Pricing of Asian Temperature Risk

Wolfgang Karl Härdle Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics School of Business and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Weather

PricewaterhouseCoopers Survey 2005 released the Top 5 sectors in need of financial instruments to hedge weather risk.

PwC survey 2005 for Weather Risk Management Association

1 - 1

Weather

- Influences our daily lives and choices
- Impact on corporate revenues and earnings
- Meteorological institutions: business activity is weather dependent
 - British Met Office: daily beer consumption gain 10% if temperature increases by 3° C
 - If temperature in Chicago is less than 0° C consumption of orange juice declines 10% on average

Examples

- □ Natural gas company suffers negative impact in mild winter
- Construction companies buy weather derivatives (rain period)
- Cloth retailers sell fewer clothes in hot summer
- ⊡ Salmon fishery suffer losses by increase of sea temperatures
- □ Ice cream producers hedge against cold summers
- Disney World (rain period)

What are Weather Derivatives?

Hedge weather related risk exposures

- Payments based on weather related measurements
- 🖸 Underlying: temperature, rainfall, wind, snow, frost

Chicago Mercantile Exchange (CME)

- Monthly/seasonal/weekly temperature Future/Option contracts
- 24 US, 6 Canadian, 9 European and 3 Asian-Pacific cities (Tokyo & Osaka since 2008 and Hiroshima since 2009)
- From 2.2 billion USD in 2004 to 15 billion USD through March 2009

Figure 1: CME offers weather contracts on 42 cities throughout the world

Weather Derivatives

								I	ndex DES
22) News							Futures	Contr	ract Description
Notes									
Tokyo Monthly Ave	rage Temperatur	e Future							
Contract Enocificati	0.00			Trading	Hours				25) VIEW ALL NOLES
contract specificati		ID N		Inauling	nours				
warne	TOKTO MO AVG TEN	16 M0A0A				EXC	change		Local
26) Licker	M3X9 Index					17:	:00-15:	15	18:00-16:15
27) Exchange	CME-Chicago Merc	antile Exchange	2						
Underlying									
Contract Size	250,000 JPY x ind	ex							
Value of 1.0 pt	¥ 250,000			Related	Dates				
Tick Size	0.01								
Tick Value	¥ 2.500				First	Trade	Thu D	ec 4.	2008
28) Price	409.00 in	dex points			Last	Trade	Wed D	ec 2,	2009
Contract Value	¥ 102,250,000 @	10/05/09		Va		Date	Wed D	ec 2,	2009
Margin Limits									
	Speculator	Hedger		Price R	ange				
	4,141,125.195	3,067,500				1.a.			High 409.00
Secondary	3,067,500	3,067,500		Down	Limitr	1.a.		Life	Low 409.00
Cycle Jan Fe	b Mar Apr	May Jun 3	Jul	Aug	Sep	0ct	Nov	Dec	
1) Future 2) Op	otion 🛓 4) Generic								
Australia 61 2 9777 88	500 Brazil 5511 3048	4500 Europe 44 21	0 73	30 7500 G	ermany 4	19 69 92 Copies	204 1210	Hong H	Kong 852 2977 6000
oopan or 5 5201 6500	orngapore 65 62	12 1000 0.5.		12 010 20	SN	637625	R221-565	-3 06	-Dot-2009 04:24:43

Figure 2: A WD table quoting prices future contracts. Source: Bloomberg

Types of Weather Derivatives

CME products

- HDD $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \max(18^\circ \text{C} T_t, 0) dt$
- $CDD(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} max(T_t 18^\circ C, 0) dt$
- CAT $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} T_t dt$, where $T_t = \frac{T_{t,max} T_{t,min}}{2}$
- AAT $(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \widetilde{T}_t dt$, where $\widetilde{T}_t = \frac{1}{24} \int_1^{24} T_{t_i} dt_i$ and T_{t_i} denotes the temperature of hour t_i , (also referred to as C24AT index).

Weather Risk and Human Capital...

An investor organizes a conference on the 27-31 October 2009 in Kaohsiung. Since he knows there is another conference event that week, he estimates that every additional °C in excess of 135°C accumulated 24-hour average temperatures will reduce the number of participants in favor for the other conference and he will incur 2,500 JPY costs on human capital.

Outline

- 1. Motivation \checkmark
- 2. Weather Dynamics
- 3. Fitting $\hat{\sigma}_t$: 1-2 Steps
- 4. Pricing
- 5. Conclusion

Weather Dynamics: Asian Data

Temperature Market (CME): Tokyo and Osaka

AAT Index

CME data on weather derivatives for 20081008-20090702:

	Trading Period			ent Period	Index	
Code	First-trade	Last-trade	$ au_1$	$ au_2$	CME ¹	AAT ²
F9	20080203	20090202	20090101	20090131	200.2	181.0
G9	20080303	20090302	20090201	20090228	220.8	215.0
H9	20080403	20090402	20090301	20090331	301.9	298.0
J9	20080503	20090502	20090401	20090430	460.0	464.0
K9	20080603	20090602	20090501	20090531	592.0	621.0

Table 1: Osaka AAT contracts listed on CME. Source: Bloomberg. ¹ prices of AAT Futures as listed on CME, ² AAT index values computed from the historical temperature data.

Algorithm

Asian Temperature

Temperature: $T_t = X_t + \Lambda_t$

Seasonal function with trend: $\Lambda_t = a_0 + a_1 t + a_2 cos \left\{ \frac{2\pi (t-a_3)}{365} \right\}$

à₀: average temperature, â₁: global warming

City	Period	â ₀	â ₁	â2	â3
Tokyo	19730101-20081231	15.76	7.82e-05	10.35	-149.53
Osaka	19730101-20081231	15.54	1.28e-04	11.50	-150.54
Beijing	19730101-20081231	11.97	1.18e-04	14.91	-165.51
Taipei	19920101-20090806	23.21	1.68e-03	6.78	-154.02

 Table 2: Seasonality estimates of daily average temperatures in Asia. All coefficients

 are nonzero at 1% significance level. Data source: Bloomberg

Figure 3: Seasonality effect (red line) and daily average temperatures for Tokyo Narito International Airport (upper left), Osaka Kansai International Airport (upper right), Beijing (lower left), Taipei (lower right).

Check Data

-		
Date	Bloomberg	Japan Meteorological Agency (JMA)
20080921	13	23
20080918	14	24
20080705	16	26
20080628	13	23
20070906	16	26
20061004	12	22
19980214	5	13
19960114	18	8

Table 3: Tokyo: Check outliers with reference of JMA

Temporal Dependence

Remove seasonality: $X_t = T_t - \Lambda_t$

ADF-Test: $(1-L)X = c_1 + \mu t + \tau LX + \alpha_1(1-L)LX + \dots \alpha_p(1-L)L^pX + \varepsilon_t$ \square Reject $H_0: \tau = 0$, hence X_t is a stationary process I(0)

KPSS Test: $X_t = c + \mu t + k \sum_{i=1}^t \xi_i + \varepsilon_t$,

 \Box Accept H_0 : k = 0 that the process is stationary.

City	$\hat{ au}(p-value)$	$\hat{k}(p-va ue)$
Tokyo	-56.29(<0.01)	0.091(<0.1)
Osaka	-17.86(<0.01)	0.138(<0.1)
Beijing	-20.40(<0.01)	0.094(<0.1)
Taipei	-33.21(<0.01)	0.067(<0.1)

Table 4: Stationarity tests

Moving Window for Stability: Tokyo

	every	every	every	every	every
Year	3 years	6 years	9 years	12 years	18 years
73-75	AR(1)	AP(3)			
76-78	AR(1)	AN(3)	AR(3)	A D (0) *	
79-81	AR(1)	۸D(0)*		AR(0)	A D (0)*
82-84	AR(8)*	AR(0)*			AR(9)*
85-87	AR(1)	AD(2)	AR(9)*		
88-90	AR(1)	AR(S)		AD(2)	
91-93	AR(1)	AD(2)		AR(3)	
94-96	AR(1)	AR(3)	AR(3)		
97-99	AR(1)	AD(1)	. ,		AD(2)
00-02	AR(1)	AR(1)			AR(3)
03-05	AR(3)	AD(2)	AR(3)	AR(3)	
06-09	AR(1)	AK(3)			

 Table 5: Tokyo Moving window for AR * denotes instability

 Pricing of Asian Temperature Risk

Moving Window for Stability: Osaka

	every	every	every	every	every
Year	3 years	6 years	9 years	12 years	18 years
73-75	AR(1)	$\Lambda P(3)$			
76-78	AR(3)	AR(3)	AR(3)	AD(2)	
79-81	AR(3)	AD(2)		AR(S)	AD(6)*
82-84	AR(2)	AR(3)			AR(0)
85-87	AR(3)	AD(2)	AR(3)		
88-90	AR(3)	AR(S)	. ,		
91-93	AR(3)	A D (2)		AR(0)*	
94-96	AR(1)	AR(3)	AR(6)*		
97-99	AR(2)				
00-02	AR(1)	AR(2)		A D (7) *	$AR(I)^*$
03-05	AR(3)	A D (2)	AR(3)	AK(7)*	
06-09	AR(1)	AK(3)			

 Table 6: Osaka Moving window for AR * denotes instability

 Pricing of Asian Temperature Risk

AR(p):
$$X_{t+p} = \sum_{i=1}^{p} \beta_i X_{t+p-i} + \sigma_t \varepsilon_t$$

City	Tokyo(p=3)	Osaka(p=3)	Beijing(p=3)	Taipei(p=3)
β_1	0.668	0.748	0.741	0.808
β_2	-0.069	-0.143	-0.071	-0.228
β_3	0.079	-0.079	0.071	0.063

Table 7: Coefficients of AR(p), Model selection: AIC

PACF

Figure 4: Partial autocorrelation function (PACF) for Tokyo (upper left), Osaka (upper right), Beijing (lower left), Taipei (lower right) with 95% confidence intervals

(Squared) Residuals: China - Taiwan

Figure 5: Residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) of the AR(p) (Beijing (left), Taipei (right)). No rejection of H_0 that the residuals are uncorrelated at 0% significance level, according to the modified Li-McLeod Portmanteau test

(Squared) Residuals: Japan

Figure 6: Residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) of the AR(p) (Tokyo (left), Osaka (right)) during 19730101-20081231. No rejection of H_0 that the residuals are uncorrelated at 0% significance level, according to the modified Li-McLeod Portmanteau test

Seasonal Volatility: China - Taiwan

Close to zero ACF for residuals and highly seasonal ACF for squared residuals of AR(p)

Figure 7: ACF for residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) of the AR(p) for Beijing (left), Taipei (right). Pricing of Asian Temperature Risk

Seasonal Volatility: Japan

Close to zero ACF for residuals and highly seasonal ACF for squared residuals of AR(p)

Figure 8: ACF for residuals $\hat{\varepsilon}_t$ (up) and squared residuals $\hat{\varepsilon}_t^2$ (down) of the AR(p) for Tokyo (left), Osaka (right) Pricing of Asian Temperature Risk

Calibration of Seasonal Variance: σ_t^2

Calibration of daily variances of residuals AR(3) for 36 years: \therefore 2 Steps: Fourier truncated series + GARCH(p,q) $\hat{\sigma}_{t,FTSG}^2$

$$\sigma_t^2 = c_1 + \sum_{i=1}^{16} \left\{ c_{2i} \cos\left(\frac{2i\pi t}{365}\right) + c_{2i+1} \sin\left(\frac{2i\pi t}{365}\right) \right\} + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$
(1)

 \boxdot 1 Step: Local linear Regression (LLR) $\hat{\sigma}_{t,LLR}^2$, $Y_i = \hat{\varepsilon}_{t_i}^2$

$$\min_{a,b} \sum_{i=1}^{n} \{Y_i - a(t) - b(t)(t_i - t)\}^2 \, \mathcal{K}\left(\frac{t_i - t}{h}\right)$$
(2)

Calibration of Seasonal Variance: σ_t^2

Calibration of daily variances of residuals AR(3) for 36 years:

	ĉ ₁	ĉ2	ĉз	ĉ4	ĉ5	ĉ 6	ĉ7	α	β
Tokyo	3.91	-0.08	0.74	-0.70	-0.37	-0.13	-0.14	0.09	0.50
Osaka	3.40	0.76	0.81	-0.58	-0.29	-0.17	-0.07	0.04	0.52
Beijing	3.95	0.70	0.82	-0.26	-0.50	-0.20	-0.17	0.03	0.33
Taipei	3.54	1.49	1.62	- 0.41	-0.19	0.03	-0.18	0.06	0.33

Table 8: First 7 Coefficients of σ_t^2 and GARCH(p = 1, q = 1). The coefficients in black are significant at 1% level.

Seasonal Variance $\hat{\sigma}_{t,FTSG}^2$: China - Taiwan

Figure 9: Daily empirical variance (blue line), $\hat{\sigma}_{t,FTSG}^2$ (red line) and $\hat{\sigma}_{t,LLR}^2$ (green line) using Epanechnikov Kernel and bandwidth h = 4.49 for Beijing (left), Taipei (right).

Seasonal Variance $\hat{\sigma}_{t,FTSG}^2$: Japan

Figure 10: Daily empirical variance (blue line), $\hat{\sigma}_{t,FTSG}^2$ (red line) and $\hat{\sigma}_{t,LLR}^2$ (green line) using Epanechnikov Kernel and bandwidth h = 3.79 for Tokyo (left), Osaka (right)

ACF of (Squared) Residuals after Correcting Seasonal Volatility: China - Taiwan

Figure 11: (Down) Up: ACF for temperature (squared) residuals $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$ for Beijing (left), Taipei (right)

ACF of (Squared) Residuals after Correcting Seasonal Volatility: Japan

Figure 12: (Down) Up: ACF for temperature (squared) residuals $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$ for Tokyo (left), Osaka (right)

Fitting $\hat{\sigma}_t$: 1-2 Step -

Residuals $\left(rac{\hat{arepsilon}_t}{\hat{\sigma}_t} ight)$ become normal

City		$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{+} \epsilon \tau \epsilon}$	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_t \text{ FTSC}}$	$\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t+1}}$
Tokyo	Jarque Bera	6.49	5.30	4.68
,	Kurtosis	3.59	3.53	3.49
	S kew ness	-0.14	-0.13	-0.13
Osaka	Jarque Bera	7.25	6.35	6.25
	Kurtosis	3.12	3.09	3.04
	S kew ness	-0.34	-0.33	-0.32
Beijing	Jarque Bera	8.03	7.67	6.98
-	Kurtosis	3.41	3.38	3.35
	S kew ness	-0.30	-0.30	-0.29
Taipei	Jarque Bera	12.47	11.57	11.00
	Kurtosis	3.46	3.39	3.34
	S kew ness	-0.39	-0.39	-0.39

Table 9: Skewness, kurtosis and values of Jarque Bera test statistics (365 days). Critical value at at 5% significance level is 5.99, at 1% - 9.21.

Fitting $\hat{\sigma}_t$: 1-2 Step — Residuals $\left(\frac{\hat{\varepsilon}_t}{\hat{\sigma}_t}\right)$ become normal:

Figure 13: Log of Kernel smoothing density estimate (blue line) vs Log of Normal Kernel (red line) for $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,LLR}}$ (upper) and $\frac{\hat{\varepsilon}_t}{\hat{\sigma}_{t,FTSG}}$ (lower) of Tokyo (left), Osaka (left middle), Beijing (right middle), Taipei (right)

Temperature Dynamics

Temperature time series:

 $T_t = \Lambda_t + X_t$

with seasonal function Λ_t . X_t can be seen as a discretization of a continuous-time process AR(p) (CAR(p)).

This stochastic model allows CAR(p) futures/options pricing.

Stochastic Pricing

Ornstein-Uhlenbeck process $X_t \in \mathbb{R}^p$:

$$d\mathbf{X}_t = A\mathbf{X}_t dt + \mathbf{e}_p \sigma_t dB_t$$

 \mathbf{e}_k : kth unit vector in \mathbb{R}^p for $k = 1, \dots, p$, $\sigma_t > 0$, A: $(p \times p)$ -matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ -\alpha_{p} & -\alpha_{p-1} & \dots & -\alpha_{1} \end{pmatrix}$$

Stationarity Condition

Solution of $X_t = x \in \mathbb{R}^p$, $s \ge t \ge 0$:

$$\mathbf{X}_{s} = \exp\left\{A(s-t)\right\}\mathbf{x} + \int_{t}^{s} \exp\left\{A(s-u)\right\}\mathbf{e}_{p}\sigma_{u}dB_{u} \qquad (3)$$

is stationary if and only if the eigenvalues $\lambda_1, \ldots, \lambda_p$ of A have negative real parts, i.e. if and only if:

$$\Re(\lambda_i) < 0, \ i = 1, \ldots, p.$$

Brockwell (2001)

Pricing of Asian Temperature Risk -

4-3

\mathbf{X}_t can be written as a Continuous-time AR(p) (CAR(p)): For p = 1.

$$dX_{1t} = -\alpha_1 X_{1t} dt + \sigma_t dB_t$$

For p = 2,

$$\begin{array}{lcl} X_{1(t+2)} &\approx & (2-\alpha_1)X_{1(t+1)} \\ &+ & (\alpha_1-\alpha_2-1)X_{1t}+\sigma_t(B_{t-1}-B_t) \end{array}$$

For p = 3,

$$\begin{array}{rcl} X_{1(t+3)} &\approx & (3-\alpha_1)X_{1(t+2)} + (2\alpha_1 - \alpha_2 - 3)X_{1(t+1)} \\ &+ & (-\alpha_1 + \alpha_2 - \alpha_3 + 1)X_{1t} + \sigma_t(B_{t-1} - B_t) \end{array}$$

$AR(3) \rightarrow CAR(3)$

	Coefficient	Tokyo(p=3)	Osaka(p=3)	Beijing(p=3)	Taipei(p=3)
AR	β_1	0.668	0.748	0.741	0.808
	β_2	-0.069	-0.143	-0.071	-0.228
	β_3	-0.079	-0.079	0.071	0.063
CAR	α_1	-2.332	-2.252	-2.259	-2.192
	α_2	1.733	-1.647	-1.589	-1.612
	α_3	-0.480	-0.474	-0.259	-0.357
Eigenvalues	λ_1	-1.257	-1.221	-0.231	-0.396
(real parts)	$\lambda_{2,3}$	-0.537	-0.515	-1.013	-0.898

Table 10: Coefficients of (C)AR(p) (Berlin (p=3)), Model selection: AIC. Real parts of eigenvalues of A are negative.

Temperature Futures Price

 $\exists Q_{\theta}$ pricing so that:

$$F_{(t,\tau_1,\tau_2)} = \mathsf{E}^{Q_{\theta}}\left[Y|\mathcal{F}_t\right] \tag{4}$$

where Y equals the payoff and by Girsanov theorem:

$$B_t^{\theta} = B_t - \int_0^t \theta_u du$$

is a Brownian motion for $t \leq \tau_{max}$. θ_t : a real valued, bounded and piecewise continuous function (market price of risk)

Temperature Dynamics under Q_{θ}

Under Q_{θ} :

$$d\mathbf{X}_t = (A\mathbf{X}_t + \mathbf{e}_p \sigma_t \theta_t) dt + \mathbf{e}_p \sigma_t dB_t^{\theta}$$
(5)

with explicit dynamics, for $s \ge t \ge 0$:

$$\mathbf{X}_{s} = \exp \{A(s-t)\}\mathbf{x} + \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}\theta_{u}du + \int_{t}^{s} \exp \{A(s-u)\}\mathbf{e}_{p}\sigma_{u}dB_{u}^{\theta}$$
(6)

AAT Futures

For
$$0 \leq t \leq \tau_1 < \tau_2$$
:

$$F_{AAT(t,\tau_1,\tau_2)} = \mathbb{E}^{Q_{\theta}} \left[\int_{\tau_1}^{\tau_2} T_s ds | \mathcal{F}_t \right]$$

$$= \int_{\tau_1}^{\tau_2} \Lambda_u du + \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{X}_t + \int_t^{\tau_1} \theta_u \sigma_u \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p du$$

$$+ \int_{\tau_1}^{\tau_2} \theta_u \sigma_u \mathbf{e}_1^{\top} A^{-1} \left[\exp \left\{ A(\tau_2 - u) \right\} - I_p \right] \mathbf{e}_p du \quad (7)$$

with $\mathbf{a}_{t,\tau_1,\tau_2} = \mathbf{e}_1^\top A^{-1} [\exp \{A(\tau_2 - t)\} - \exp \{A(\tau_1 - t)\}]$, $I_p : p \times p$ identity matrix

Benth et al. (2007)

Constant MPR θ_t^i

 $\hat{ heta}_t^i$ - constant for each contract $i,~i=1,2\ldots 7$ obtained as a solution to:

$$\begin{aligned} F_{AAT(t,\tau_{1}^{i},\tau_{2}^{i})} &\stackrel{!}{=} \quad \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \widehat{\mathbf{X}}_{t} - \frac{\theta_{t}^{i}}{\theta_{t}} \left\{ \int_{t}^{\tau_{1}^{i}} \hat{\sigma}_{u} \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \mathbf{e}_{\rho} du \right. \\ &+ \quad \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{i} - u) \right\} - I_{\rho} \right] \mathbf{e}_{\rho} du \right\} \end{aligned}$$

MPR General Case

$$\underset{\gamma_{k}}{\operatorname{arg\,min}\,} \Sigma_{i=1}^{7} \left(F_{AAT(t,\tau_{1}^{i},\tau_{2}^{i})} - \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \hat{\Lambda}_{u} du - \hat{\mathbf{a}}_{t,\tau_{1}^{i},\tau_{2}^{i}} \hat{\mathbf{X}}_{t} \right)$$
$$- \int_{t}^{\tau_{1}^{i}} \sum_{k=1}^{K} \gamma_{k} h_{k}(u_{i}) \hat{\sigma}_{u_{i}} \hat{\mathbf{a}}_{t,\tau_{1},\tau_{2}} \mathbf{e}_{p} du_{i}$$
$$- \int_{\tau_{1}^{i}}^{\tau_{2}^{i}} \sum_{k=1}^{K} \gamma_{k} h_{k}(u_{i}) \hat{\sigma}_{u_{i}} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}^{i} - u_{i}) \right\} \right]$$
$$- I_{p} \mathbf{e}_{p} du_{i} \right)^{2}$$
(8)

where $h_k(u_i)$ is a vector of known basis functions, γ_k defines the coefficients. Pricing of Asian Temperature Risk

MPR with Splines

 $\hat{\theta}_t^{spl}$ – MPR as a solution to the minimization problem defined in (8), with $h_k(u_i)$ a *B*-spline basis $B_{i,p,\tau}$ of order p, i = 1, 2, ..., n - p - 2 and a knot sequence $\tau = (\tau_0, ..., \tau_{n-1})$.

$$B_{i,0,\tau}(u) = \begin{cases} 1, & u \in [\tau_i, \tau_{i+1}] \\ 0, & \text{else} \end{cases}, \\ B_{i,p,\tau}(u) = \frac{u - \tau_i}{\tau_{i+p} - \tau_i} B_{i,p-1,\tau}(u) + \frac{\tau_{i+p+1} - u}{\tau_{i+p+1} - \tau_{i+1}} B_{i+1,p-1,\tau}(u). \end{cases}$$

To compute $\hat{\theta}_t^{spl}$ use order p = 3 of *B*-splines with 7 knots corresponding to the number of traded contracts.

Tokyo & Osaka AAT Future Prices

City	Code	$F_{AATBloomberg}$	$F_{AAT,\hat{\theta}_{t}^{0}}$	F _{AAT, $\hat{ heta}_{t}^{i}$}	F _{AAT, $\hat{ heta}_{t}^{spl}$}
Tokyo	J9	450.000	452.125	450.000	461.213
	K9	592.000	630.895	592.000	640.744
Osaka	J9	460.000	456.498	460.000	n/a
	K9	627.000	663.823	627.000	n/a

Table 11: Tokyo & Osaka AAT future prices estimates on 20090130 from different MPR calibration methods: $F_{AAT,\hat{\theta}_{t}^{0}}$ with zero MPR, $F_{AAT,\hat{\theta}_{t}^{i}}$ with constant MPR, $F_{AAT,\hat{\theta}_{t}^{i}}$ with spline MPR.

Parametrization of Constant MPR θ_t^i

- Average MPR over trading period parameter depending on the risk source over the measurement period temperature variation.
- \odot Average MPR average of the calibrated θ_t^i :

$$\hat{\theta}_{\tau_1,\tau_2}^i = \frac{1}{\tau_1 - t_{\tau_1,\tau_2}} \sum_{t=t_{\tau_1,\tau_2}}^{\tau_1} \hat{\theta}_t^i;$$

 t_{τ_1,τ_2} is the first trading day of the measurement period $[\tau_1, \tau_2]$. • Variation in period $[\tau_1, \tau_2]$:

$$\hat{\sigma}_{\tau_1,\tau_2}^2 = \frac{1}{\tau_2 - \tau_1} \sum_{t=\tau_1}^{\tau_2} \hat{\sigma}_t^2.$$

 \boxdot Regress $\hat{\theta}^i_{\tau_1,\tau_2}$ on $\hat{\sigma}^2_{\tau_1,\tau_2}$ to parametrize the dependence.

Parametrization of θ_t^i : Tokyo

Figure 14: Calibrated MPR and Monthly Temperature Variation of AAT Tokyo Futures from November 2008 to November 2009 (prices for 8 contracts were available). MPR here is a nonmonotone quadratic function of $\hat{\sigma}^2_{\tau_1,\tau_2}$. Pricing of Asian Temperature Risk

Parametrization of θ_t^i : Tokyo

Parameters	$\hat{ heta}_{ au_1, au_2} = extbf{a} + b \hat{\sigma}_{ au_1, au_2}^2 + c \hat{\sigma}_{ au_1, au_2}^4$
а	4.08
Ь	-2.19
С	0.28
R^2_{adj}	0.71

Table 12: Parametrization of MPR for AAT Tokyo Futures.

Parametrization of θ_t^i : What is the Message?

- \boxdot Example of Tokyo shows that even simple parametrization for $\hat{\theta}_{\tau_1,\tau_2}$ is possible.
- Infer MPR for regions without weather derivative markets knowing the formal dependence of MPR on seasonal variation.
- Uncertainty about spatial characteristics of MPR parametrization using the closest location with organized weather derivative market.

Analysis of Weather Dynamics in Kaohsiung

Analysis of Weather Dynamics in Kaohsiung

Analysis of Weather Dynamics in 高雄市

1. Seasonal function with trend:

$$egin{array}{rcl} \hat{\Lambda}_t &=& 24.4 + 16 \cdot 10^{-5} t + \sum_{i=1}^3 \hat{c}_i \cdot \cos \left\{ rac{2\pi i (t - \hat{d}_i)}{365}
ight\} \ &+& \mathcal{I}(t \in \omega) \cdot \sum_{i=4}^6 \hat{c}_i \cdot \cos \left\{ rac{2\pi (i - 4) (t - \hat{d}_i)}{365}
ight\}, \end{array}$$

with $\mathcal{I}(t \in \omega)$ an indicator function taking value 1 for December, January and February and value zero else.

i	1	2	3	4	5	6
ĉį	5.11	-1.34	-0.39	0.61	0.56	0.34
<i>â</i> i	-162.64	19.56	16.72	28.86	16.63	21.84

Analysis of Weather Dynamics in 高雄市

1. Seasonal function with trend:

2. AR(p) process, by AIC p=3

$$\hat{\beta}_1 = 0.77, \quad \hat{\beta}_2 = -0.12, \quad \hat{\beta}_3 = 0.04.$$

CAR(p) $\hat{\alpha}_1 = -2.24$, $\hat{\alpha}_2 = -1.59$, $\hat{\alpha}_3 = -0.31$.

Stochastic Pricing Model for temperature

3. Seasonal volatility: Local Linear Regression (LLR)

4. Normality of residuals: kurtosis=3.31, skewness=-0.22, JB=4.41.

AAT Future Contracts for Kaohsiung

For $0 \leq t \leq \tau_1 < \tau_2$:

$$\widehat{F}_{AAT(t,\tau_{1},\tau_{2})} = \int_{\tau_{1}}^{\tau_{2}} \widehat{\Lambda}_{u} du + \widehat{\mathbf{a}}_{t,\tau_{1},\tau_{2}} \widehat{\mathbf{X}}_{t} + \int_{t}^{\tau_{1}} \widehat{\theta}_{\tau_{1},\tau_{2}} \widehat{\sigma}_{u} \widehat{\mathbf{a}}_{t,\tau_{1},\tau_{2}} \mathbf{e}_{p} du + \int_{\tau_{1}}^{\tau_{2}} \widehat{\theta}_{\tau_{1},\tau_{2}} \widehat{\sigma}_{u} \mathbf{e}_{1}^{\top} A^{-1} \left[\exp \left\{ A(\tau_{2}-u) \right\} - I_{p} \right] \mathbf{e}_{p} du$$
(9)

where $\hat{\theta}_{\tau_1,\tau_2} = 4.08 - 2.19 \cdot \hat{\sigma}_{\tau_1,\tau_2}^2 + 0.28 \cdot \hat{\sigma}_{\tau_1,\tau_2}^4$. In this case $\hat{\sigma}_{\tau_1,\tau_2}^2 = 1.10 \rightarrow \hat{\theta}_{\tau_1,\tau_2} = 2.01$, and $\hat{F}_{AAT(20090901,20091027,20091031)} = 139.60$.

AAT Call Option

written on an AAT future with strike K at exercise time $\tau < \tau_1$ during period $[\tau_1, \tau_2]$.

$$C_{AAT(t,\tau,\tau_1,\tau_2)} = \exp \left\{-r(\tau-t)\right\} \\ \times \left[\left(F_{AAT(t,\tau_1,\tau_2)} - K\right) \Phi \left\{d(t,\tau,\tau_1,\tau_2)\right\} \\ + \int_t^\tau \Sigma_{AAT(s,\tau_1,\tau_2)}^2 ds\varphi \left\{d(t,\tau,\tau_1,\tau_2)\right\}\right],$$

$$d(t,\tau,\tau_1,\tau_2) = \frac{F_{AAT(t,\tau_1,\tau_2)} - K}{\sqrt{\int_t^{\tau} \sum_{AAT(s,\tau_1,\tau_2)}^2 ds}},$$
$$\Sigma_{AAT(s,\tau_1,\tau_2)}^2 = \sigma_t \mathbf{a}_{t,\tau_1,\tau_2} \mathbf{e}_p,$$

 Φ and φ denote standard normal cdf and pdf respectively.

Weather Risk and Human Capital...

An investor organizes a conference on the 27-31 October 2009 in Kaohsiung. Since he knows there is another conference event that week, he estimates that every additional °C in excess of 135°C cumulated 24-hour average temperatures will reduce the number of participants in favor for the other conference and he will incur 2,500 JPY costs on human capital.

Weather Risk and Human Capital...

An investor organizes a conference on the 27-31 October 2009 in Kaohsiung. Since he knows there is another conference event that week, he estimates that every additional °C in excess of 135°C cumulated 24-hour average temperatures will reduce the number of participants in favor for the other conference and he will incur 2,500 JPY costs on human capital.

Example: the Human Capital Problem

Derivative	Parameters		
index	AAT		
r	4%		
t	1. September 2009		
measurement period	27-31. October 2009		
strike	135°C		
tick value	1°C=2,500 JPY		
$\widehat{F}_{AAT(20090901,20091027,20091031)}$	139.60		
$\widehat{C}_{AAT(20090901,20090908,20091027,20091031)}$	3.49		
$\widehat{C}_{AAT(20090901,20090915,20091027,20091031)}$	2.64		
$\widehat{C}_{AAT(20090901,20090922,20091027,20091031)}$	2.00		
$\widehat{C}_{AAT(20090901,20090929,20091027,20091031)}$	1.51		

Table 13: Call Options on AAT Future.

Outlook

- Financial mathematics can be applied to Beijing, Taipei and Kaohsiung,
- . new solutions to abolish the remaining seasonality in the data,
- : $\hat{\theta}_t$ for CDD/HDD temperature futures/options: pricing of other exotic options,
- long term (interannual) variability of parameters capture volatility due to climate changes and urbanization.

References

F.E. Benth and J.S. Benth and S. Koekebakker Putting a Price on Temperature Scandinavian Journal of Statistics 34: 746-767, 2007

F.E. Benth and W.K. Härdle and B. López Cabrera Pricing of Asian Temperature Risk Working Paper SFB649, 2009-046

P.J. Brockwell

Continuous-time ARMA Processes Handbook of Statistics 19: 248-276, 2001

References

- W.K. Härdle and B.López Cabrera Implied Market Price of Weather Risk Working Paper SFB649, 2009-001
- U. Horst and M. Müller On the Spanning Property of Risk Bonds Priced by Equilibrium Mathematics of Operations Research 4: 784-807, 2007

🌭 W.K. Härdle, J. Franke, C.M. Hafner Statistics of Financial Markets: an Introduction Springer Verlag, Heidelberg, 2008

Pricing of Asian Temperature Risk

Wolfgang Karl Härdle Brenda López Cabrera

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics School of Business and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Appendix A

Li-McLeod Portmanteau Test- modified Portmanteau test statistic Q_L to check the uncorrelatedness of the residuals:

$$Q_L = n \sum_{k=1}^L r_k^2(\hat{\varepsilon}) + \frac{L(L+1)}{2n},$$

where r_k , k = 1, ..., L are values of residuals ACF up to the first L lags and n is the sample size. Then,

$$Q_L \sim \chi^2_{(L-p-q)}$$

 Q_L is χ^2 distributed on (L - p - q) degrees of freedom where p,q denote AR and MA order respectively and L is a given value of considered lags.

Appendix B

Proof
$$CAR(3) \approx AR(3)$$

Let
 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$= \left(\begin{array}{ccc} 0 & 0 & 1 \\ -\alpha_3 & -\alpha_2 & -\alpha_1 \end{array}\right)$$

$$\boxdot$$
 use $B_{t+1} - B_t = \varepsilon_t$

 \boxdot substitute iteratively into X_1 dynamics:

Appendix B

6-3