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Quantitative Risk Management

• Profit & loss distributions (P & L) are very complex. Appropriate

summary statistics are needed:

– Standardization facilitates communication

– Simple tools for sensitivity analysis

– Basis for capital regulation of financial firms

• Risk management of banks and insurance companies requires

appropriate measures of the downside risk.

• Current industry standard Value at Risk is inappropriate in many

cases.
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Capital Regulation

“Capital regulation is the cornerstone of bank regulators’

efforts to maintain a safe and sound banking system, a critical

element of overall financial stability.”

(Ben S. Bernanke, 2006)

• Major operational problems need, of course, to be fixed first:

– myopic incentive schemes in financial institutions, lack of

transparency, improper due diligence, limited accountability and

limited liability of brokers and bankers, and other operational

deficiencies

• Once banks work properly, careful risk management will be a key

tool to ensure stable financial markets
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Bailed out by the Tax Payer
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Outline

(i) Background

• The industry standard: Value at risk

• Convex risk measures

(ii) Examples

• Utility-based Shortfall Risk

• Optimized Certainty Equivalents
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Static Risk Measures
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Value at Risk – A Good Risk Measure?

Criteria for good risk measures

• Economic properties:

adequate assessment of diversification effects, large losses,

additional information, etc.

• Implementation:

efficient algorithms for the estimation of risk measures in realistic

portfolio models
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The Industry Standard – Value at Risk

Value at risk at level λ:

VaRλ(X) = inf{m ∈ R : P [m+X < 0] ≤ λ}

“Smallest monetary amount to be added to a financial position

such that the probability of a loss becomes smaller than λ.”

Drawbacks of Value at Risk

• does not account for the size of extremely large losses

• does not encourage diversification

We will describe two distribution-based alternatives.
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Value at Risk – Diversification

Xi =

 1 with probability 50%

−1 with probability 50%

The Value at Risk of Xi at level 50% is −1.

If X1 and X2 are independent, then

X1 +X2

2
=


1 with probability 25%

0 with probability 50%

−1 with probability 25%

The VaR at level 50% of the diversified portfolio is 0.
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Value at Risk – Large Losses

X1 =

 1 with probability 99%

−1 with probability 1%

X2 =

 1 with probability 99%

−1010 with probability 1%

The VaR at Level 1% of both positions is −1.
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Value at Risk in the Media

“David Einhorn, who founded Greenlight Capital, a prominent hedge fund,

wrote not long ago that VaR was

’relatively useless as a risk-management tool and potentially

catastrophic when its use creates a false sense of security among

senior managers and watchdogs. This is like an air bag that works all

the time, except when you have a car accident.’ ”

“Nicholas Taleb, the best-selling author of ’The Black Swan,’ has crusaded

against VaR for more than a decade. He calls it, flatly, ’a fraud.’ ”

(“Risk Mismanagement”, New York Times, 2. Januar 2009)
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Static Risk Measures

Risk measures

ρ : X → R

• Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).

• Cash invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.

Capital requirement

• A position X ∈ X is acceptable, if ρ(X) ≤ 0.

The collection A of all acceptable positions is the acceptance set.

• ρ is a capital requirement, i.e.

ρ(X) = inf {m ∈ R : X +m ∈ A} .
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Diversification

Semiconvexity:

ρ(αX + (1− α)Y ) ≤ max(ρ(X), ρ(Y )) (α ∈ [0, 1]).

=⇒

Convexity (Föllmer & Schied, 2002):

ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ) (α ∈ [0, 1]).

Geometric properties of the acceptance set

• ρ convex ⇔ A convex.
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VaR and AVaR

Value at Risk

VaRλ(X) = inf{m ∈ R : P [m+X < 0] ≤ λ}.

• not convex,

• positively homogeneous.

Average Value at Risk

AVaRλ(X) =
1
λ

∫ λ

0

VaRγ(X)dγ = sup {E(−X|A) : P (A) > λ} .

• convex,

• positively homogeneous.
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Robust Representation

Robust representations of convex risk measures are an immediate

consequence of Fenchel’s Theorem.

Theorem 1 Let ρ : L∞ → R be a convex risk measure. Then the

following conditions are equivalent:

(i) If Xn ↘ X P -a.s. then ρ(Xn)↗ ρ(X).

(ii) ρ is lower semicontinous with respect to σ(L∞, L1).

(iii) For X ∈ L∞ the risk measure can be calculated as

ρ(X) = sup
Q∈M1(P )

(EQ[−X]− α(Q))

with α(Q) = supY ∈L∞(EQ[−Y ]− ρ(Y )).
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Average value at risk AVaRλ

• Set Qλ =
{
Q ∈M1(P ) : dQdP ≤

1
λ

}
.

• The minimal penalty function is given by

α(Q) =

 0, Q ∈ Qλ,
∞, else.

• A robust representation is given by

AVaRλ(X) = sup
Q∈Qλ

EQ[−X]
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Distribution-Based Risk Measures

A risk measure ρ : L∞(Ω,F , P )→ R is distribution-based, if

L(X;P ) = L(Y ;P ) =⇒ ρ(X) = ρ(Y ).

Theorem 2 A risk measure is convex, law-based and continuous from

above if and only if

ρ(X) = sup
µ∈M1((0,1])

(∫
(0,1]

AV aRλ(X)µ(dλ)− βmin(µ)

)
,

where

βmin(µ) = sup
X∈Aρ

∫
(0,1]

AV aRλ(X)µ(dλ).
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Utility-based Shortfall Risk
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Utility-based Shortfall Risk

` : R→ R convex loss function, z interior point of the range of `.

The acceptance set is defined as

A = {X ∈ L∞ : EP [`(−X)] ≤ z}

A induces the shortfall risk measure ρ:

ρ(X) = inf{m ∈ R : X +m ∈ A}

• convex,

• positively homogeneous only under conditions on `:

`(x) = z − αx− + βx+, β ≥ α ≥ 0.
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Utility-based Shortfall Risk (2)

Robust Representation

Utility-based shortfall risk ρ : L∞ → R is a convex risk measure that

continuous from below with robust representation

ρ(X) = max
Q∈M1

(EQ(−X)− αmin(Q)) , X ∈ L∞

and penalty function

α(Q) = inf
λ>0

1
λ

(
z + E

[
`∗
(
λ
dQ

dP

)])
, Q ∈M1(P ).
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Utility-based Shortfall Risk (3)

Examples

• Entropic risk measure: `(x) = eβx, β > 0

α(Q) =
1
β

(H(Q|P )− log z)

• Polynomial loss function: `(x) = 1
px

p · 1[0,∞)(x), p > 1

Denoting by q = p/(p− 1) the dual coefficient, the minimal penalty

function is given by

α(Q) = (pz)1/p · E
[(

dQ

dP

)q]1/q
.
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Utility-based Shortfall Risk (4)
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Monte Carlo Simulation

Shortfall risk ρ(X) is given by the unique root s∗ of the function

f(s) := E[`(−X − s)]− z.

Efficient Computation

• Variance reduction techniques increase the accuracy/rate of

convergence, e.g. importance sampling (Dunkel & W., 2007)

• Stochastic approximation (Dunkel & W., 2008)
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Compound Lotteries and Risk

(i) A distribution µ is called acceptable, if ρ(µ) ≤ 0.

(ii) The acceptance set on the level of distributions N consists of all

acceptable distributions.

Convexity:

• If the lotteries µ and ν are acceptable (resp. not acceptable),

• then for α ∈ [0, 1] the compound lottery

αµ+ (1− α)ν

is also acceptable (resp. not acceptable).
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Compound Lotteries and Risk (cont.)

Examples

The following risk measures have convex acceptance and rejections sets

on the level of distributions:

• Negative expected value: E(−X)

• Worst-case measure: ‖X−‖∞

• Value at risk: V aRλ(X) = −q+λ (X)

• Shortfall risk

Theorem (W., 2006):

Shortfall risk is the only convex risk measure with convex acceptance

and rejection sets on the level of distributions.
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Characterization Theorem

ψ-Weak Topology

• Cψ denotes for a fixed continuous function ψ : R→ [1,∞) the

vector space of all continuous functions f : R→ R for which we can

find a constant c ∈ R such that for all x ∈ R, |f(x)| ≤ cψ(x).

ψ is called a gauge function.

• M+
c (R) designates the space of finite measures with compact

support.

The ψ-weak topology on the set M+
c (R) is the initial topology of the

family µ 7→
∫
f(x)µ(dx), (µ ∈M+

c (R), f ∈ Cψ).

The ψ-weak topology is finer than the weak topology.
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Characterization Theorem (cont.)

Theorem 3 (W., 2006) Let ρ be a distribution-based risk measure.

Assume there exists x ∈ R with δx ∈ N such that for y ∈ R, δy ∈ N c,

(1− α)δx + αδy ∈ N

for sufficiently small α > 0.

Then the following statements are equivalent:

(i) N is ψ-weakly closed for some gauge function ψ : R→ [1,∞),

N and N c are both convex.

(ii) For some left-continuous loss function ` : R→ R and a scalar z ∈ R
in the interior of the convex hull of the range of `:

N =
{
µ ∈ D :

∫
`(−x)µ(dx) ≤ z

}
.
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Dynamic Risk Measurement
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Dynamic Risk Measures

• (Ω,F , P ) standard Borel probability space

• Time steps t = 0, 1, 2, . . . , T with terminal time T

• (Ft)t=0,1,...,T filtration with

– F0 = {∅,Ω}
– FT = F

General assumption

We will always suppose that the underlying filtered probability space is

sufficiently rich.
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Dynamic Risk Measures (continued)

• The space of financial positions is given by D := L∞(Ω,F , P ),

i.e., by “terminal positions”

• Evaluate the risk of a terminal financial position at different dates

t = 1, 2, . . . , T , as new information becomes available:

Ψt(D) = Θt(L(D|Ft)). (1)

– Θt is a static distribution-based risk measure on M1,c(R).

– The corresponding acceptance sets are given by

Nt = {µ ∈M1,c(R) : Θt(µ) ≤ 0}.

• An axiomatic characterization of dynamic risk measures (Ψt)t with

representation (1) can easily be derived.
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Dynamic Consistency

Risk measurement

Ψt(D) = Θt(L(D|Ft))

Acceptability

D ∈ D acceptable in scenario ω ∈ Ω at time t, if Ψt(D)(ω) ≤ 0.

Definition 1 A risk measure Ψ = (Ψt)t is

• weakly acceptance consistent, if for financial positions D ∈ D,

Ψt+1(D) ≤ 0 P − a.s. =⇒ Ψt(D) ≤ 0 P − a.s.

• weakly rejection consistent, if for financial positions D ∈ D,

Ψt+1(D) > 0 P − a.s. =⇒ Ψt(D) > 0 P − a.s.
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Representation of Consistent Risk Measures

Proposition 1 If Ψ = (Ψt)t is both acceptance and rejection consistent,

then it can be represented by

Ψt(D) = Θ(L(D|Ft)) (2)

for a unique static risk measure Θ.

Question

If a dynamic risk measure has the form (2):

Under which conditions on Θ do we obtain dynamic consistency?
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Consistency and Measure Convexity

Measure convexity

A subset M of a locally convex space is called measure convex,

if for every γ ∈M1(M)

– the barycenter sγ =
∫
M
mγ(dm) exists, and

– sγ is contained in M .

Locally measure convex subsets of M1,c(R)

A measurable subset C of M1,c(R) is locally measure convex,

if for all c ∈ R the set

C ∩M1([−c, c])

is measure convex.
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Consistency and Measure Convexity (cont.)

Theorem 4 Θ static risk measure, N ⊆M1,c(R) its acceptance set.

We define dynamic risk measurements by

Ψt(D) = Θ (L(D|Ft)) .

(i) Ψ = (Ψt)t is weakly acceptance consistent, if and only if N is a

locally measure convex set of probability measures.

(ii) Ψ = (Ψt)t is weakly rejection consistent, if and only if N c is a

locally measure convex set of probability measures.

Examples

Negative expected value, worst-case measure, value at risk, shortfall risk
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Further Implications

Suppose that the dynamic risk measure Ψ = (Ψt)t is

(i) acceptance and rejection consistent,

(ii) convex (in the sense of Föllmer and Schied, i.e., on the space of

random variables),

(iii) additional technical conditions.

=⇒

∃ continuous, convex loss function ` : R→ R with associated shortfall

risk Θ such that Ψ can be represented as

Ψt(D) = Θ(L(D|Ft)).
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Strong Dynamic Consistency

Definition 2 A risk measure Ψ = (Ψt)t is dynamically consistent, if

Ψt(D) = Ψt[−Ψt+1(D)] P − a.s.

• Weak dynamic consistency is necessary for this Bellman principle.

• Shortfall risk is i.g. not dynamically consistent.
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Optimized Certainty Equivalents
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OCE – Definition
• Convex family of utility functions

U0 = {u : R→ [−∞,∞) concave utility, u(0) = 0, 1 ∈ ∂u(0)}

• Financial positions are modeled as bounded random variables on an

atomloss probability space (Ω,F , P )

The optimized certainty equivalent (OCE) of X ∈ L∞ is defined by

Su(X) := sup
η∈R
{η + Eu(X − η)} .

Remark

• If u is continuously differentiable and strictly concave, then η∗ is the

unique solution of Eu′(X − η∗) = 1.

• This property can be exploited for the numerical estimation of OCE

(stochastic root finding).
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OCE – Risk Measure

ρu(X) = −Su(X) (X ∈ L∞)

defines a convex risk measure.

Risk aversion

• As δ increases from 0 to ∞ the degree of risk aversion

corresponding to uδ(t) := u(δt)
δ increases:

ρuδ
(X) =

1
δ
ρu(δX) ≥ ρu(X) ∀δ ≥ 1,

ρuδ
(X) =

1
δ
ρu(δX) ≤ ρu(X) ∀δ ∈ [0, 1]

• limδ→∞ ρuδ
(X) = ρmax(X)

• limδ→0 ρuδ
(X) = −E(X)
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OCE – Exponential and Quadratic Utility

Exponential Utility

If u(t) = 1− e−t,
ρu(X) = logEe−X

coincides with the entropic risk measure, a special case of utility-based

shortfall risk.

Quadratic Utility

If u(t) =

 t− 1/2t2, t < 1,

1/2 t ≥ 1
, then

ρu(X) = −E(X) + 1/2var(x),

if ‖X+‖∞ ≤ 1 + E(X).
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OCE – Piecewise Linear Utility

Setting [z]+ = 0 ∨ z, the piecewise linear utility u(t) = γ1[t]+ − γ2[−t]+
with 0 ≤ γ1 < 1 < γ2 defines the risk measure

ρu(X) = inf
η∈R

{
η + γ2E(−η −X)+ − γ1E(X + η)+

}
.

In the special case γ1 = 0 we obtain AVaRα with α = 1/γ2:

AVaRα(X) = inf
η∈R

{
η +

1
α
E(X + η)−

}
.
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OCE – Piecewise Linear Utility (2)

Define α = 1−γ1
γ2−γ1 .

• The associated OCE risk measure can be computed as

ρu(X) = −γ2

∫ VaRα(X)

−∞
tdFX(t) − γ1

∫ ∞
VaRα(X)

tdFX(t).

• For γ1 = 0 one obtains the classical formula

AVaRα(X) =
1
α

∫ VaRα(X)

0

tdFX(t) =
1
α

∫ α

0

VaRz(X)dz.
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OCE – Coherence

If u ∈ U0, then u(t) ≤ t ∀t. The subfamily U<0 ( U0 consists of utilities

with strongly risk-averse utilities, i.e. u ∈( U<0 ⇔ ∀t 6= 0 : u(t) < t.

Theorem 5 The following statements are equivalent:

(i) u ∈ U<0 , and ρu is coherent.

(ii) u(t) = γ1[t]+ − γ2[−t]+ with 0 ≤ γ1 < 1 < γ2.

The coherent OCE risk measures defined by strongly risk averse utilities

correspond to the class of piecewise linear utilities.
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OCE – Coherence (cont.)

u ∈ U<0 is essential hypothesis (for (i)⇒ (ii))!

Define

u(t) =

 1− e−t, t ≥ 0,

t, t ≤ 0

Then u ∈ U0 \ U<0 , and

ρu(X) = −E(X),

thus ρu is actually coherent.
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OCE – Robust Representation

g-divergence

g : [0,∞)→ R ∪ {∞} lower semicontinuous convex function, g(1) <∞,

g(x)/x→∞ as x→∞

The g-divergence is defined by

Ig(Q|P ) = EP

[
g

(
dQ

dP

)]
, Q� P

”Statistical distance between Q and P”

• Level set {dQ/dP : Ig(Q|P ) ≤ c} convex, weakly compact in L1(P )
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OCE – Robust Representation (cont.)

For φ : R→ (−∞,∞] we define the convex conjugate by

φ∗(s) = sup
t∈R
{st− φ(t)}.

Setting u(t) = −g∗(−t), we obtain

ρu(X) = sup
Q�P

(EQ[−X]− Ig(Q|P )), (X ∈ L∞)

Conversely,

Ig(Q|P ) = − inf
X∈L∞

(ρu(X) + EQ(X)), (Q� P )
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UBSR & OCE

Utility-Based Shortfall Risk can be recovered from a family of OCE-risk

measures.

Denote Shortfall Risk by

SR(X) = inf{η : E(`(−X − η)) ≤ z},

and define

u(t) = −`(−t) + z.

Then

SR(X) = sup
λ>0

ρλu(X).

As a consequence, robust representations theorems for SR can be

deduced from the corresponding results for OCE risk measures.
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Conclusion

• UBSR and OCE provide interesting distribution-based families of

risk measures with reasonable properties.

• These risk measures are convex and do not neglect large losses.

• They can be characterized as solutions to stochastic root finding

problems that can be exploited for their computation.
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