Monte Carlo Simulation

Stefan Weber

Leibniz Universität Hannover

email: sweber@stochastik.uni-hannover.de

web: www.stochastik.uni-hannover.de/~sweber

Quantifying and Hedging the Downside Risk

Risk management and financial regulation rely on the proper assessment of the downside risk of financial positions.

Macroeconomic perspective – regulators

- design and enforce appropriate rules for regulatory capital
- VaR current industry standard for downside risk not optimal
- New Basel Capital Accord (Basel II) only intermediate step

Business perspective – financial institutions

- improve portfolio value respecting regulatory capital rules
- hedge financial risks, in particular downside risk

Implementing Risk Measures

- Estimation of risk measures essential in practice
- Simulation algorithms are very tractable and applicable in many models
- Large losses are rare: risk measure simulation can be slow
- This requires variance reduction techniques

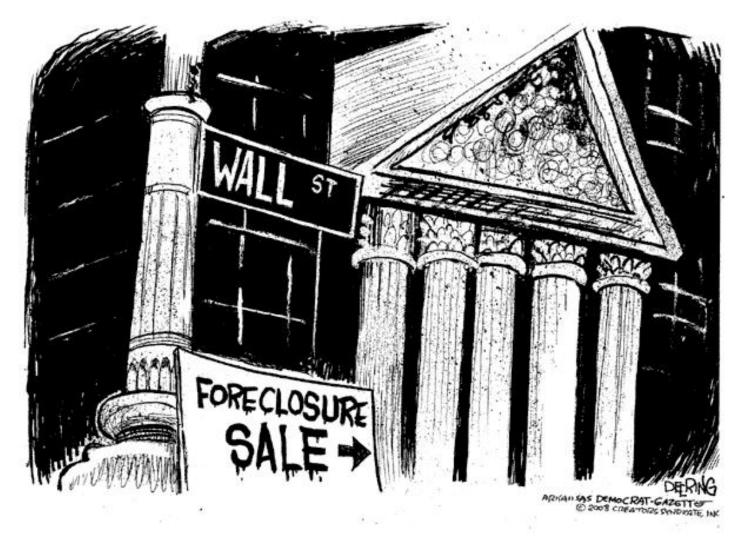
Outline

- (i) Toy example: Normal Copula Model (NCM)
 - Credit portfolios
 - Credit metrics
 - Risk measurement
- (ii) Monte Carlo Simulation
 - Importance sampling
 - Stochastic approximation

Mon	te (Carlo	Simi	ula [.]	tion -
-----	------	-------	------	------------------	--------

Normal Copula Model

Better Manage Your Risks!



Credit Portfolios

- One-period model with time periods t = 0, 1
- ullet Financial positions at t=1 are modeled as random variables

Credit Portfolio Losses

- Portfolio with m positions (obligors)
- The random loss at time 1 due to a default of obligor i = 1, 2, ..., m is denoted by l_i
- The total losses are given by

$$L = \sum_{i=1}^{m} l_i$$

• Typical decomposition: $l_i = v_i D_i$ with exposure v_i and default indicator $D_i \in \{0, 1\}$

Credit Portfolios (2)

- Framework above is completely general (if we focus on one-period credit loss models)
- Risk assessment in practice requires specific models that need to be estimated/calibrated and evaluated

Examples

- Credit Metrics
 - * JP Morgan; based on Normal Copula
- Credit Risk+
 - * Credit Suisse; Poisson mixture model
- Copula models like the t-copula model
 - * general family; Gaussian mixture like t-copula particularly tractable

Credit Metrics

- Model of overall losses of credit portfolio over fixed time horizon
- Losses $L = -X \ge 0$ are given by:

$$L = \sum_{i=1}^{m} v_i D_i.$$

Default indicators:

$$D_i = \mathbf{1}_{\{Y_i > y_i\}}$$

Marginal default probabilities:

$$p_i = P\{D_i = 1\}$$

- m-dimensional normal factor with standardized marginals:

$$Y = (Y_1, Y_2, \dots, Y_m)$$

– Threshold levels:

$$y_i = \Phi^{-1}(1 - p_i)$$

Credit Metrics (continued)

In industry applications the covariance matrix of the Gaussian vector Y is often specified through a factor model:

$$Y_i = A_{i0}\varepsilon_i + \sum_{j=1}^d A_{ij}Z_j \qquad i = 1, \dots, m, \ d < m;$$

$$1 = A_{i0}^2 + A_{i1}^2 + \dots + A_{id}^2 \qquad A_{i0} > 0, \ A_{ij} \ge 0,$$

where

- Z_1, \ldots, Z_d are d independent standard normal random variables (systematic risks), and
- $\varepsilon_1, \ldots, \varepsilon_m$ are m independent standard normal random variables which are independent of Z_1, \ldots, Z_d (idiosyncratic risks).

Credit Metrics (continued)

- JP Morgan's Credit Metrics is a simplistic toy model.
 - The dependence structure is based on a Gaussian copula and ad hoc.
 - The model exhibits no tail-dependence.
 - Credit Metrics model is "like Black-Scholes".
- Credit Metrics is also called Normal Copula Model (NCM).
- The NCM can be used as a basis for Gaussian mixture models like the t-copula model.
- Risk estimation techniques that work in the NCM can often be extended to Gaussian mixture models and other models.

Risk Measurement

Credit Portfolio Losses

Losses $L = -X \ge 0$ are given by:

$$L = \sum_{i=1}^{m} v_i D_i.$$

Downside Risk

For a given portfolio model, the downside risk $\rho(X)$ needs to be computed for a given risk measure ρ .

Example: Shortfall risk

If ρ is utility-based shortfall risk, then $\rho(X)$ is given by the unique root s_* of the function

$$f(s) := E[\ell(-X - s)] - z.$$

Risk Measurement and Monte Carlo

Shortfall risk

Shortfall risk $\rho(X)$ is given by the unique root s_* of the function

$$f(s) := E[\ell(-X - s)] - z.$$

Computational Problems

- Downside risk focuses on the tail. Rare events are hard to simulate.
- Stochastic root finding problem needs to be solved.

Efficient Computation

- Variance reduction techniques increase the accuracy/rate of convergence, e.g. importance sampling (Dunkel & W., 2007)
- Stochastic approximation (Dunkel & W., 2008a, 2008b)

M	onte	Carlo	Simu	lation -
1 V I	OIILC	Carro	JIIIIu	IGLIOII

14

Monte Carlo Simulation

Importance Sampling

Shortfall risk

Shortfall risk $\rho(X)$ is given by the unique root s_* of the function

$$f(s) := E[\ell(-X - s)] - z.$$

First task:

Estimate

$$E_P[\ell(L-s)] = E_P[h(L)]$$

with $h(L) = \ell(L - s)$.

Problem:

- (i) Tail events are rare; if we compute the sample average of iid replications under h(L), we will converge very slowly to $E_P[h(L)]$.
- (ii) Solution: simulate the important tail part more frequently!

Importance Sampling (2)

First task:

Estimate

$$E_P[\ell(L-s)] = E_P[h(L)]$$

with $h(L) = \ell(L - s)$.

Two-step variance reduction:

- (i) Importance sampling for L conditional on factor Z.
- (ii) Variance reduction for factor Z.

Special case: independent default events

In the factor model, independence corresponds to

$$A_{i0} = 1, \quad A_{ij} = 0 \qquad i = 1, \dots, m, \quad j = 1, \dots, d.$$

Importance Sampling:

If Q is an equivalent probability measure with a density of the form

$$\frac{dQ}{dP} = g(L),$$

then
$$E_P[h(L)] = E_Q\left\lfloor \frac{h(L)}{g(L)} \right\rfloor$$
.

• Sampling L_k independently from the distribution of L under Q, we get an unbiased, consistent estimator of $E_P[h(L)]$:

$$J_n^g = \frac{1}{n} \sum_{k=1}^n \frac{h(L_k)}{g(L_k)}.$$

Exponential twisting

SR loss function:

Suppose that $\ell(x) = \gamma^{-1} x^{\gamma} \mathbf{1}_{[0,\infty)}(x)$ is polynomial.

Measure change:

Consider class of probability measures Q_{θ} , $\theta \geq 0$, with

$$\frac{dQ_{\theta}}{dP} = \frac{\exp(\theta L)}{\psi(\theta)},$$

where $\psi(\theta) = \log E[\exp(\theta L)] = \sum_{i=1}^{m} \log[1 + p_i(e^{\theta v_i} - 1)].$

'Optimal' measure change:

Minimize an upper bound for the L^2 -error of the estimator of $E_P[\ell(L-s)]$. This suggests an 'optimal' θ_s .

Exponential twisting (continued)

(i) Calculate

$$q_i(\theta_s) := \frac{p_i e^{v_i \theta_s}}{1 + p_i (e^{v_i \theta_s} - 1)}.$$

- (ii) Generate m Bernoulli-random numbers $D_i \in \{0, 1\}$, such that $D_i = 1$ with probability $q_i(\theta_s)$.
- (iii) Calculate

$$\psi(\theta_s) = \sum_{i=1}^{m} \log[1 + p_i(e^{\theta_s v_i} - 1)]$$

and $L = \sum_{i=1}^{m} v_i D_i$, and return the estimator

$$\ell(L-s) \exp \left[-L\theta_s + \psi(\theta_s)\right].$$

Exponential twisting (continued)

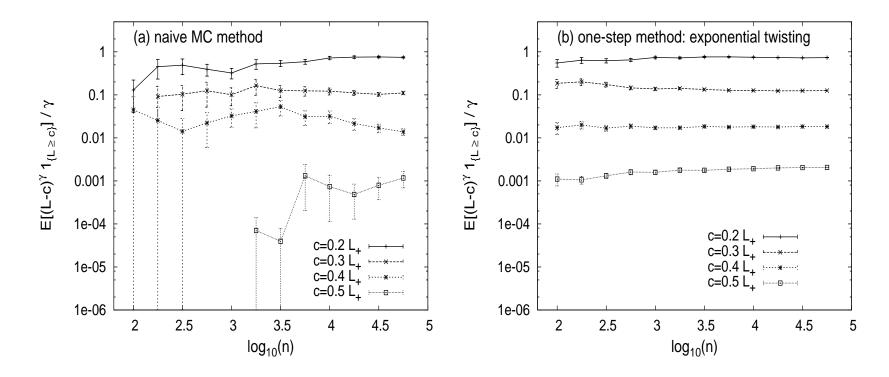


Figure 1: MC results for estimating SR with piecewise polynomial loss function in the NCM. Length of error bars is sample standard deviation of estimator.

Stochastic Approximation

Stochastic approximation methods provide more efficient root-finding techniques for shortfall risk (Dunkel & W., 2008).

Robbins-Monro Algorithm

- Let $\hat{Y}_s:[0,1] \to \mathbb{R}$ such that $E[\hat{Y}_s(U)] = f(s)$ for $U \sim \mathsf{unif}[0,1]$.
- Choose a constant $\gamma \in \left(\frac{1}{2},1\right]$, c>0, and a starting value $s_1 \in [a,b] \ni s^*$.
- For $n \in \mathbb{N}$ we define recursively:

$$s_{n+1} = \Pi_{[a,b]} \left[s_n + \frac{c}{n^{\gamma}} \cdot Y_n \right] \tag{1}$$

with

$$Y_n = \hat{Y}_{s_n}(U_n) \tag{2}$$

for a sequence (U_n) of independent, unif[0,1]-distributed random variables.

Stochastic Approximation (2)

Averaging procedure

Theorem 1 Suppose that $\gamma \in (\frac{1}{2}, 1)$. For arbitrary $\rho \in (0, 1)$ we define

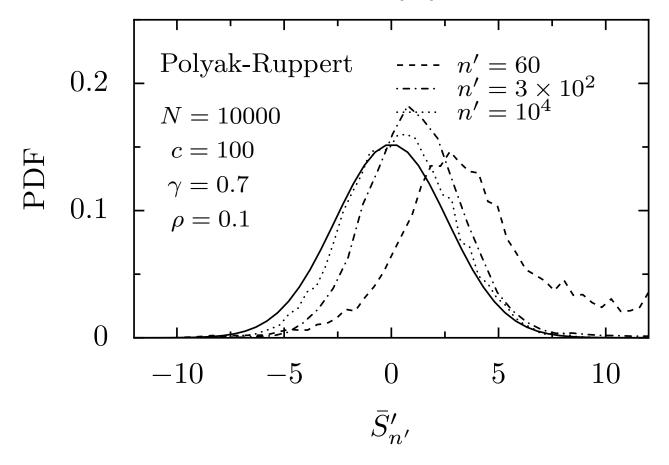
$$\bar{s}_n = \frac{1}{\rho \cdot n} \sum_{i=(1-\rho)n}^n s_i.$$

Then $\bar{s}_n \to s^*$ P-almost surely. For every $\varepsilon > 0$ there exists another process \hat{s} such that $P(\bar{s}_n = \hat{s}_n \ \forall n) \geq 1 - \varepsilon$ and

$$\sqrt{\rho n} \cdot (\hat{s}_n - s^*) \to \mathcal{N}\left(0, \frac{\sigma^2(s^*)}{(f'(s^*))^2}\right).$$

- Optimal rate and asymptotic variance guaranteed
- Finite sample properties usually good

Stochastic approximation (3)



Averaging algorithmus: $\sqrt{\rho n}(\tilde{s}_n - s^*)$ is asymptotically normal (simulation of UBSR with polynomial loss function in the NCM with IS).

Monte Ca	rlo Si	mula	tion -
----------	--------	------	--------

24

Conclusion

Conclusion

- (i) Axiomatic theory of risk measures
 - VaR is not a good risk measure
 - Better risk measures have been designed,
 e.g. Utility-based Shortfall Risk
- (ii) Implementation in credit portfolio models
 - Importance sampling
 - Stochastic approximation

Further research

- Comparison of stochastic average approximation with stochastic approximation
- Extension of the proposed techniques to a larger class of risk measures, e.g. optimized certainty equivalents
- Adjustments for liquidity risk
- Dynamic risk measurement procedures, and their numerical implementation

Thank you for your attention!

