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HJM Philosophy

Short Interest Rate Model:
drt = κ(r − rt)dt + σdWt (Vasicek)
Explicit formulas for the forward (yield) curves
Too ”rigid”: can’t always find the 3 parameters to match the
observed forward curve τ ↪→ f (τ)

Replace r by t ↪→ r(t) given by

r(τ = f ′(τ) + κf (τ0− σ2

2κ
(1− e−κτ )(3e−κτ − 1))

PERFECT match, but THIS IS NOT A MODEL
Tomorrow we have to DO IT AGAIN

drt = κ(r(t)− rt)dt + σdWt IS NOT A DYNAMIC MODEL
Only used ONE DAY to reproduce observed prices!
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Problem Formulation for Equity Markets

Set Up:
underlying price (St)t≥0
set of liguidly traded derivatives, e.g. European Call options for all
strikes K and maturities T“

{Ct(T ,K )}T ,K>0

”
t≥0

Goal: to describe a large class of time-consistent market
models, i.e. stochastic models (say, SDE’s) for S and
{C(T ,K )}T ,K>0, such that

each model is arbitrage-free

prices observed on the market serve (only!) as initial condition
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Motivation: Static Models

Call Options have become liquid⇒ need for financial models
consistent with the observed option prices.

Stochastic volatility models (e.g. Hull-White, Heston, etc.) do not
reproduce market prices for all strikes and maturities (fit the
implied volatility surface).

Solution: local volatility models.
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René Carmona Market Models for European Options



Dupire’s Formula

Assume r = 0 &
dSt = σtdWt .

B.Dupire (1994) showed that

dS̃t = S̃t ã(t , S̃t )dWt ,

with

ã2(T ,K ) :=
2 ∂
∂T C(T ,K )

K 2 ∂2

∂K 2 C(T ,K )

gives the same call prices C(T ,K ) !

E{(S̃T − K )+} = C(T ,K )
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Time - consistency and Calibration

Main issue: frequent recalibration:

Stochastic volatility models have different ”optimal” parameters
on each day.

Local volatility surface changes as well...
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Existing Results

E.Derman, I.Kani (1997): idea of dynamic local volatility for
continuum of options

P.Schönbucher, M.Schweizer, J.Wissel (1998-2008): consider
fixed maturity and all strikes, fixed strike and all maturities, finitely
many strikes and maturities (using mixture of Implied and local
volatility).

V. Durrleman, R. Cont, M. Tehranchi, P. Fritz, R. Lee, P. Protter,
J.Jacod (2002-2009): study dynamics of Implied Volatility or
Option Prices directly.
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Change of Variables

We define local volatility ã2(T ,K ) by Dupire’s formula (now it
depends upon t and ω),

ã2
t (T ,K ) :=

2 ∂
∂T Ct (T ,K )

K 2 ∂2

∂K 2 Ct (T ,K )

change variables

at (τ, x) = ãt (t + τ,Stex ),

and work with

ht (τ, x) := log a2
t (τ, x)
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Pricing PDE

ˆ
Dx := 1

2 (∂2
x2 − ∂x)

˜
Normalized call prices

c(τ, x) =
1
St

Ct (t + τ,Stex )

satisfy Dupire’s forward PDE

{
∂τc(τ, x) = eh(τ,x)Dxc(τ, x), τ > 0, x ∈ R
c(0, x) = (1− ex )+.

Introduce operator F : h 7→ c, for h ∈ B ⊂ C1,5 ([0, τ̄ ]× R).

local vol surface ↪→ call price surface
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DLV Model

Risk-neutral drift of underlying and interest rate are zero.
Pricing is done with expectation under some pricing measure Q
(doesn’t have to be unique).

B =
(
B1, . . . ,Bm

)
m-dimensional Brownian motion (m could be

∞).

Under Q, price process S is a martingale, and we have the
following dynamics dht = αtdt +

∑m
n=1 β

n
t dBn

t

dSt = StσtdB1
t ,

for some regular enough B-valued processes α, {βn}m
n=1, and

scalar random process σ.
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Questions to answer

1 When is such a model consistent? Equivalently, find necessary
and sufficient conditions for all call prices to be martingales.

2 What are the free input parameters of consistent models?
(among σ, α, β) and how to specify them?
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”Dual” Fundamental Solution

Denote by p(h) the fundamental solution of the forward PDE

∂τw(τ, x) = eh(τ,x)Dxw(τ, x)

Introduce q(h) as fundamental solution of ”dual” backward PDE

∂τw(τ, x) = −eh(τ,x)Dxw(τ, x)
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Operators I, J, K

I[Γ2, f , Γ1](τ2, x2; τ1, x1)

:=

∫ τ2

τ1

∫
R

Γ2(τ2, x2; u, y)f (u, y)Dy Γ1(u, y ; τ1, x1)dydu,

J[Γ2, f , Γ1](τ2, x2; τ1, x1)

:=

∫ τ2

τ1

∫
R

Dy Γ2(τ2, x2; u, y)f (u, y)Γ1(u, y ; τ1, x1)dydu,

K [Γ2, f , Γ1](τ2, x2; τ1, x1)

:=

∫ τ2

τ1

∫
R

Γ2(τ2, x2; u, y)ey f (u, y)Γ1(u, y ; τ1, x1)dydu
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Frechét - Differentiability

Operator F is twice continuously Frechét-differentiable. And, for any
h,h′,h′′ ∈ B, we have

F′(h)[h′] =
1
2

K [p(h),h′eh,q(h)],

and

F′′(h)[h′,h′′] =
1
2

(
K
[
I
[
p(h),h′′eh,p(h)

]
,h′eh,q(h)

]
+K

[
p(h),h′eh, J

[
q(h),h′′eh,q(h)

]])
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Consistency Conditions

h
h̃t(T , x) := ht(T − t , x − log St), L(h) := log q(h)

i
1 Drift restriction:

α̃t = σt β̃
1
t

(
∂xL(h̃t )− L′(h̃t )[∂x h̃t ]

)
− 1

2

∞∑
n=1

β̃n
t

2 −
∞∑

n=1

β̃n
t L′(h̃t )[β̃n

t ]

2 Spot volatility specification:

h̃t (t ,St ) = 2 logσt
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Progress so far

Consistency conditions answer the first question. Let us consider the
second one: what are the free parameters and how to choose them?

Looks like β is the free parameter: determines both α and σ.

However, L(h) has singularity at τ = 0... Some work is needed to
make sure that ”drift restriction” produces αt ∈ B.

René Carmona Market Models for European Options



Progress so far

Consistency conditions answer the first question. Let us consider the
second one: what are the free parameters and how to choose them?

Looks like β is the free parameter: determines both α and σ.

However, L(h) has singularity at τ = 0... Some work is needed to
make sure that ”drift restriction” produces αt ∈ B.
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Short-term L

The following is a modification of results by S.Molchanov,
S.Varadhan, I.Chavel and others:

L(h)(τ, x) = −1
2

log τ −

(∫ x
0 e−

1
2 h(0,y)dy

)2

2τ
+ L̂(h)(τ, x),

where L̂(h)(., .) is a smooth function.

Notice that L̂(h)(., .) satisfies an initial-value problem without
singularities!
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Short-term β

Denote δh(x) :=
∫ x

0 e−
1
2 h(0,y)dy .

In order for α(., .) to be smooth at τ = 0, we need

1
2

(∫ x

0

[
β1(0, y)− σ∂y h(0, y)

]
dδh(y) + 2

)2

+
m∑

n=2

(∫ x

0
βn(0, y)dδh(y)

)2

= 2
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Example of feasible β

Consider smooth f : R 7→ R+ with

0 <
∫ ∞

0
yf (y)dy = −

∫ 0

−∞
yf (y)dy ≤ 1

Then the following specification, for example, takes care of
singularities in ”drift restriction”

β1(h; 0, x) = σ∂xh(0, x)− 4xf (x)e
1
2 h(0,x)

β2(h; 0, x) = e
1
2 h(0,x)

√
2xf (x)

(
1− 2

∫ x
0 yf (y)dy

)
√∫ x

0 yf (y)dy(1−
∫ x

0 yf (y)dy)

m = 2
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DLV: summary of results

Consistent dynamics of ”Log-Local-Vol” ( 1
2 ht ) take form of

equation
dht = α(ht , βt )dt + βtdBt ,

where β satisfies ”short-term condition” and α(h, β) is given by
”drift restriction”.

Can, for example, choose βt := β(ht ), satisfying ”short-term
condition” and implement explicit Euler scheme for resulting SDE

dht = α(ht )dt + β(ht )dBt .

The question of existence of a solution to the above SDE is,
however, still open.
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a2(τ, x)

Local Volatility in Heston (left) and Hull-White (right) models.
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Extensions of Local Volatility

When can we use local vol as a (static) code for Option Prices?

I. Gyongyi: it is possible if underlying follows regular enough Ito
process.

Natural relaxation of this assumption on underlying?

Introduce jumps.

What is the right substitute for local volatility?

Despite Madan et. al, we propose: Tangent Lévy Density.
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Fitting option prices with Lévy-based models

J.Cox, S.Ross, R.Merton (1976): introduced jumps in the price of
underlying.

S.Kou (2002): Double Exponential Jump Diffusion model.

P.Carr, H.Geman, D.Madan, M.Yor, E.Seneta (1990-2005):
infinite activity jumps, Variance Gamma and CGMY models.

P.Carr, H.Geman, D.Madan, M.Yor (2004): use Markovian time
change of Lévy process – Local Lévy models.

René Carmona Market Models for European Options



Definition

Consider a pure jump martingale

S̃t = S̃0 +

∫ t

0

∫
R

S̃u−(ex − 1) [N(dx ,du)− η(dx ,du)] ,

where N(dx ,du) is a Poisson random measure associated with
jumps of log(S̃), given by its compensator

η(dx ,du) = κ(u, x)dxdu,

If the model above reproduces market prices of call options, we
call κ the Tangent Lévy Density.
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Pricing PIDE

h
C̃(T , x) := C(T , ex), Dx := ∂2

x2 − ∂x

i
Call Prices at time t , produced by κ, satisfy the following
PIDE


∂T C̃t (T , x) =

∫
R ψ(T , x − y)Dy C̃t (T , y)dy

C̃t (T , x)
∣∣∣
T =t

= (S̃t − ex )+,

where

ψ(T , x) =

8<:
R x
−∞(ex − ez)κ(T , z)dz x < 0R∞
x (ez − ex)κ(T , z)dz x > 0
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Fourier Transform

Introduce ∆(T , x) = −∂x C̃(T , x).

Take Fourier transform in x (use ”hat” for values in Fourier
space), and obtain


∂T ∆̂(T , x) = −

(
4π2x2 + 2πix

)
ψ̂(T , x)∆̂(T , x)

∆̂(T , x)
∣∣∣
T =t

=
exp{log(S̃t )(1−2πix)}

1−2πix

(1)

Obtain mapping: C̃ → ∆̂→ ψ̂ → κ.
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From κ to Call Prices

Solve (1) for ∆̂ in closed form.

Invert Fourier transform and integrate to obtain

C̃t (T , x) = S̃t lim
λ→+∞

∫
R

e2πiyλ − e2πiy(x−log S̃t )

2πiy(1− 2πiy)
·

exp

(
−2π(2πy2 + iy)

∫ T

t∧T
ψ̂(u, y)du

)
dy

Obtain mapping: κ→ ψ̂ → C̃.
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ψ̂(u, y)du

)
dy

Obtain mapping: κ→ ψ̂ → C̃.
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Tangent Lévy Model

B =
(
B1, . . . ,Bm

)
is the m-dimensional Brownian motion (m can

be∞).

Under pricing measure Q, process S is a martingale, and we
have the following dynamics


St = S0 +

∫ t
0

∫
R Su−(ex − 1)(M(dx ,du)− Ku(x)dxdu)

κt = κ0 +
∫ t

0 αudu +
∑m

n=1

∫ t
0 β

n
udBn

u ,

for some integer valued random measure M with compensator
Ku(ω, x)dxdu.

κt (T , .) ∈ L1 (R, |x | (|x | ∧ 1) (1 + ex )).
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Simplifying notation

Introduce

ψn(T , x) :=


∫ x
−∞(ex − ez)βn(T , z)dz x < 0∫∞
x (ez − ex )βn(T , z)dz x > 0,

and

ψ̄n(T , x) :=


∫ x
−∞(ex − ez)

∫ T
0 βn(u, z)dudz x < 0

∫∞
x (ez − ex )

∫ T
0 βn(u, z)dudz x > 0,
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Consistency Conditions

Assuming κ ≥ 0, consistency of the model is equivalent to

1 Drift restriction:

αt (T , x) = −1
2

m∑
n=1

∫
R
∂4

y4 ψ̄
n (T , y)

[
ψn (T , x − y)

−
(

1− y∂x +
y2

2
∂2

x2 −
y3

6
∂3

x3

)
ψn (T , x)

]
+ 2∂3

y3 ψ̄
n (T , y)

[
ψn (T , x − y)

−
(

1− y∂x +
y2

2
∂2

x2

)
ψn (T , x)

]
+ ∂2

y2 ψ̄
n (T , y) [ψn (T , x − y)− (1− y∂x )ψn (T , x)] dy

2 Compensator specification: κt (t , x) = Kt (x).
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Model Specification

Change variables from κ to κ̃:

κ(T , x) = e−λ|x|
(
|x |−1−δ ∨ 1

)
κ̃(T , x),

where λ > 1 and δ ∈ (0,1).

κ̃ takes values in a separable Banach space B̃ consisting of
continuous functions.

Introduce α̃ as integrable process in B̃,

and
{
β̃n
}m

n=1
as square integrable processes with values in

H̃ ⊂ B̃.
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Model Specification

Introduce stopping time

τ0 = inf
{

t ≥ 0 : inf
T∈[t,T̄ ],x∈R

κ̃t (T , x) ≤ 0
}
,

Clearly, τ0 is predictable and κ̃t∧τ0 is nonnegative.

Denote ρ(x) := e−λ|x|
(
|x |−1−δ ∨ 1

)
.

Due to ”compensator specification”, without loss of generality, we
will substitute Kt (x) by ρ(x)κ̃t (t , x).
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Model Specification

Assume that market filtration is generated by {Bn}m
n=1 and

independent Poisson random measure N with compensator
ρ(x)dxdt .

Denote by {(tn, xn)}∞n=1 the atoms of N. Then M can be chosen
such that its atoms are

{(tn,W [κ̃tn (tn, .)](xn))}∞n=1 ,

for some deterministic mapping f (.) 7→W [f ](.)

Such specification allows to determine the model uniquely
through the dynamics of κ̃. It also helps in verifying the
martingale property of S.
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Local Existence Result

For the following class of TL models


St = S0 +

∫ t
0

∫
R Su−(eW [κ̃u(u,.)](x) − 1)(N(dx ,du)− ρ(x)dxdu)

κ̃t = κ̃0 +
∫ t∧τ0

0 α̃udu +
∑m

n=1

∫ t∧τ0

0 β̃n
udBn

u ,

we have:

If
{
β̃n
}m

n=1
are square integrable H̃-valued random processes, then

α̃, given by the ”drift restriction”, is an integrable random process with
values in B̃, and the above system defines a consistent Tangent Lévy
model.
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Example of TL Model

Choose m = 1, and β̃t (T , x) = ξtC(x),

where ξt = σ
ε

(
infT∈[t,T̄ ],x∈R κ̃t (T , x) ∧ ε

)
and C(x) = sign(x)e−λ

′|x| (|x | ∧ 1)1+2δ (
λ+ λ′ + δ|x |−1−δ).

Then

κ̃t (T , x) = κ̃0(T , x) +
T − t

2
A(x)

∫ t

0
ξ2

udu + C(x)

∫ t

0
ξudBu,

where A is obtained from C via the ”drift restriction”.
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Example of TL Model

Drift (left) and diffusion coefficient (right) of κ̃, as functions of jump size x .
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Example of TL Model

Simulated values of κ̃T (T , .) (left) and their average (right).
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Conclusions

We have described two classes of consistent stochastic
dynamic models for the call price surface when it can be coded
by:

Local Volatility
Tangent Lévy density.

Each class corresponds to a different type of dynamics of the
underlying:

continuous
pure jump.

while keeping the semimartingale property.

The description of Tangent Lévy models is complete: for any
admissible value of the free parameter in a given linear space,
we can construct a unique arbitrage-free market model.
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Connection with Gyongyi’s Theorem

Dupire local volatility can be understood in terms of the original
Gyongyi’s theorem.

Pure Jump Martingales can be treated the same way via
conditional expectations of the local characteristics to give the
Itô-Lévy system of a pure jump Markov process with the same
marginals (Cont BenTata)

As side product of our analysis, we exhibited a large class of
Infinitely Divisible pure jump martingales for which the
”conditional expectation treatment” gives an additive or
non-homogeneous Lévy process with the same marginals.

We would like to have simple conditions on the original
characteristics of the underlier for the existence of Tangent Lévy
structure.
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René Carmona Market Models for European Options



Connection with Gyongyi’s Theorem

Dupire local volatility can be understood in terms of the original
Gyongyi’s theorem.

Pure Jump Martingales can be treated the same way via
conditional expectations of the local characteristics to give the
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