Backward Stochastic Equations and Equilibrium Pricing in Incomplete Markets

Ulrich Horst¹

Humboldt-Universität zu Berlin Department of Mathematics

dbqpl quantitative products laboratory

Singapore, December 7th, 2009

¹This talk is based on joint work with many people.

Outline

Securitization.

- Equilibrium pricing and market completion.
 - Risk Processes, preferences, and payoffs.
 - The representative agent.
 - Existence and uniqueness of equilibrium.
- BSDE characterization of equilibrium pricing kernels.
- Numerical illustrations.
- The general theory in discrete time.

Some Related Literature

- H & Müller: "On the spanning property of risk bond priced by equilibrium", Math of OR, 32, 784-807, 2007.
- H, Pirvu & Dos Reis: "On securitization, market completion and equilibrium risk transfer", Working paper, 2008.
- Cheridito et al.: "Equilibrium pricing in incomplete markets under translation invariant preferences".

Securitization

Securitization

- Securitization: Transformation of non-tradable risk factors into tradable financial securities.
- Economic problems related to securitization:
 - cross-hedging of financial securities;

- ...

. . .

- optimization and pricing in incomplete markets;
- Mathematical problems related to securitization:
 - utility optimization in incomplete markets;
 - backward stochastic differential equations;
- Our focus is on equilibrium pricing in incomplete markets.

The Model

Risk Processes and Payoffs

- The agents are exposed financial and non-financial risk factors.
- The non-financial risk factor follows a BM with drift:

$$dR_t = a_t dt + b dW_t^R$$

• The agents can trade a stock with exogenous price process

$$\frac{dS_t}{S_t} = \theta^S(R_t)dt + dW_t^S$$

and a (weather) derivative written on the external risk factor:

$$H = h(S_T, R_T) + \int_0^T \varphi(u, S_u, R_u) du$$

The derivative is priced to match supply (exogenous) and demand.

Preferences

• The agents' preferences are generated by a BSDE:

$$-dY_t^a = g^a(t, Z_t)dt + Z_t dW_t$$
 with $Y_T^a = -\xi^a$.

As such they are time-consistent and translation invariant:

$$Y_t^a(\xi^a) = Y_t^a \circ Y_{t+s}^a(\xi^a)$$

and

$$Y_t^a(\xi^a + \mathscr{F}_t) = Y_t^a(\xi^a) - \mathscr{F}_t.$$

• H. and Müller (2007) considered the entropic case

$$g^{a}(t,z) = rac{1}{2\gamma_{a}} \|z\|^{2}$$
 and $heta^{S}(R_{t}) \equiv heta^{S}.$

Market Completion

Market Completion

• With two sources of risk and two assets, our model is potentially complete.

• However: there is no a-priori reason to assume completeness in equilibrium.

• H. and Müller (2007) proved completeness for exponential utility functions using duality and PDE methods. We rely on probabilistic methods, in particular the Haussmann formula.

• The issue of completeness does not arise in discrete time models.

Pricing Schemes

Pricing Schemes

• We assume that the agents have no impact on stock prices so the restriction of any pricing measure on \mathscr{F}^S is given by θ^S .

 \bullet For any "admissible" pricing measure $\mathbb Q$ its density is a uniformly integrable martingale:

$$Z_t = \exp\left(-\int_0^t \begin{pmatrix} \theta^S \\ \theta^R_s \end{pmatrix} d\begin{pmatrix} W^S_s \\ W^R_s \end{pmatrix} - \frac{1}{2}\int_0^t |\theta_s|^2 ds\right)$$

• The set of pricing rules can be identified with the set of

market prices of external risk $\theta^R = (\theta_s^R)$

such that (Z_t) defined by the equation above is a u.i. martingale.

Pricing Schemes

For any such pricing scheme the derivative price process is

$$B_t^{\theta} = \mathbb{E}^{\theta}[H|\mathscr{F}_t].$$

• Using the martingale representation property w.r.t. \mathbb{P}^{θ} :

$$dB_t^{\theta} = \kappa_t^R (\theta_t^R dt + dW^R) + \dots dt + \dots dW_t^S.$$

• The market is complete in equilibrium iff the endogenous volatility process κ^R is almost surely different from zero.

Utility Optimization

Utility Optimization

• For a candidate process θ^R we assume first that the market is complete and solve the agents' optimization problems under \mathbb{P}^{θ} .

• For a given admissible trading strategy π the risk follows:

$$-dY_t^a(\pi) = g^a(t, Z_t^a)dt - Z_t^a dW_t$$

with terminal condition

$$Y_T^a(\pi) = -H^a - V_T^{a,\theta}(\pi).$$

• The optimization problem is thus given by:

$$\min_{\pi^a \in \mathbb{S}^\theta} Y_0^a(\pi^a)$$

where the set of admissible strategies \mathbb{S}^{θ} depends on the driver, ...

Utility Optimization

• The optimization problem is equivalent to minimizing the residual risk which follows a BSDE of the form

$$-d\hat{Y}^a_t(\pi) = G^a(t,\pi^a_t,X_t,\hat{Z}^a_t)dt - \hat{Z}^a_t dW_t$$

with terminal condition

$$\hat{Y}^{\mathsf{a}}_{T}(\pi) = -H^{\mathsf{a}}$$
 .

Theorem (Existence of optimal trading strategies) *If some form of comparison principle holds, then*

$$\Pi^{a}(z) = \operatorname{argmin}_{\pi} G^{a}(t, \pi, x, z)$$

yields an optimal strategy $\hat{\pi}_t^a = \Pi^a(\tilde{Z}_t^a)$ where $(\tilde{Y}^a, \tilde{Z}^a)$ solves

$$-d\, ilde{Y}^{a}_{t}=G^{a}(t,\Pi^{a}(ilde{Z}^{a}),X_{t}, ilde{Z}^{a}_{t})dt- ilde{Z}^{a}_{t}dW_{t},\quad ilde{Y}^{a}_{T}=-H^{a}$$

The Representative Agent

The representative agent

• We characterize an equilibrium in terms of a BSDE associated with the preferences of a representative agent.

• The risk preferences are generated by the BSDE

$$-dY_t^{ab} = g^{ab}(t, Z_t^{ab})dt - Z_t^{ab}dW_t$$

with the terminal condition

$$Y_T^{ab}(\pi) = -H^a - H^b - H - V_T^{ab,\theta}(\pi)$$

where the driver $g^{a,b}$ is defined by the inf-convolution:

$$g^{ab}(t,z) = \inf_{x} \{g^{a}(t,z-x) + g^{b}(t,x)\}.$$

The first order conditions

• The first order conditions for optimality are:

$$g_{z_1}^{ab}\left(t, Z_t^{ab} - \pi_t^{ab,1} \left(\begin{array}{c} S_t \\ 0 \end{array}\right) - \pi_t^{ab,2} \kappa_t^{\theta}\right) = -\theta_t^S,$$

and

$$g_{z_2}^{ab}\left(t, Z_t^{ab} - \pi_t^{ab,1} \left(\begin{array}{c} S_t \\ 0 \end{array}\right) - \pi_t^{ab,2} \kappa_t^{\theta}\right) = -\theta_t^R$$

• Equilibrium condition is $\pi_t^{ab,2} \equiv 0$; equations independent of κ^{θ} .

• The second equation yields equilibrium condition for θ^R .

The representative agent

Theorem (Existence and Characterization of Equilibrium) Let us assume that (in addition to other technical conditions) the following conditions are satisfied:

• There exists a solution (Y, Z) of the backward equation

$$Y_t = -H^a - H^b - H + \int_t^T G(s, Z_s) \, ds - \int_t^T Z_s \, dW_s$$

with driver

$$G(t, Z_t) \triangleq g^{ab}\left(t, Z_t - \tilde{\pi}_t^1(Z_t) \left(\begin{array}{c} S_t \\ 0 \end{array}\right)\right) - \tilde{\pi}_t^1(Z_t)S_t\theta_t^S,$$

where $\tilde{\pi}_t^1 = \tilde{\pi}_t^1(z)$ is a solution (in x) of the equation

$$g_{z_1}^{ab}\left(t,z-x\left(\begin{array}{c}S_t\\0\end{array}\right)\right)=-\theta_t^S.$$

The representative agent

Theorem (continued)

• The process $\theta^R = \theta^R(z)$ defined implicitly by

$$-\theta_t^R(z) = g_{z_2}^{ab}\left(t, z - \tilde{\pi}_t^{ab,1}(z) \left(\begin{array}{c} S_t\\ 0\end{array}\right)\right)$$
(1)

can be represented in terms of a Lipschitz continuous function of the forward process:

$$\theta_t^R = u(t, S_t, R_t).$$

Then, the process θ^R along with the market price of financial risk θ^S defines an equilibrium pricing measure.

Example: Entropic Utilities

(Semi-) Entropic utilities

Theorem (Equilibrium for (semi-)entropic utilities)

• The preferences come from:

$$g^{a}(z)=\frac{1}{2\gamma_{a}}\|z\|^{2}.$$

• The market price of financial risk is of the form:

$$(\theta_t^S)^2 = \Gamma(R_t)$$

for a bounded function Γ with bounded 1^{st} and 2^{nd} derivative.

• The derivative's payoff is increasing in the external risk factor and strictly increasing on a set of positive measure.

Then an equilibrium exists. More precisely, the following holds:

(Semi-) Entropic utilities

Theorem (continued)

• There exists a unique equilibrium market price of external risk. It is given by the second component of the integrand part of the solution (Y, Z) of the BSDE

$$Y_{t} = H^{rep} - \int_{t}^{T} z_{s} dW_{s} + \frac{1}{2} \int_{t}^{T} [-(z_{s}^{2})^{2} + (\theta_{s}^{5})^{2} - 2\theta_{s}^{5} z_{s}^{1}] ds$$

with terminal condition

$$H^{rep} \triangleq \frac{H^a + H^b + nH}{\gamma_R} \quad \text{where} \quad \gamma^R = \gamma^a + \gamma^b.$$

• The equilibrium market price of external risk is differentiable with respect to γ_R and the number of available derivatives.

Some Numerical Illustrations

Numerical illustrations for entropic utilities

There are two sources of randomness described by two diffusions

$$R_t = 4t + 2W_t^R;$$
 $\frac{dS_t}{S_t} = \theta^S(R_t)dt + dW_t^S$

and two agent with dynamic entrpoic utility functions and payoffs

$$H^{i} = rac{1}{2}S_{T} + \int_{0}^{T} \exp\left\{-0.5(R_{t} - R_{i})^{2}dt
ight\} \quad (i = a, b)$$

where

$$R^a = 4; \quad R^b = -1.$$

The dividend pays interest at a rate

$$\varphi_t = \exp\left\{-\left(4t - R_t\right)^+\right\}.$$

Sample Market Price of Risk

Sample Trading Strategies

Equilibrium Prices

Benefits of Financial Innovation

Equilibrium as a Non-Linear Pricing Scheme

Equilibrium as a Non-Linear Pricing Scheme

Discrete Time - The General Structure -

Equilibrium Pricing in Discrete Time

The agents are endowed with random payoffs H^a ; at any time $t \in \{1, 2, ..., T\}$ they maximize a preference functional

$$U_t^a: L(\mathscr{F}_T) \to L(\mathscr{F}_t)$$

which is normalized, monotone, \mathcal{F}_t -translation invariant

$$U^{\mathsf{a}}_t(X+Z) = U^{\mathsf{a}}_t(X) + Z$$
 for all $Z \in \mathscr{F}_t$

convex and strongly time consistent, i.e.,

$$U_t^a(X) = U_t^a \circ U_{t+1}^a(X).$$

Agents maximize utility from trading in a financial market.

Equilibrium Pricing in Discrete Time

The agents can trade stocks and securities. The holdings in stocks and securities at time *t*are denoted

$$\eta_t^a$$
 and ϑ_t^a .

- Stock prices follow an exogenous stochastic process $\{S_t\}_{t=1}^T$
- Securities are in fixed supply and priced to match supply and demand. Security prices {R_t}^T_{t=1} are endogenous.
- Securities pay a dividend R at maturity so

$$R_T = R$$
.

WE DERIVE AN EXISTENCE AND UNIQUENESS OF EQUILIBRIUM RESULT USING A REPRESENTATIVE AGENT APPROACH.

Equilibrium

An equilibrium consists of a trading strategy $\{(\hat{\eta}_t^a, \hat{\vartheta}_t^a)\}$ for every agent $a \in \mathbb{A}$ and a price process $\{R_t\}$ with $R_T = R$ s.t.:

• Individual optimality:

$$U_t^a \left(H^a + \sum_{s=t}^{T-1} \{ \hat{\eta}_s^a \cdot \Delta S_{s+1} + \hat{\vartheta}_s^a \cdot \Delta R_{s+1} \} \right)$$

$$\geq U_t^a \left(H^a + \sum_{s=t}^{T-1} \{ \eta_s^a \cdot \Delta S_{s+1} + \vartheta_s^a \cdot \Delta R_{s+1} \} \right)$$

for all $a \in \mathbb{A}$, t = 1, ..., T, and $(\eta_{t+1}^a, \vartheta_{t+1}^a), ..., (\eta_T^a, \vartheta_T^a)$.

• Market clearing in the securities market:

$$\sum_{a \in \mathbb{A}} \hat{\vartheta}_t^a = n \quad \text{for all} \quad t = 1, ..., T - 1.$$

THE PROBLEM OF DYNAMIC EQUILIBRIUM PRICING CAN BE REDUCED TO A SEQUENCE OF ONE PERIOD MODELS.

Existence of Equilibrium

Theorem (Equilibrium and the Representative Agent) An equilibrium exists if and only if some representative agent has an optimal trading strategy.

Theorem (Existence of Equilibrium)

If the agents are sensitive to large losses in the sense that

$$\lim_{\lambda\to\infty} U_1^a(\lambda X) = -\infty \quad \text{if} \quad \mathbb{P}[X<0]>0,$$

then the optimal utility of the representative agent is attained. In particular, an equilibrium exists.

Computing Equilibria - Discrete BSDEs -

Event Trees

Let the uncertainty be generated by independent random walks

$$b_t^i = \sum_{s=1}^t \Delta b_s^i \quad (i = 1, ..., d).$$

Then any random variable $X \in L(\mathscr{F}_{t+1})$ can be represented as

$$X = \mathbb{E}[X|\mathscr{F}_t] + \sum_{i=1}^M \xi_t^i(X) \Delta b_{t+1}^i \quad (X \in L(\mathscr{F}_{t+1}))$$

where the random coefficients $\xi_t^i(X)$ are given by

$$\xi_t^i(X) = \mathbb{E}[X \Delta b_{t+1}^i | \mathscr{F}_t].$$

THE UTILITY FUNCTION FOLLOWS A BACKWARD EQUATION.

Equilibrium Dynamics

Theorem (Equilibrium Dynamics)

There exist random functions g_t^R and g_t^a such that the equilibrium price process $\{R_t\}$ and the equilibrium utility processes $\{H_t^a\}$ satisfy the coupled system of discrete BSDEs

$$R_{t} = R_{t+1} - g^{R}(Z_{t+1}^{a}, Z_{t+1}^{R}) + Z_{t+1}^{R} \cdot \Delta b_{t+1}$$

$$H_{t}^{a} = H_{t+1}^{a} - g^{a}(Z_{t+1}^{a}, Z_{t+1}^{R}) + Z_{t+1}^{a} \cdot \Delta b_{t+1}$$

with terminal conditions

$$R_T = R$$
 and $H_T^a = H^a$.

AN EXTENSION TO CONTINUOUS TIME IS AN OPEN PROBLEM.

Conclusion

- Dynamic GE model; preferences induced by BSDEs.
- Existence and characterization of equilibrium result.
- Equilibrium market price of risk characterized in terms of a BSDE.
- Model is amenable to efficient numerical illustrations.
- Continuous time: market completeness is equilibrium is key.
- Discrete time: anything goes.

Thank You!