term will

be affected by moving from τij and τkl to τ ∗ij and τ ∗kl is α(ij, kl). We can simply replace it
with α∗(ij, kl). Note that the default correlation only requires the terms that have been
derived.
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Table 1 
The maximum likelihood estimation results for the Duffie, et al (2007) model (DSW) and the 
hierarchical intensity model (HIM).  HIM is implemented with using three different measures 
of average distance-to-default. The sample covers the period of January 1991 to December 
2008, and consists of 14,401 firms with 1,317,217 firm-month observations. There are 2,844 
financial firms with 249,382 firm-month observations. The total number of 
defaults/bankruptcies is 872. 
 

 DSW HIM 

Common 
Shock 

Intensity 
Function 

Intercept  17.7945** 
(8.6799) 

5.4012*** 
(1.6272) 

16.6699** 
(8.0790) 

Average DTD 
all 

 -3.8191* 
(2.0597) 

  

Average DTD 
financial 

  -0.6188** 
(0.2766) 

 

Average DTD 
nonfinancial 

   -3.9382* 
(2.1505) 

p Function 
Intercept  -6.3245*** 

(0.2049) 
-7.6097*** 

(0.1988) 
-6.2811*** 

(0.2006) 

DTD  0.949*** 
(0.2371) 

-0.4466*** 
(0.0473) 

0.9382*** 
(0.2352) 

Firm-specific 
Shock 

Intensity 
Function 

Intercept    -4.9942*** 
(0.0794) 

-0.0381 
(0.0236) 

-6.3434*** 
(0.2072) 

-0.0393* 
(0.0235) 

Trailing 1-Year 
SP500 Return 

0.7727*** 
(0.2038) 

-0.8087*** 
(0.0390) 

0.9324*** 
(0.2380) 

-0.8099*** 
(0.0386) 

3-Month 
Treasury Rate 

   -0.0505** 
(0.0199) 

-4.542*** 
(0.2432) 

-0.0375 
(0.0235) 

-4.4967*** 
(0.2389) 

DTD    -0.7815*** 
(0.0254) 

-7.9697*** 
(0.1676) 

-0.8074*** 
(0.0388) 

-8.0156*** 
(0.1780) 

Trailing 1-Year 
Return 

   -3.0017*** 
(0.0824) 

-0.4389*** 
(0.0452) 

-4.5659*** 
(0.2515) 

-0.4318*** 
(0.0461) 

Log-likelihood  -5359.9 -5239.9 -5240.0 -5242.1 
 
Note: * denotes  significance at 10%, ** denotes significance at 5%, and *** denotes significance at 
1%. 
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Figure 1 
The observed default frequency over the entire sample period (January 1991 to December 
2008) is used to check the predicted frequencies based on the Duffie, et al (2007) model 
(Firm specific) and the hierarchical intensity model implemented with the common and firm-
specific shocks. 
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Figure 2a 
The graph corresponds to the bottom third of the sample after dividing the whole sample 
(January 1991 to December 2008) into three groups using the average distance-to-default for 
the financial firms. This is used to check the predicted frequencies based on the Duffie, et al 
(2007) model (Firm specific) and the hierarchical intensity model implemented with the 
common and firm-specific shocks and the average distance-to-default for financial firms as 
reported in Table 1. 
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Figure 2b 
The graph corresponds to the top third of the sample after dividing the whole sample (January 
1991 to December 2008) into three groups using the average distance-to-default for the 
financial firms. This is used to check the predicted frequencies based on the Duffie, et al 
(2007) model (Firm specific) and the hierarchical intensity model implemented with the 
common and firm-specific shocks and the average distance-to-default for financial firms as 
reported in Table 1. 
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Figure 3 
The cumulative accuracy plots (power curves) depict the accuracy of default predictions 
based solely on rank orders. The entire sample period (January 1991 to December 2008) is 
used. The two plots correspond to the Duffie, et al (2007) model and the hierarchical 
intensity model implemented with the common and firm-specific shocks and the average 
distance-to-default for financial firms as reported in Table 1.  
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Figure 4 
The Kullback-Leibler distance and the average distance-to-default for the financial firms are 
plotted over the sample period (January 1991 to December 2008). The Kullback-Leibler 
distance is between the predicted frequency distributions based on two models: the Duffie, et 
al (2007) model and the hierarchical intensity model implemented with the common and 
firm-specific shocks and the average distance-to-default for financial firms as reported in 
Table 1. It is computed using the hierarchical intensity model as the base distribution. 
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