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Global warming and climate change

Global warming and its dangerous consequences have gained
increased public attention in recent years.
Sustained economic growth since the industrial revolution has
gone hand in hand with an increased burning of fossil fuels such
as coal, oil and gas in a chemical process that releases carbon
dioxide (CO2), one of the most abundant greenhouse gases.
For various policy studies on the potential impacts of climate
change and options for adaptation and mitigation, see the website
(http://www.ipcc.ch/) of Intergovernmental Panel on
Climate Change.
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Kyoto protocol

The Kyoto protocol opened for signature at the 1997 conference in
Kyoto, Japan.
Signatory nations must reduce their emissions for carbon dioxide
and five other gases in 2008-2012 by 5% with respect to 1990
levels in order to comply with the protocol.
The European Commission (EC) launched the European Climate
Change Programme (ECCP) in June 2000 with the objective to
identify, develop and implement the essential elements of an EU
strategy to implement the Kyoto Protocol.
The European Union Emission Trading Scheme (EU ETS) is a
significant part of the ECCP and currently constitutes the largest
emissions trading scheme in the world.
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EU ETS and carbon credits

To participate in the ETS, EU member states must first submit a
National Allocation Plan (NAP) for approval to the EC.
Selected carbon intensive installations such as steel
manufacturers, power stations of above 20 MW capacity, cement
factories, etc. receive free emission credits under the terms of this
NAP, enabling them to emit greenhouse gases up to the assigned
tonnage.
Installations can bilaterally trade emission certificates under the
EU ETS, in order to offset any excess or shortage of carbon
emission credits above NAP limits.
About 12.000 installations within the Union are covered by the EU
ETS in a first phase (2005-2007), representing almost 50% of total
carbon emissions.
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Trading within ETS

Actual trading with EU ETS emission allowances began January
1st, 2005.
By the end of the same year, almost 400 million tonnes of carbon
equivalent had been traded.
During Phase I (2005-2008) industries included in the EU ETS
could opt to carry on their short position to the next year provided
a fine of e40 per tonne is paid. This penalty has increased to
e100 in Phase II (2008-2012)
Prices for Phase I contracts at the end of the first phase will thus
be nonzero only if the EU zone is net short EU ETS carbon credits
for this phase.
Consequently, the impact of the release of sensitive information
regarding the ETS net position in carbon emission allowances can
be dramatic, as it was illustrated in April 2006.
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A price history
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Figure: EUA price history between June 7th, 2005 and May 5th, 2007
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Model

We aim to obtain a relationship between the spot (the permit that
matures at the end of the current year) and the forward (the permit
that matures at the end of the next year) prices of carbon permits.
It is apparent from the earlier figure that the EUA prices before
and after the information release have different drifts.
Moreover, starting from the last quarter of 2006 Dec-07 prices and
Dec-08 prices show opposite trends.
The reason for this behaviour is the shift in the demand for
worthless spot (henceforth called EUA0) contracts to forward
(henceforth called EUA1) contracts.
In view of these observations we model the forward prices
process, denoted with S, as follows:

dSt = St (µ+ αθt )dt + σStdWt , (1)

with S0 = s.
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Here, θ is a Markov chain modeling the net position of the market,
and W is a Brownian motion independent of θ.
θ is a càdlàg Markov chain in continuous time taking values in
E := {−1,1}. θt = 1 (resp. θt = −1) corresponds to market being
long (resp. short) at time t .
The assumption that θ takes only two values is for simplicity and
our theory can be extended to the case when E is any finite set.
We suppose the Markov chain θ stays in state i for an exponential
amount of time with parameter λ(i).
The initial distribution for θ is denoted with p.
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Pricing with no banking of the unused permits

The following assumption is to simplify the computations and the
exposition. We stress here that our approach still works without
the next assumption.

Assumption 1

λ(1) = λ(2) = λ.

Letting P denote the price process of EUA0 contracts, we have
the following relation between S and P at time T

PT =

{
ST + K , if θT ≤ 0;

0, otherwise,
(2)

Next we will discuss the local risk minimisation approach to the
pricing and hedging in EU ETS market under complete and
incomplete information regarding the net position of the zone.
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Pricing under complete information

For the time being let’s suppose the market has full information on
θ. Note that the market is still incomplete since θ is not tradable.
Following Föllmer and Schweizer (1991) we define the optimal
hedging strategy for a given contingent claim in an incomplete
market as follows.

Definition 1

Let C ∈ L2(Ω,FT ,P) be a contingent claim. A predictable trading
strategy ξC is said to be optimal if there exists a square integrable
F-martingale, LC , orthogonal to W such that

C = c +

∫ T

0
ξC

t dSt + LC
T . (3)

Existence of (3) is intimately linked to the so-called minimal
martingale measure.
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Minimal martingale measure

Definition 2
Let X be a continuous semimartingale with the canonical
decomposition X = X0 + M + A with M a martingale and A is adapted,
continuous and of finite variation. A probability measure P̂ ∼ P is called
minimal martingale measure if X follows a martingale under P̂, P̂ = P
on F0 and any square integrable martingale orthogonal to M remains a
martingale under P̂.

The minimal martingale measure is uniquely determined and in our
case is defined by

d P̂
dP

= exp

(
−
∫ T

0

µ+ αθs

σ
dWs −

1
2

∫ T

0

(
µ+ αθs

σ

)2
ds

)
. (4)
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Pricing under the minimal martingale measure

Definition 3

Let C ∈ L2(Ω,FT ,P) be a contingent claim and let P̂ be the unique
minimal martingale measure for S given by (4). The fair price PC

t at
time t for C is given by

PC
t := Ê[C|Ft ].

For the problem under consideration
C = (ST + K )1{θT =−1} = ST +K

2 (1− θT ).
Recall that θ = θ0 + N + A where N is a martingale and A is
predictable process.
Since θ and W are independent, it follows that N and W are
orthogonal martingales under P; thus, N remains a martingale
under P̂ and is orthogonal to S.
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Pricing carbon permits under full information

Proposition 1

Let
Mt := θt exp(−2λ(T − t)), t ∈ [0,T ].

Then M is a P̂-martingale and

Êt

[
ST + K

2
AT

]
= θt

St + K
2

exp(−2λ(T − t))− (θ0 + Nt )
St + K

2
.
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Theorem 4
The fair price for EUA0 contracts is given by

Pt = (St + K )
1− θt exp(−2λ(T − t))

2
.

The optimal hedging strategy, ξ0 associated with EUA0 contracts is
given by

ξ0
t :=

1−Mt

2
,

for each t ∈ [0,T ].

In other words, part of the risk at time t , corresponding to the term∫ t
0

1−Ms
2 dSs, can be hedged if one follows the locally-risk minimising

strategy which consist of holding (1−M)/2 shares of the traded
underlying, whose price process is given by S.
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Pricing under incomplete information

Now we study the pricing of EUA0 contracts under incomplete
information. We suppose the only information available to the market is
the usual right-continous and complete augmentation of S, denoted
with FS and the one-time announcement of the true value of θ at time
T . If G denotes the filtration modelling the information structure of the
market, then

Gt =

{
FS

t , for t < T ;

FS
T ∨ σ(θT ), for t = T .

Let θ denote the optional projection of θ to FS which gives
θt = E[θt |FS

t ], for each t ≥ 0. We now apply the aforementioned
local-risk minimisation approach to the pricing and hedging of EUA0
under incomplete information, i.e. when the available information is
modelled by G.
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Theorem 5

Define W by

W t =

∫ t

0

dSs − (µ+ αθs)Ssds
σSs

,

and Z by Zt = 1[t=T ](θT − θt ) for each t ≥ 0. Then, W and Z are
orthogonal G-martingales. Moreover, W is a G-Brownian motion.

Definition 6
The fair price of the EUA0 contracts at time t under incomplete
information is defined to be

P t := E∗[(ST + K )(1− θT )/2|Gt ],

where E∗ is the expectation operator under P∗, the unique minimal
martingale measure associated to S with respect to G.
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No explicit formulae can be found for pricing or hedging.
One can do Monte-Carlo simulation using the conditional
probabilities obtained by filtering methods, or obtain a PDE for the
pricing function.
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Calculation of short-probabilities

It is possible to calculate the probabilities related to the zone’s net
position. Let πi(t) := P[θt = i |Gt ] for each i ∈ {−1,1}. Clearly,
θt = π1(t)− π−1(t) = 2π1(t)− 1. Therefore,

πi(t) = P[θ0 = i |G0] +

∫ t

0

(
λπj(s)− λπi(s)

)
ds

+

∫ t

0
πi(s)

(µ+ αi)Ss − Ss({µ+ αi}πi(s) + {µ+ αj}πj(s))

σSs
dW s,

where W is the G-Brownian motion defined in Theorem 5, and
{j} = E\{i}.
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Since πi(s) + πj(s) = 1 for all s, the above reduces to

πi(t) = P[θ0 = i |G0] +

∫ t

0
λ (1− 2πi(s)) ds

+

∫ t

0
πi(s)

α(i − j)(1− πi(s))

σ
dW s.

In particular, for i = 1,

π1(t) = p +

∫ t

0
λ (1− 2π1(s)) ds +

∫ t

0
π1(s)

2α(1− π1(s))

σ
dW s. (5)
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Effect of intermediate announcements

Every year, the European union aggregates submitted emission
data and compares this to the quantity of allowances surrendered.
The processing of emissions data for the entire zone usually takes
a couple of months time, and announcements on the zone’s net
position are not released until mid April every year. Until that time,
spot trading in the contract for delivery in the past year still takes
place.
As the EU so announces net results every year, we must look a bit
deeper into the effects of intermediate announcements on net
positions.
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To be more concrete, suppose at some t0 < T the true position of
the zone is revealed to the market. To ease the calculations we
further assume that there will be no further announcements before
time T .
Now, we redefine θ so that θt = E[θt |FS

t , θt0 ] for t ≥ t0. This implies
that the dynamics of θ changes to

θt = θt0 − 2
∫ t

t0
λθsds +

α

σ
(1− θs

2
)dW s, (6)

for t ≥ t0.
Therefore, typically, there will be a jump in θ at time t0 since θt0−
will be different than θt0 as long as 0 < P(θt0 = 1) < 1.
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Pricing under intermediate announcements

Theorem 7
Suppose that the true state of θ is revealed at time t0 < T . The fair
price of EUA0 contracts is given by

Pt =

{
h(t ,St , θt )− Zt

St+K
2 , for t ≥ t0,

Z h
t + h(t ,St , θt ), for t < t0,

where h is a continuous solution of a certain PDE and

Z h
t = E∗[h(t0,St0 , θt0)− h(t0,St0 , θt0−)|FS

t ],

for t ≤ t0. P has a jump at t0 and the jump size equals

∆Pt0 = h(t0,St0 , θt0)− h(t0,St0 , θt0−)− Z h
t0 .
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Introducing banking

Since the beginning of Phase II all unused carbon permits can be
banked for future use. Therefore, the spot contracts are not
necessarily worthless even if the zone is net long at their
maturities.
This necessitates a modification of the spot-forward relationship
that we introduced earlier.
If one assumes risk-neutral trader the correct relationship is then

PT =

{
ST + K , if θT = −1,
E[1[θ2T =−1]S2T |ST , θT = 1] if θT = 1. ,

where S2T is time-2T price of the forward contract that matures at
time 2T.
In the next slides we present the results of various numerical
studies when banking is in effect.
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Numerical studies

The constants in the following plots are taken from the the table below.

Parameter Value
α −2
σ 0.5
λ1 160
λ−1 30
K 100
µ 0.5
S0 30.00
θ0 1
p 1
T 1
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We set T = 1 and divide this period into 430 trading dates of
equal length. We had in mind the price evolution during June
2006-Dec 2007 from which we estimated the above parameters
using an EM algorithm.
We opted for a scenario where the true state of the market is
revealed at t = 0.85.
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Figure: Spot prices as a function of α. Solid line represents the price under
full information and dashed line under incomplete information.

Umut Çetin (LSE) Pricing carbon 26 / 33



0 50 100 150 200 250
10

30

50

70

90

110

Figure: Spot prices as a function of λ1. Solid line represents the price under
full information and dashed line under incomplete information.
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Figure: Spot prices as a function of σ. Solid line represents the price under
full information and dashed line under incomplete information.
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Figure: Evolution of spot and forward prices. Solid line represents the forward
price and dashed line the spot price. Vertical line represents the time
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Figure: Evolution of spot and forward prices. Solid line represents the forward
price and dashed line the spot price. Vertical line represents the time
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Figure: Projection of θ onto market’s filtration.
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Conclusions and extensions

We discussed the pricing and hedging of EUA contracts traded
within the EU ETS scheme.
One can come up with explicit formulas for pricing and hedging
under the assumption that the market’s net position is common
knowledge among the market participants.
Under the more realistic setting where the market does not
observe the net position directly, the price can obtained as a
solution to a boundary value problem or via Monte Carlo
simulation. The numerical solution for prices can be obtained very
fast.
We can also incorporate intermediate announcements on the true
state of zone’s net position.
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For a better calibration to market data one might consider a
Markov chain with more than two states when modeling θ.
Instead of using a Markov chain for θ, one can use a Gaussian
process. Then one can use linear filtering for pricing purposes.
This is done in the thesis of Takeshi Yamada.
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