Utility-Based Shortfall Risk & Optimized Certainty Equivalents

1

Stefan Weber

Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/~sweber

Quantitative Risk Management

- Profit & loss distributions (P & L) are very complex. Appropriate summary statistics are needed:
 - Standardization facilitates communication
 - Simple tools for sensitivity analysis
 - Basis for capital regulation of financial firms
- Risk management of banks and insurance companies requires appropriate measures of the *downside risk*.
- Current industry standard Value at Risk is inappropriate in many cases.

Capital Regulation

"Capital regulation is the cornerstone of bank regulators" efforts to maintain a safe and sound banking system, a critical element of overall financial stability."

(Ben S. Bernanke, 2006)

- Major operational problems need, of course, to be fixed first:
 - myopic incentive schemes in financial institutions, lack of transparency, improper due diligence, limited accountability and limited liability of brokers and bankers, and other operational deficiencies
- Once banks work properly, careful risk management will be a key tool to ensure stable financial markets

Bailed out by the Tax Payer

4

Outline

- (i) Background
 - The industry standard: Value at risk
 - Convex risk measures
- (ii) Examples
 - Utility-based Shortfall Risk
 - Optimized Certainty Equivalents

Static Risk Measures

Value at Risk – A Good Risk Measure?

Criteria for good risk measures

• Economic properties:

adequate assessment of diversification effects, large losses, additional information, etc.

• Implementation:

efficient algorithms for the estimation of risk measures in realistic portfolio models

The Industry Standard – Value at Risk

Value at risk at level λ :

 $\operatorname{VaR}_{\lambda}(X) = \inf\{m \in \mathbb{R}: \ P[m + X < 0] \le \lambda\}$

"Smallest monetary amount to be added to a financial position such that the probability of a loss becomes smaller than λ ."

Drawbacks of Value at Risk

- does not account for the size of extremely large losses
- does not encourage diversification

We will describe two distribution-based alternatives.

Value at Risk – Diversification

1

$$X_i = \begin{cases} 1 & \text{with probability } 50\% \\ -1 & \text{with probability } 50\% \end{cases}$$

The Value at Risk of X_i at level 50% is -1.

If X_1 and X_2 are independent, then

$$\frac{X_1 + X_2}{2} = \begin{cases} 1 & \text{with probability } 25\% \\ 0 & \text{with probability } 50\% \\ -1 & \text{with probability } 25\% \end{cases}$$

The VaR at level 50% of the diversified portfolio is 0.

Value at Risk – Large Losses

$$X_{1} = \begin{cases} 1 & \text{with probability } 99\% \\ -1 & \text{with probability } 1\% \end{cases}$$
$$X_{2} = \begin{cases} 1 & \text{with probability } 99\% \\ -10^{10} & \text{with probability } 1\% \end{cases}$$

The VaR at Level 1% of both positions is -1.

Value at Risk in the Media

"David Einhorn, who founded Greenlight Capital, a prominent hedge fund, wrote not long ago that VaR was

'relatively useless as a risk-management tool and potentially catastrophic when its use creates a false sense of security among senior managers and watchdogs. This is like an air bag that works all the time, except when you have a car accident.' "

"Nicholas Taleb, the best-selling author of 'The Black Swan,' has crusaded against VaR for more than a decade. He calls it, flatly, '*a fraud.*' "

("Risk Mismanagement", New York Times, 2. Januar 2009)

Static Risk Measures

Risk measures

 $\rho: \mathcal{X} \to \mathbb{R}$

- Monotonicity: If $X \leq Y$, then $\rho(X) \geq \rho(Y)$.
- Cash invariance: If $m \in \mathbb{R}$, then $\rho(X + m) = \rho(X) m$.

Capital requirement

• A position $X \in \mathcal{X}$ is acceptable, if $\rho(X) \leq 0$.

The collection \mathcal{A} of all acceptable positions is the *acceptance set*.

• ρ is a capital requirement, i.e.

$$\rho(X) = \inf \left\{ m \in \mathbb{R} : X + m \in \mathcal{A} \right\}.$$

Diversification

Semiconvexity:

 \implies

$$\rho(\alpha X + (1 - \alpha)Y) \le \max(\rho(X), \rho(Y)) \qquad (\alpha \in [0, 1]).$$

Convexity (Föllmer & Schied, 2002):

$$\rho(\alpha X + (1 - \alpha)Y) \le \alpha \rho(X) + (1 - \alpha)\rho(Y) \qquad (\alpha \in [0, 1]).$$

Geometric properties of the acceptance set

• ρ convex $\Leftrightarrow \mathcal{A}$ convex.

VaR and AVaR

Value at Risk

$$\operatorname{VaR}_{\lambda}(X) = \inf\{m \in \mathbb{R} : P[m + X < 0] \le \lambda\}.$$

- not convex,
- positively homogeneous.

Average Value at Risk

$$\operatorname{AVaR}_{\lambda}(X) = \frac{1}{\lambda} \int_{0}^{\lambda} \operatorname{VaR}_{\gamma}(X) d\gamma = \sup \left\{ E(-X|A) : P(A) > \lambda \right\}.$$

- convex,
- positively homogeneous.

Robust Representation

Robust representations of convex risk measures are an immediate consequence of Fenchel's Theorem.

Theorem 1 Let $\rho : L^{\infty} \to \mathbb{R}$ be a convex risk measure. Then the following conditions are equivalent:

(i) If
$$X_n \searrow X$$
 P-a.s. then $\rho(X_n) \nearrow \rho(X)$.

(ii) ρ is lower semicontinous with respect to $\sigma(L^{\infty}, L^{1})$.

(iii) For $X \in L^{\infty}$ the risk measure can be calculated as

$$\rho(X) = \sup_{Q \in \mathcal{M}_1(P)} (E_Q[-X] - \alpha(Q))$$

with $\alpha(Q) = \sup_{Y \in L^{\infty}} (E_Q[-Y] - \rho(Y)).$

Average value at risk AVaR_λ

• Set
$$\mathcal{Q}_{\lambda} = \left\{ Q \in \mathcal{M}_1(P) : \frac{dQ}{dP} \leq \frac{1}{\lambda} \right\}.$$

• The minimal penalty function is given by

$$\alpha(Q) = \begin{cases} 0, & Q \in \mathcal{Q}_{\lambda}, \\ \infty, & else. \end{cases}$$

• A robust representation is given by

$$\operatorname{AVaR}_{\lambda}(X) = \sup_{Q \in \mathcal{Q}_{\lambda}} E_Q[-X]$$

Distribution-Based Risk Measures

A risk measure $\rho: L^{\infty}(\Omega, \mathcal{F}, P) \to \mathbb{R}$ is distribution-based, if

$$\mathcal{L}(X; P) = \mathcal{L}(Y; P) \Longrightarrow \rho(X) = \rho(Y).$$

Theorem 2 A risk measure is convex, law-based and continuous from above if and only if

$$\rho(X) = \sup_{\mu \in \mathcal{M}_1((0,1])} \left(\int_{(0,1]} AVaR_\lambda(X)\mu(d\lambda) - \beta_{\min}(\mu) \right),$$

where

$$\beta_{\min}(\mu) = \sup_{X \in \mathcal{A}_{\rho}} \int_{(0,1]} AVaR_{\lambda}(X)\mu(d\lambda).$$

Utility-based Shortfall Risk

18

Utility-based Shortfall Risk

 $\ell: \mathbb{R} \to \mathbb{R}$ convex loss function, z interior point of the range of ℓ .

The acceptance set is defined as

 $\mathcal{A} = \{ X \in L^{\infty} : E_P \left[\ell(-X) \right] \le z \}$

 ${\cal A}$ induces the shortfall risk measure $\rho {:}$

 $\rho(X) = \inf\{m \in \mathbb{R} : X + m \in \mathcal{A}\}$

- convex,
- positively homogeneous only under conditions on ℓ :

$$\ell(x) = z - \alpha x^{-} + \beta x^{+}, \quad \beta \ge \alpha \ge 0.$$

Utility-based Shortfall Risk (2)

Robust Representation

Utility-based shortfall risk $\rho: L^{\infty} \to \mathbb{R}$ is a convex risk measure that continuous from below with robust representation

$$\rho(X) = \max_{Q \in \mathcal{M}_1} \left(E_Q(-X) - \alpha_{\min}(Q) \right), \quad X \in L^{\infty}$$

and penalty function

$$\alpha(Q) = \inf_{\lambda>0} \frac{1}{\lambda} \left(z + E\left[\ell^* \left(\lambda \frac{dQ}{dP} \right) \right] \right), \quad Q \in \mathcal{M}_1(P).$$

Utility-based Shortfall Risk (3) Examples

• Entropic risk measure: $\ell(x) = e^{\beta x}$, $\beta > 0$

$$\alpha(Q) = \frac{1}{\beta} \left(H(Q|P) - \log z \right)$$

• Polynomial loss function: $\ell(x) = \frac{1}{p}x^p \cdot \mathbf{1}_{[0,\infty)}(x)$, p > 1Denoting by q = p/(p-1) the dual coefficient, the minimal penalty function is given by

$$\alpha(Q) = (pz)^{1/p} \cdot E\left[\left(\frac{dQ}{dP}\right)^q\right]^{1/q}$$

Utility-based Shortfall Risk (4)

VaR_{0.05}, AVaR_{0.05} and utility-based shortfall risk with parameters $p \in \{1, \frac{3}{2}, 2\}$ and z = 0.3 as a function of μ for a mixture of a t (weight 0.96) and Gaussian with mean μ (weight 0.04).

Monte Carlo Simulation

Shortfall risk $\rho(X)$ is given by the unique root s_* of the function

$$f(s) := E[\ell(-X - s)] - z.$$

Efficient Computation

- Variance reduction techniques increase the accuracy/rate of convergence, e.g. importance sampling (Dunkel & W., 2007)
- Stochastic approximation (Dunkel & W., 2008)

Compound Lotteries and Risk

- (i) A distribution μ is called acceptable, if $\rho(\mu) \leq 0$.
- (ii) The acceptance set on the level of distributions \mathcal{N} consists of all acceptable distributions.

Convexity:

- If the lotteries μ and ν are acceptable (resp. not acceptable),
- $\bullet \,$ then for $\alpha \in [0,1]$ the compound lottery

 $\alpha\mu + (1-\alpha)\nu$

is also acceptable (resp. not acceptable).

Compound Lotteries and Risk (cont.) Examples

The following risk measures have convex acceptance and rejections sets on the level of distributions:

- Negative expected value: E(-X)
- Worst-case measure: $||X^-||_{\infty}$
- Value at risk: $VaR_{\lambda}(X) = -q_{\lambda}^{+}(X)$
- Shortfall risk

Theorem (W., 2006):

Shortfall risk is the only convex risk measure with convex acceptance and rejection sets on the level of distributions.

Characterization Theorem

ψ -Weak Topology

- C_ψ denotes for a fixed continuous function ψ : ℝ → [1,∞) the vector space of all continuous functions f : ℝ → ℝ for which we can find a constant c ∈ ℝ such that for all x ∈ ℝ, |f(x)| ≤ cψ(x).
 ψ is called a gauge function.
- $\mathcal{M}_c^+(\mathbb{R})$ designates the space of finite measures with compact support.

The ψ -weak topology on the set $\mathcal{M}_c^+(\mathbb{R})$ is the initial topology of the family $\mu \mapsto \int f(x)\mu(dx)$, $(\mu \in \mathcal{M}_c^+(\mathbb{R}), f \in C_{\psi})$.

The ψ -weak topology is finer than the weak topology.

Characterization Theorem (cont.)

Theorem 3 (W., 2006) Let ρ be a distribution-based risk measure.

Assume there exists $x \in \mathbb{R}$ with $\delta_x \in \mathcal{N}$ such that for $y \in \mathbb{R}$, $\delta_y \in \mathcal{N}^c$,

$$(1-\alpha)\delta_x + \alpha\delta_y \in \mathcal{N}$$

for sufficiently small $\alpha > 0$.

Then the following statements are equivalent:

- (i) \mathcal{N} is ψ -weakly closed for some gauge function $\psi : \mathbb{R} \to [1, \infty)$, \mathcal{N} and \mathcal{N}^c are both convex.
- (ii) For some left-continuous loss function $\ell : \mathbb{R} \to \mathbb{R}$ and a scalar $z \in \mathbb{R}$ in the interior of the convex hull of the range of ℓ :

$$\mathcal{N} = \left\{ \mu \in \mathcal{D} : \int \ell(-x)\mu(dx) \le z \right\}.$$

Dynamic Risk Measurement

Dynamic Risk Measures

- (Ω, \mathcal{F}, P) standard Borel probability space
- Time steps $t = 0, 1, 2, \dots, T$ with terminal time T
- $(\mathcal{F}_t)_{t=0,1,\dots,T}$ filtration with - $\mathcal{F}_0 = \{\emptyset, \Omega\}$
 - $\mathcal{F}_T = \mathcal{F}$

General assumption

We will always suppose that the underlying filtered probability space is sufficiently rich.

Dynamic Risk Measures (continued)

- The space of financial positions is given by D := L[∞](Ω, F, P),
 i.e., by "terminal positions"
- Evaluate the risk of a terminal financial position at different dates t = 1, 2, ..., T, as new information becomes available:

$$\Psi_t(D) = \Theta_t(\mathcal{L}(D|\mathcal{F}_t)). \tag{1}$$

- Θ_t is a static distribution-based risk measure on $\mathcal{M}_{1,c}(\mathbb{R})$.
- The corresponding acceptance sets are given by

$$\mathcal{N}_t = \{ \mu \in \mathcal{M}_{1,c}(\mathbb{R}) : \Theta_t(\mu) \le 0 \}.$$

• An axiomatic characterization of dynamic risk measures $(\Psi_t)_t$ with representation (1) can easily be derived.

Dynamic Consistency

Risk measurement

$$\Psi_t(D) = \Theta_t(\mathcal{L}(D|\mathcal{F}_t))$$

Acceptability

 $D \in \mathcal{D}$ acceptable in scenario $\omega \in \Omega$ at time t, if $\Psi_t(D)(\omega) \leq 0$.

Definition 1 A risk measure $\Psi = (\Psi_t)_t$ is

• weakly acceptance consistent, if for financial positions $D \in \mathcal{D}$,

 $\Psi_{t+1}(D) \leq 0 \quad P - a.s. \implies \Psi_t(D) \leq 0 \quad P - a.s.$

• weakly rejection consistent, if for financial positions $D \in \mathcal{D}$,

 $\Psi_{t+1}(D) > 0$ $P - a.s. \implies \Psi_t(D) > 0$ P - a.s.

Representation of Consistent Risk Measures

Proposition 1 If $\Psi = (\Psi_t)_t$ is both acceptance and rejection consistent, then it can be represented by

$$\Psi_t(D) = \Theta(\mathcal{L}(D|\mathcal{F}_t))$$
(2)

for a unique static risk measure Θ .

Question

If a dynamic risk measure has the form (2):

Under which conditions on Θ do we obtain dynamic consistency?

Consistency and Measure Convexity

Measure convexity

A subset M of a locally convex space is called measure convex, if for every $\gamma\in\mathcal{M}_1(M)$

- the barycenter $s_{\gamma} = \int_{M} m \gamma(dm)$ exists, and
- s_{γ} is contained in M.

Locally measure convex subsets of $\mathcal{M}_{1,c}(\mathbb{R})$

A measurable subset C of $\mathcal{M}_{1,c}(\mathbb{R})$ is locally measure convex, if for all $c \in \mathbb{R}$ the set

$$\mathcal{C} \cap \mathcal{M}_1([-c,c])$$

is measure convex.

Consistency and Measure Convexity (cont.)

Theorem 4 Θ static risk measure, $\mathcal{N} \subseteq \mathcal{M}_{1,c}(\mathbb{R})$ its acceptance set.

We define dynamic risk measurements by

 $\Psi_t(D) = \Theta\left(\mathcal{L}(D|\mathcal{F}_t)\right).$

- (i) $\Psi = (\Psi_t)_t$ is weakly acceptance consistent, if and only if \mathcal{N} is a locally measure convex set of probability measures.
- (ii) $\Psi = (\Psi_t)_t$ is weakly rejection consistent, if and only if \mathcal{N}^c is a locally measure convex set of probability measures.

Examples

Negative expected value, worst-case measure, value at risk, shortfall risk

Further Implications

Suppose that the dynamic risk measure $\Psi = (\Psi_t)_t$ is

- (i) acceptance and rejection consistent,
- (ii) convex (in the sense of Föllmer and Schied, i.e., on the space of random variables),
- (iii) additional technical conditions.

 \exists continuous, convex loss function $\ell : \mathbb{R} \to \mathbb{R}$ with associated shortfall risk Θ such that Ψ can be represented as

 $\Psi_t(D) = \Theta(\mathcal{L}(D|\mathcal{F}_t)).$

Strong Dynamic Consistency

Definition 2 A risk measure $\Psi = (\Psi_t)_t$ is dynamically consistent, if

$$\Psi_t(D) = \Psi_t[-\Psi_{t+1}(D)] \quad P - a.s.$$

- Weak dynamic consistency is necessary for this Bellman principle.
- Shortfall risk is i.g. not dynamically consistent.

Optimized Certainty Equivalents

OCE – Definition

• Convex family of utility functions

 $\mathbb{U}_0 = \{ u : \mathbb{R} \to [-\infty, \infty) \text{ concave utility}, u(0) = 0, 1 \in \partial u(0) \}$

- Financial positions are modeled as bounded random variables on an atomloss probability space (Ω, \mathcal{F}, P)

The optimized certainty equivalent (OCE) of $X \in L^{\infty}$ is defined by

$$S_u(X) := \sup_{\eta \in \mathbb{R}} \left\{ \eta + Eu(X - \eta) \right\}.$$

Remark

- If u is continuously differentiable and strictly concave, then η^* is the unique solution of $Eu'(X \eta^*) = 1$.
- This property can be exploited for the numerical estimation of OCE (stochastic root finding).

OCE – Risk Measure

$$\rho_u(X) = -S_u(X) \qquad (X \in L^\infty)$$

defines a convex risk measure.

Risk aversion

• As δ increases from 0 to ∞ the degree of risk aversion corresponding to $u_{\delta}(t) := \frac{u(\delta t)}{\delta}$ increases:

$$\rho_{u_{\delta}}(X) = \frac{1}{\delta} \rho_{u}(\delta X) \geq \rho_{u}(X) \quad \forall \delta \geq 1,$$

$$\rho_{u_{\delta}}(X) = \frac{1}{\delta} \rho_{u}(\delta X) \leq \rho_{u}(X) \quad \forall \delta \in [0, 1]$$

•
$$\lim_{\delta \to \infty} \rho_{u_{\delta}}(X) = \rho_{\max}(X)$$

• $\lim_{\delta \to 0} \rho_{u_{\delta}}(X) = -E(X)$

OCE – Exponential and Quadratic Utility Exponential Utility

If $u(t) = 1 - e^{-t}$,

 $\rho_u(X) = \log E e^{-X}$

coincides with the entropic risk measure, a special case of utility-based shortfall risk.

Quadratic Utility

$$\begin{split} \text{If } u(t) &= \begin{cases} t - 1/2t^2, & t < 1, \\ 1/2 & t \ge 1 \end{cases} \text{, then} \\ \rho_u(X) &= -E(X) + 1/2var(x), \\ \text{if } \|X^+\|_\infty \le 1 + E(X). \end{split}$$

OCE – Piecewise Linear Utility

Setting $[z]_+ = 0 \lor z$, the piecewise linear utility $u(t) = \gamma_1[t]_+ - \gamma_2[-t]_+$ with $0 \le \gamma_1 < 1 < \gamma_2$ defines the risk measure

$$\rho_u(X) = \inf_{\eta \in \mathbb{R}} \left\{ \eta + \gamma_2 E(-\eta - X)^+ - \gamma_1 E(X + \eta)^+ \right\}.$$

In the special case $\gamma_1 = 0$ we obtain $AVaR_{\alpha}$ with $\alpha = 1/\gamma_2$:

$$\operatorname{AVaR}_{\alpha}(X) = \inf_{\eta \in \mathbb{R}} \left\{ \eta + \frac{1}{\alpha} E(X + \eta)^{-} \right\}.$$

OCE – Piecewise Linear Utility (2) Define $\alpha = \frac{1-\gamma_1}{\gamma_2-\gamma_1}$.

• The associated OCE risk measure can be computed as

$$\rho_u(X) = -\gamma_2 \int_{-\infty}^{\operatorname{VaR}_\alpha(X)} t dF_X(t) - \gamma_1 \int_{\operatorname{VaR}_\alpha(X)}^{\infty} t dF_X(t).$$

• For $\gamma_1 = 0$ one obtains the classical formula

$$AVaR_{\alpha}(X) = \frac{1}{\alpha} \int_{0}^{VaR_{\alpha}(X)} t dF_X(t) = \frac{1}{\alpha} \int_{0}^{\alpha} VaR_z(X) dz.$$

OCE – Coherence

If $u \in \mathbb{U}_0$, then $u(t) \leq t \ \forall t$. The subfamily $\mathbb{U}_0^< \subsetneq \mathbb{U}_0$ consists of utilities with strongly risk-averse utilities, i.e. $u \in \subsetneq \mathbb{U}_0^< \Leftrightarrow \forall t \neq 0 : u(t) < t$.

Theorem 5 The following statements are equivalent:

(i) $u \in \mathbb{U}_0^{<}$, and ρ_u is coherent.

(ii) $u(t) = \gamma_1[t]_+ - \gamma_2[-t]_+$ with $0 \le \gamma_1 < 1 < \gamma_2$.

The coherent OCE risk measures defined by strongly risk averse utilities correspond to the class of piecewise linear utilities.

OCE – Coherence (cont.)

 $u \in \mathbb{U}_0^<$ is essential hypothesis (for $(i) \Rightarrow (ii)$)! Define

$$u(t) = \begin{cases} 1 - e^{-t}, & t \ge 0, \\ t, & t \le 0 \end{cases}$$

Then $u \in \mathbb{U}_0 \setminus \mathbb{U}_0^<$, and

$$\rho_u(X) = -E(X),$$

thus ρ_u is actually coherent.

OCE – Robust Representation

g-divergence

 $g:[0,\infty)\to\mathbb{R}\cup\{\infty\}$ lower semicontinuous convex function, $g(1)<\infty,$ $g(x)/x\to\infty$ as $x\to\infty$

The g-divergence is defined by

$$I_g(Q|P) = E_P\left[g\left(\frac{dQ}{dP}\right)\right], \qquad Q \ll P$$

"Statistical distance between Q and $P\ensuremath{"}$

• Level set $\{dQ/dP : I_g(Q|P) \le c\}$ convex, weakly compact in $L^1(P)$

OCE – Robust Representation (cont.)

For $\phi:\mathbb{R}\to(-\infty,\infty]$ we define the convex conjugate by

 $\phi^*(s) = \sup_{t \in \mathbb{R}} \{st - \phi(t)\}.$

Setting $u(t) = -g^*(-t)$, we obtain

$$\rho_u(X) = \sup_{Q \ll P} (E_Q[-X] - I_g(Q|P)), \qquad (X \in L^\infty)$$

Conversely,

$$I_g(Q|P) = -\inf_{X \in L^{\infty}} (\rho_u(X) + E_Q(X)), \qquad (Q \ll P)$$

UBSR & OCE

Utility-Based Shortfall Risk can be recovered from a family of OCE-risk measures.

Denote Shortfall Risk by

$$\operatorname{SR}(X) = \inf\{\eta : E(\ell(-X - \eta)) \le z\},\$$

and define

$$u(t) = -\ell(-t) + z.$$

Then

$$\operatorname{SR}(X) = \sup_{\lambda > 0} \rho_{\lambda u}(X).$$

As a consequence, robust representations theorems for SR can be deduced from the corresponding results for OCE risk measures.

Conclusion

- UBSR and OCE provide interesting distribution-based families of risk measures with reasonable properties.
- These risk measures are convex and do not neglect large losses.
- They can be characterized as solutions to stochastic root finding problems that can be exploited for their computation.