Representation of the penalty

function

Prof.em.dr. Freddy DELBAEN
Department of Mathematics
ETH Zurich

Singapore - November 18, 2009

Notation (one period model)
$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
Only bounded random variables L^{∞}
$u: L^{\infty} \rightarrow \mathbb{R}$ satisfies

1. $u(0)=0, \xi \geq 0$ implies $u(\xi) \geq 0$
2. u is concave
3. $u(\xi+a)=u(\xi)+a$ (monetary)
4. The set $\mathcal{A}=\{\xi \mid u(\xi) \geq 0\}$ is weak* closed: if $\xi_{n} \rightarrow \xi$ in probability and $\sup _{n}\left\|\xi_{n}\right\|<\infty$, then $u(\xi) \geq \lim \sup u\left(\xi_{n}\right)$.

Coherent means $u(\lambda \xi)=\lambda u(\xi)$ for $\lambda \geq 0$

The structure is well known (Föllmer-Schied)
\mathbf{P} represents the set of all probability measures $\mathbb{Q} \ll \mathbb{P}$

Theorem 1 There is a convex, Isc function $c: \mathbf{P} \rightarrow[0,+\infty]$ such that

1. $\inf _{\mathbb{Q} \in \mathbf{P}} c(\mathbb{Q})=0$
2. $u(\xi)=\inf _{\mathbb{Q} \in \mathbf{P}}\left(\mathbb{E}_{\mathbb{Q}}[\xi]+c(\mathbb{Q})\right)$

If u is coherent c is the "indicator" of a convex closed set $\mathcal{S} \subset L^{1}$.

It is convenient to add the hypothesis: there is $\mathbb{Q} \sim \mathbb{P}$ with $c(\mathbb{Q})=0$.

What about multiperiod functions?
We need a filtration $\left(\mathcal{F}_{t}\right)_{t}$ and stopping times
$u_{\sigma}(\xi) \in L^{\infty}\left(\Omega, \mathcal{F}_{\sigma}, \mathbb{P}\right)$
$u_{\sigma}(0)=0$ and $u_{\sigma}(\xi) \geq 0$ for $\xi \geq 0$
$0 \leq \lambda \leq 1, \lambda \in L^{\infty}\left(\mathcal{F}_{\sigma}\right), \xi_{1}, \xi_{2}$ then
$u_{\sigma}\left(\lambda \xi_{1}+(1-\lambda) \xi_{2}\right) \geq \lambda u_{\sigma}\left(\xi_{1}\right)+(1-\lambda) u_{\sigma}\left(\xi_{2}\right)$
$\eta \in L^{\infty}\left(\mathcal{F}_{\sigma}\right)$ then $u_{\sigma}(\xi+\eta)=u_{\sigma}(\xi)+\eta$
$\xi_{n} \downarrow \xi$ then $u_{\sigma}\left(\xi_{n}\right) \downarrow u_{\sigma}(\xi)$

This gives a family of penalty functions

Detlefsen-Scandolo, Frittelli and Rosazza-Gianin $c_{\sigma}(\mathbb{Q}) \in L^{0}\left(\mathcal{F}_{\sigma} ; \overline{\mathbb{R}_{+}}\right)$.

This time we need to incorporate the time interval in the definition of c.

So we talk about
$c_{[\sigma, \tau]}(\mathbb{Q})=\operatorname{ess} . \sup \left\{\begin{array}{l|l}\mathbb{E}_{\mathbb{Q}}\left[-\xi \mid \mathcal{F}_{\sigma}\right] & \begin{array}{l}\xi \in L^{\infty}\left(\mathcal{F}_{\tau}\right) \\ u_{\sigma}(\xi) \geq 0\end{array}\end{array}\right\}$
and for $\xi \in L^{\infty}\left(\mathcal{F}_{\tau}\right)$ we have

$$
\begin{gathered}
u_{\sigma}(\xi)=\operatorname{ess.inf}_{\mathbb{Q} \sim \mathbb{P}}\left(\mathbb{E}_{\mathbb{Q}}\left[\xi \mid \mathcal{F}_{\sigma}\right]+c_{[\sigma, \tau]}(\mathbb{Q})\right) \\
\mathcal{A}_{\sigma, \tau}=\left\{\xi \in L^{\infty} \mathcal{F}_{\tau} \mid u_{\sigma}(\xi) \geq 0\right\}
\end{gathered}
$$

Time consistency

Koopmans (1960 - 1961)
For $\xi, \eta \in L^{\infty}\left(\mathcal{F}_{T}\right)$, two stopping times $\sigma \leq \tau$, then
$u_{\tau}(\xi) \geq u_{\tau}(\eta)$ implies $u_{\sigma}(\xi) \geq u_{\sigma}(\eta)$

This implies conditions on the family c_{σ}. For $\sigma \leq \tau$ we need

$$
\begin{aligned}
\mathcal{A}_{\sigma, T} & =\mathcal{A}_{\sigma, \tau}+\mathcal{A}_{\tau, T} \\
c_{[\sigma, T]}(\mathbb{Q}) & =c_{[\sigma, \tau]}(\mathbb{Q})+\mathbb{E}_{\mathbb{Q}}\left[c_{[\tau, T]}(\mathbb{Q}) \mid \mathcal{F}_{\sigma}\right]
\end{aligned}
$$

cocycle property of Bion-Nadal and Penner.

We refer to the dynamic programming principle: $u_{0}(\xi)=u_{0}\left(u_{\sigma}(\xi)\right)$

Regularity of trajectories

u is relevant if $\xi \leq 0$ and $\mathbb{P}[\xi<0]>0$ gives:
$u_{0}(\xi)<0$.
(see also Cheridito's susceptibility)

If u is relevant there are càdlàg versions of
$c_{t, T}(\mathbb{Q})\left(c_{t, T}(\mathbb{Q})\right.$ is a \mathbb{Q}-potential of class D$)$
and of
$u_{t}(\xi)$.

Example (Brownian filtration)

$\mathbb{Q} \sim \mathbb{P}$ then we get $\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=\mathcal{E}(q \cdot W)_{t}$
$\mathcal{E}(q \cdot W)_{t}=\exp \left(\int_{0}^{t} q_{u} d W_{u}-\frac{1}{2} \int_{0}^{t} q_{u}^{2} d u\right)$
$f: \mathbb{R} \rightarrow[0,+\infty]$, convex, Isc, $f(0)=0$

Fenchel-Legendre transform is g

$$
\begin{aligned}
& c_{[t, T]}(\mathbb{Q})=\mathbb{E}_{\mathbb{Q}}\left[\int_{t}^{T} f\left(q_{u}\right) d u \mid \mathcal{F}_{t}\right] \\
& u_{t}(\xi)=\operatorname{ess} . \inf _{\mathbb{Q} \sim \mathbb{P}} \mathbb{E}_{\mathbb{Q}}\left[\xi+\int_{t}^{T} f\left(q_{u}\right) d u \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

For $f(q)=\frac{1}{2} q^{2}$ we have $g(x)=\frac{1}{2} x^{2}$
$c_{0}(\mathbb{Q})=\mathbb{E}\left[\frac{d \mathbb{Q}}{d \mathbb{P}} \log \left(\frac{d \mathbb{Q}}{d \mathbb{P}}\right)\right]$, the so-called entropy.

$$
u_{t}(\xi)=-\log \mathbb{E}\left[\exp (-\xi) \mid \mathcal{F}_{t}\right]
$$

$\exp \left(-u_{t}(\xi)\right)$ is a martingale.

It is the only law determined time consistent utility function (Kupper-Schachermayer, valid in a much more general context).

Remarks

In case g is not sub-quadratic, the BSDE does not always have a bounded solution.

In case there is a bounded solution, there are infinitely many and they all satisfy $Y . \leq u .(\xi)$. $u .(\xi)$ is not necessarily a solution.

In case $\xi=\phi\left(W_{T}\right) u .(\xi)$ is related to the quasi-linear equation (well studied in analysis, VHJ) (Ben-Artzi, Laurençot, Souplet, ...)

$$
u(T, x)=\phi(x) \text { and }
$$

$$
\frac{1}{2} \partial_{x, x} u+\partial_{t} u=g\left(-\partial_{x} u\right)
$$

$$
\frac{1}{2} \Delta u+\partial_{t} u=g(-\nabla u)
$$

The general structure is known:

Theorem 2 (FD,Peng,Rosazza-Gianin) Suppose $c_{0}(\mathbb{P})=0$. There is a function

$$
\begin{aligned}
& f: \mathbb{R}^{d} \times[0, T] \times \Omega \rightarrow \overline{\mathbb{R}_{+}} ; f \in \mathcal{R}^{d} \otimes \mathcal{P} \\
& \text { for all }(t, \omega), f \text { is convex,Isc in } q \in \mathbb{R}^{d} \\
& f(0, ., .)=0 \\
& \text { for all } q \in \mathbb{R}^{d}, f \text { is predictable in }(t, \omega) \\
& \quad c_{0}(\mathbb{Q})=\mathbb{E}_{\mathbb{Q}}\left[\int_{0}^{T} f\left(q_{t}(.), t, .\right) d t\right]
\end{aligned}
$$

There are different (and long) proofs. One proof uses truncation and the result of Coquet, Hu, Memin, Peng, for "dominated" utility functions. The other proof uses a measure theoretic characterisation of the penalty function and gives as a corollary the result of CHMP

Measure theoretic characterisation

Theorem 3 Let $\mathbb{Q} \sim \mathbb{P}$ with $c_{0}(\mathbb{Q})<\infty$. Let $\alpha(\mathbb{Q})$ be the \mathbb{Q}-potential of the \mathbb{Q}-supermartingale $c(\mathbb{Q})$. For each $\xi \in L^{\infty}$ let $d u_{t}(\xi)=d A_{t}^{\xi}-$ $Z_{t}^{\xi} d W_{t}$ be the Doob-Meyer decomposition (under \mathbb{P}) of the utility process $u(\xi)$. The measure $d \alpha_{t}(\mathbb{Q})$ is the smallest measure that is bigger than the family $\left(\xi \in L^{\infty}\right)$

$$
q_{t} Z_{t}^{\xi} d t-d A_{t}^{\xi} .
$$

Consequently the potential α has a predictable density with respect to Lebesgue measure.

$$
d \alpha_{t}(\mathbb{Q})=f_{t}(\mathbb{Q}) d t
$$

Using more convexity and localisation, one then shows that f has the good form.
g_{t} is the Fenchel Legendre transform of f_{t}.

In case there is $\mathbb{Q} \sim \mathbb{P}$ (not just $\mathbb{Q} \ll \mathbb{P}$) with

$$
u_{0}(\xi)=\min _{\mathbb{Q} \sim \mathbb{P}} \mathbb{E}\left[\xi+\int_{0}^{T} f_{u}\left(q_{u}\right) d u\right]
$$

we can say more:

$$
u_{t}(\xi)=u_{0}(\xi)+\int_{0}^{t} g_{u}\left(Z_{u}\right) d u-\int_{0}^{t} Z_{u} d W_{u}
$$

Hence $u_{t}(\xi)$ is a bounded solution of the BSDE:

$$
d Y_{t}=g_{t}\left(Z_{t}\right) d t-Z_{t} d W_{t}, \quad Y_{T}=\xi
$$

In some cases $u .(\xi)$ is the unique bounded solution of the BSDE.

In general

$$
d u_{t}(\xi)=g_{t}\left(Z_{t}\right) d t+d C_{t}-Z_{t} d W_{t}
$$

where C is non-decreasing càdlàg .

Related to the Kramkov optional decomposition theorem in finance.
(Take $u_{t}(\xi)=$ ask price of ξ at time t)

There are examples where $d C \ll d t$
$u_{t}(\xi)=\min (t, \tau)$
with τ a "well chosen" stopping time.

In case

$$
0 \leq g_{t}(z, \omega) \leq K(\omega)\left(1+|z|^{2}\right)
$$

convex in $z, g(0, t, \omega)=0$ we can prove

Theorem 4 For each $\xi \in L^{\infty}$, u. (ξ) is a bounded solution of

$$
d Y_{t}=g_{t}\left(Z_{t}\right) d t-Z_{t} d W_{t} ; \quad Y_{T}=\xi
$$

However, uniqueness is not guaranteed. Even when the model is Markovian.

Proof uses Bishop-Phelps theorem, preceding result on minimizer + (probably) well known result on submartingales.

Theorem 5 Suppose X^{n} uniformly bounded (in L^{∞}) sequence of (continuous) submartingales. Suppose $X^{n}=A^{n}+M^{n}$ is the DoobMeyer decomposition. Suppose

$$
\left\|\sup _{t}\left|X_{t}^{n}-X_{t}\right|\right\|_{\infty} \rightarrow 0 .
$$

Then $X=A+M$ where $M^{n} \rightarrow M$ in BMO.

Remark 1 If ξ_{n} is uniformly bounded and tends to 0 a.s. this does not imply that $\xi_{n} \rightarrow 0$ in BMO. So we (almost) need $\|.\|_{\infty}$ convergence.

Condensed Counter-example: The mapping $H^{1} \rightarrow L^{1}$ is not weakly compact. Hence $L^{\infty} \rightarrow B M O$ is not weakly compact.
$d L_{t}=-L_{t}^{2} d W_{t}, L_{0}=1 ; L=\frac{1}{R} ; B E S^{3}$
$\xi=\frac{1}{1+L_{T}}=\frac{R_{T}}{1+R_{T}}$
$g_{t}(z)=\frac{L_{t}^{2}}{1+L_{t}}|z|=\frac{1}{R_{t}\left(R_{t}+1\right)}|z|$

There are at least two solutions:

1. $\frac{1}{1+L_{t}}$ where $\frac{1}{1+L_{0}}=1 / 2$ and
2. $u_{t}(\xi)$

Both are of the form $\psi\left(t, L_{t}\right)=\phi\left(t, R_{t}\right)$

They are different since

$$
\lim _{T \rightarrow \infty} u_{0}(\xi)=1
$$

(non-trivial)

What is the PDE?

Itô's formula gives that $\phi(t, x) ; x>0$ satisfies (at least in viscosity sense)

$$
\left|\frac{1}{x(1+x)} \partial_{x} \phi\right|=\partial_{t} \phi+\frac{1}{2} \partial_{x, x} \phi+\frac{1}{x} \partial_{x} \phi
$$

and for

$$
\begin{gathered}
\phi(T, x)=\frac{x}{1+x} \\
\frac{1}{1+x} \partial_{x} \phi+\partial_{t} \phi+\frac{1}{2} \partial_{x, x} \phi=0
\end{gathered}
$$

For a Markov process

$$
\begin{aligned}
d X_{t} & =\sigma\left(X_{t}\right) d W_{t}+b\left(X_{t}\right) d t \\
X_{0} & =x_{0}
\end{aligned}
$$

and $\xi \in L^{\infty}$ we treat the equation

$$
\begin{aligned}
Y_{T} & =\xi ; \quad Y \text { bounded } \\
d Y_{t} & =g\left(X_{t}, Z_{t}\right) d t-Z_{t} d W_{t}
\end{aligned}
$$

and if $\xi=\phi\left(T, X_{T}\right)$:
$\partial_{t} \phi+\frac{1}{2} \sigma^{2}(x) \partial_{x, x} \phi+b(x) \partial_{x} \phi=g\left(x,-\sigma(x) \partial_{x} \phi\right)$
with ϕ bounded, terminal condition $\phi(T, x)$

In more dimensions, there are subtleties if σ can be degenerate.

- El Karoui-Quenez: non-linear pricing
- El Karoui-Quenez-Peng paper in Math Fin
- Peng's book on BSDE, g-expectation
- Kobylanski quadratic case Ann Proba
- Barrieu-El Karoui, Ravanelli
- Horst, Cheridito on general equilibrium
- Cheridito and Stadje on (non-)approximation

