Dynamic-Programming Strategies for Analyzing Biomolecular Sequences

Kun-Mao Chao

Department of Life Science
National Yang-Ming University, Taiwan 2002 in Singapore

E-mail: kmchao@ym.edu.tw
WWW: http://www.ym.edu.tw/~kmchao

Dynamic Programming

- Dynamic programming is a class of solution methods for solving sequential decision problems with a compositional cost structure.
- Richard Bellman was one of the principal founders of this approach.

Two key ingredients

- Two key ingredients for an optimization problem to be suitable for a dynamic-programming solution:

1. optimal substructures

Each substructure is optimal. (Principle of optimality)
2. overlapping subproblems

Subproblems are dependent.
(otherwise, a divide-and-conquer approach is the choice.)

Three basic components

- The development of a dynamic-programming algorithm has three basic components:
- The recurrence relation (for defining the value of an optimal solution);
- The tabular computation (for computing the value of an optimal solution);
- The traceback (for delivering an optimal solution).

Fibonacci numbers

The Fibonacci numbers are defined by the following recurrence:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \text { for } i>1 .
\end{aligned}
$$

How to compute F_{10} ?

$$
\begin{gathered}
F_{9}
\end{gathered} \begin{aligned}
& F_{8} \\
& F_{7}
\end{aligned} \quad \begin{aligned}
& F_{7} \\
& F_{6}
\end{aligned}
$$

Tabular computation

- The tabular computation can avoid recompuation.

F_{0}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}
0	1	1	2	3	5	8	13	21	34	55

Maximum-sum interval

- Given a sequence of real numbers $a_{1} a_{2} \ldots a_{n}$, find a consecutive subsequence with the maximum sum.

$$
\begin{array}{lllllllllllllll}
9 & -3 & 1 & 7 & -15 & 2 & 3 & -4 & 2 & -7 & 6 & -2 & 8 & 4 & -9
\end{array}
$$

For each position, we can compute the maximum-sum interval starting at that position in $O(n)$ time. Therefore, a naive algorithm runs in $O\left(n^{2}\right)$ time.

O-notation: an asymptotic upper bound

- $f(n)=O(g(n))$ iff there exist two positive constant c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$

How functions grow?

function	$30 n$	$92 n \log n$	$26 n^{2}$	$0.68 n^{3}$	2^{n}
100	0.003 sec.	0.003 sec.	0.0026 sec.	0.00068 sec.	4×10^{16} yr.
100,000	3.0 sec.	2.6 min.	3.0 days	22 yr.	

(Assume one million operations per second.)
For large data sets, algorithms with a complexity greater than $O(n \log n)$ are often impractical!

Maximum-sum interval (The recurrence relation)

- Define $S(i)$ to be the maximum sum of the intervals ending at position i.

$$
S(i) \leftarrow a_{i}+\max \left\{\begin{array}{c}
S(i-1) \\
0
\end{array}\right.
$$

If $S(i-1)<0$, concatenating a_{i} with its previous interval gives less sum than a_{i} itself.

Maximum-sum interval (Tabular computation)

The maximum sum

Maximum-sum interval (Traceback)

$$
S \text { (i) } \begin{array}{rrrrrrrrrr|rrrrr}
9 & -3 & 1 & 7 & -15 & 2 & 3 & -4 & 2 & -7 & 6 & -2 & 8 & 4 & -9 \\
9 & 6 & 7 & 14 & -1 & 2 & 5 & 1 & 3 & -4 & 6 & 4 & 12 & 16 & \\
7
\end{array}
$$

The maximum-sum interval: $6-284$

Defining scores for alignment columns

- infocon [Stojanovic et al., 1999]
- Each column is assigned a score that measures its information content, based on the frequencies of the letters both within the column and within the alignment.

CGGATCAT-GGA
CTTAACATTGAA
GAGAACATAGTA

Defining scores (cont'd)

- phylogen [Stojanovic et al., 1999]
- columns are scored based on the evolutionary relationships among the sequences implied by a supplied phylogenetic tree.

Two fundamental problems we recently solved (joint work with Lin and Jiang)

- Given a sequence of real numbers of length n and an upper bound U, find a consecutive subsequence of length at most U with the maximum sum --- an $O(n)$-time algorithm.

$$
\begin{aligned}
& U=3 \\
& 9
\end{aligned}-31 \begin{array}{lllllllllllll}
U & 7 & -15 & 2 & 3 & -4 & 2 & -7 & 6 & -2 & 8 & 4 & -9
\end{array}
$$

Two fundamental problems we recently solved (joint work with Lin and Jiang)

- Given a sequence of real numbers of length n and a lower bound L, find a consecutive subsequence of length at least L with the maximum average. --- an $O(n \log L)$-time algorithm.

$$
\begin{aligned}
& L=4 \\
& \begin{array}{llllllllllll}
3 & 2 & 14 & 6 & 6 & 2 & 10 & 2 & 6 & 6 & 14 & 2
\end{array}
\end{aligned}
$$

Another example

Given a sequence as follows:

$$
2,6.6,6.6,3,7,6,7,2
$$

and $L=2$, the highest-average interval is the squared area, which has the average value 20/3.

$$
2,6.6,6.6,3,7,6,7,2
$$

$\mathrm{C}+\mathrm{G}$ rich regions

- Our method can be used to locate a region of length at least L with the highest $\mathrm{C}+\mathrm{G}$ ratio in $O(n \log L)$ time.

$$
\begin{array}{ll}
\text { ATGACTCGAGCTCGTCA } & \begin{array}{l}
\text { Search for an } \\
\text { interval of length }
\end{array} \\
\text { at least } L \text { with the } \\
\text { highest average. }
\end{array}
$$

Length-unconstrained version

- Maximum-average interval

$$
\begin{array}{lllllllllllll}
3 & 2 & 14 & 6 & 6 & 2 & 10 & 2 & 6 & 6 & 14 & 2 & 1
\end{array}
$$

The maximum element is the answer. It can be done in $O(n)$ time.

A naive algorithm

- A simple shift algorithm can compute the highest-average interval of a fixed length in $\mathrm{O}(n)$ time

- Try $L, L+1, L+2, \ldots, n$. In total, $\mathrm{O}\left(n^{2}\right)$.

A pigeonhole principle

- Notice that the length of an optimal interval is bounded by $2 L$, we immediately have an $\mathrm{O}(n L)$-time algorithm.

We can bisect a region of length $>=2 L$ into two segments, where each of them is of length $>=L$.

Future Development

- Best k (nonintersecting) subsequences?
- Max-average with both upper and lower length bounds
- General (gapped) local alignment with length upper bound.
- Measurement of goodness?

Longest increasing subsequence(LIS)

- The longest increasing subsequence is to find a longest increasing subsequence of a given sequence of distinct integers $a_{1} a_{2} \ldots a_{n}$.
$\begin{array}{llllllllll}\text { e.g. } 9 & 2 & 5 & 3 & 7 & 11 & 8 & 10 & 13 & 6\end{array}$
$\left.\begin{array}{llll}2 & 3 & 7 \\ 5 & 7 & 10 & 13\end{array}\right\} \begin{array}{ll}\text { are increasing subsequences. } \\ \text { We want to find a longest one. }\end{array}$
9711
$\left.\begin{array}{llll}3 & 5 & 11 & 13\end{array}\right\}$ are not increasing subsequences.

A naive approach for LIS

- Let $L[i]$ be the length of a longest increasing subsequence ending at position i.

$$
\begin{aligned}
& L[i]=1+\max _{j=0 . i-1}\left\{L[j] \mid a_{j}<a_{i}\right\} \\
& \text { (use a dummy } a_{0}=\text { minimum, and } L[0]=0 \text {) }
\end{aligned}
$$

$\begin{array}{llllllllll}9 & 2 & 5 & 3 & 7 & 11 & 8 & 10 & 13 & 6\end{array}$
$\begin{array}{lllllll}L[i] & 1 & 1 & 2 & 2 & 3 & 4\end{array}$?

A naive approach for LIS

$$
L[i]=1+\max _{j=0 . i-l}\left\{L[j] \mid a_{j}<a_{i}\right\}
$$

The maximum length

The subsequence $2,3,7,8,10,13$ is a longest increasing subsequence.

This method runs in $O\left(n^{2}\right)$ time.

Binary search

- Given an ordered sequence $x_{1} x_{2} \ldots x_{n}$, where $x_{1}<x_{2}<\ldots<x_{n}$, and a number y, a binary search finds the largest x_{i} such that $x_{i}<y$ in $O(\log n)$ time.

Binary search

- How many steps would a binary search reduce the problem size to 1 ?
$\begin{array}{lllllll}n & n / 2 & n / 4 & n / 8 & n / 16 & \text {... } 1\end{array}$

How many steps? $O(\log n)$ steps.

$$
\begin{aligned}
& n / 2^{s}=1 \\
& \Rightarrow s=\log _{2} n
\end{aligned}
$$

An $O(n \log n)$ method for LIS

- Define BestEnd $[k]$ to be the smallest number of an increasing subsequence of length k.

9	2	5	3	7	11	8	10	13	6	
9	2	2,	2,	2	2	2	2	2		- BestEnd[1]
		5	3	3,	3	3	3	3		- BestEnd[2]
				7	7	7	7	7		- BestEnd[3]
					11	8	8	8		- BestEnd[4]
							10	10,		- BestEnd[5]
								13		- BestEnd[6]

An $O(n \log n)$ method for LIS

- Define BestEnd $[k]$ to be the smallest number of an increasing subsequence of length k.

Longest Common Subsequence (LCS)

- A subsequence of a sequence S is obtained by deleting zero or more symbols from S. For example, the following are all subsequences of "president": pred, sdn, predent.
- The longest common subsequence problem is to find a maximum-length common subsequence between two sequences.

LCS

For instance,
Sequence 1: president
Sequence 2: providence
Its LCS is priden.

LCS

Another example:
Sequence 1: algorithm
Sequence 2: alignment
One of its LCS is algm.

How to compute LCS?

- Let $\mathrm{A}=a_{1} a_{2} \ldots a_{m}$ and $B=b_{1} b_{2} \ldots b_{n}$.
- len (i, j) : the length of an LCS between

$$
a_{1} a_{2} \ldots a_{i} \text { and } b_{1} b_{2} \ldots b_{j}
$$

- With proper initializations, len (i, j) can be computed as follows.

$$
\operatorname{len}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{len}(i-1, j-1)+1 & \text { if } i, j>0 \text { and } a_{i}=b_{j} \\ \max (\operatorname{len}(i, j-1), \operatorname{len}(i-1, j)) & \text { if } i, j>0 \text { and } a_{i} \neq b_{j}\end{cases}
$$

procedure LCS-Length(A, B)

1. for $i \leftarrow 0$ to m dolen $(i, 0)=0$
2. for $j \leftarrow 1$ to n dolen $(0, j)=0$
3. for $i \leftarrow 1$ to m do
4. for $j \leftarrow 1$ to n do
5. if $a_{i}=b_{j}$ then $\left[\begin{array}{l}\operatorname{len}(i, j)=\operatorname{len}(i-1, j-1)+1 \\ \operatorname{pre}(i, j)=" R "\end{array}\right.$
6. \quad else if $\operatorname{len}(i-1, j) \geq \operatorname{len}(i, j-1)$
7.
8.

then $\left[\begin{array}{l}\operatorname{len}(i, j)=\operatorname{len}(i-1, j) \\ \operatorname{prev}(i, j)=" \|\end{array}\right.$
else $\left[\begin{array}{l}\operatorname{len}(i, j)=\operatorname{len}(i, j-1) \\ \operatorname{prev}(i, j)=" \longleftarrow "\end{array}\right.$
9. return len and prev

procedure Output-LCS(A, prev, i, j)
$1 \quad$ if $i=0$ or $j=0$ then return
2 if $\operatorname{prev}(i, j)="$ " then $\left[\begin{array}{l}\text { Output }-\operatorname{LCS}(A, \operatorname{prev}, i-1, j-1) \\ \text { print } a_{i}\end{array}\right.$
3 else if $\operatorname{prev}(i, j)=" \uparrow$ " then $\operatorname{Output-LCS}(A, \operatorname{prev}, i-1, j)$
4 else Output-LCS(A, prev, $i, j-1)$

Output: priden

Dot Matrix

Sequence A : CTTAACT
Sequence B : CGGATCAT

Pairwise Alignment

Sequence A: CTTAACT
Sequence B: CGGATCAT
An alignment of A and B :

$$
\begin{aligned}
& \text { C---TTAACT } \longleftarrow \text { Sequence A } \\
& \text { CGGATCA--T } \longleftarrow \text { Sequence B }
\end{aligned}
$$

Pairwise Alignment

Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B :

Alignment Graph

Sequence A: CTTAACT
Sequence B: CGGATCAT

A simple scoring scheme

- Match: $+8(w(x, y)=8$, if $x=y)$
- Mismatch: $-5(w(x, y)=-5$, if $x \neq y)$
- Each gap symbol: $-3(w(-, x)=w(x,-)=-3)$

$$
\begin{aligned}
& \text { C - - T T A A C T } \\
& \text { C G G A T C A - T } \\
& \begin{array}{lllllllll}
+8 & -3 & -3 & -3 & +8 & -5 & +8 & -3 & -3
\end{array}+8=+12
\end{aligned}
$$

An optimal alignment -- the alignment of maximum score

- Let $\mathrm{A}=a_{1} a_{2} \ldots a_{m}$ and $B=b_{1} b_{2} \ldots b_{n}$.
- $S_{i, j}$: the score of an optimal alignment between

$$
a_{1} a_{2} \ldots a_{i} \text { and } b_{1} b_{2} \ldots b_{j}
$$

- With proper initializations, $S_{i, j}$ can be computed as follows.

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}+w\left(a_{i},-\right) \\
s_{i, j-1}+w\left(-, b_{j}\right) \\
s_{i-1, j-1}+w\left(a_{i}, b_{j}\right)
\end{array}\right.
$$

Computing $S_{i, j}$

Initializations

C							G	G	A	T
	0	-3	-6	-9	-12	-15	-18	-21	-24	
C	-3									
T	-6									
T	-9									
A	-12									
A	-15									
C	-18									
T T	-21									

$$
S_{3,5}=?
$$

| | C | | | G | G | A | C | A | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | -3 | -6 | -9 | -12 | -15 | -18 | -21 | -24 |
| C | -3 | 8 | 5 | 2 | -1 | -4 | -7 | -10 | -13 |
| T | -6 | 5 | 3 | 0 | -3 | 7 | 4 | 1 | -2 |
| T | -9 | 2 | 0 | -2 | -5 | $?$ | | | |
| A | -12 | | | | | | | | |
| A | -15 | | | | | | | | |
| C | -18 | | | | | | | | |
| T | -21 | | | | | | | | |

$$
S_{3,5}=?
$$

C T T A A C - T
C G G A T C A T
$8-5-5+8-5+8-3+8=14$
C \quad G \quad G A T C A

	0	-3	-6	-9	-12	-15	-18	-21	-24
C	-3	8	5	2	-1	-4	-7	-10	-13
T	-6	5	3	0	-3	7	4	1	-2
T	-9	2	0	-2	-5	5	-1	-4	9
A	-12	-1	-3	-5	6	3	0	7	6
A	-15	-4	-6	-8	3	1	-2	8	5
C	-18	-7	-9	-11	0	-2	9	6	3
T	-21	-10	-12	-14	-3	8	6	4	14

Global Alignment vs. Local Alignment

- global alignment:
- local alignment:

An optimal local alignment

- $S_{i, j}$: the score of an optimal local alignment ending at a_{i} and b_{j}
- With proper initializations, $S_{i, j}$ can be computed as follows.

$$
s_{i, j}=\max \left\{\begin{array}{l}
0 \\
s_{i-1, j}+w\left(a_{i},-\right) \\
s_{i, j-1}+w\left(-, b_{j}\right) \\
s_{i-1, j-1}+w\left(a_{i}, b_{j}\right)
\end{array}\right.
$$

Match: 8

local alignment

Mismatch: -5
Gap symbol: -3
C $\quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{A} \quad \mathrm{T} \quad \mathrm{C} \quad \mathrm{A} \quad \mathrm{T}$

	0	0	0	0	0	0	0	0	0
C	0	8	5	2	0	0	8	5	2
T	0	5	3	0	0	8	5	3	13
T	0	2	0	0	0	8	5	2	11
A	0	0	0	0	8	5	3	$?$	
A	0								
C	0								
C	0								
T	0								

Match: 8
Mismatch: -5

local alignment

Gap symbol: -3

$$
\begin{aligned}
& \mathrm{A}-\mathrm{C}-\mathrm{T} \\
& \mathrm{~A} \mathrm{~T} \text { C } \mathrm{A} \text { T } \\
& 8-3+8-3+8=18
\end{aligned}
$$

$$
\begin{array}{llllllll}
\text { C } & \mathrm{G} & \mathrm{G} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{~A} & \mathrm{~T}
\end{array}
$$

Affine gap penalties

- Match: $+8(w(x, y)=8$, if $x=y)$
- Mismatch: -5 $(w(x, y)=-5$, if $x \neq y)$
- Each gap symbol: -3 $(w(-, x)=w(x,-)=-3)$
- Each gap is charged an extra gap-open penalty: -4 .

Alignment score: $12-4-4=4$

Affine gap panalties

- A gap of length k is penalized $x+k \cdot y$.
gap-open penalty

Three cases for alignment endings:
gap-symbol penalty

1. $\left.\ldots x^{x}\right\}$ an aligned pair
2. ... x
$\left.\ldots.\}^{-}\right\}$a deletion
3 $\left.\begin{array}{l}\ldots- \\ \ldots\end{array}\right\}$ an insertion

Affine gap penalties

- Let $D(i, j)$ denote the maximum score of any alignment between $a_{1} a_{2} \ldots a_{i}$ and $b_{1} b_{2} \ldots b_{j}$ ending with a deletion.
- Let $I(i, j)$ denote the maximum score of any alignment between $a_{1} a_{2} \ldots a_{i}$ and $b_{1} b_{2} \ldots b_{j}$ ending with an insertion.
- Let $S(i, j)$ denote the maximum score of any alignment between $a_{1} a_{2} \ldots a_{i}$ and $b_{1} b_{2} \ldots b_{j}$.

Affine gap penalties

$$
\begin{aligned}
& D(i, j)=\max \left\{\begin{array}{c}
D(i-1, j)-y \\
S(i-1, j)-x-y
\end{array}\right. \\
& I(i, j)=\max \left\{\begin{array}{c}
I(i, j-1)-y \\
S(i, j-1)-x-y
\end{array}\right. \\
& S(i, j)=\max \left\{\begin{array}{c}
S(i-1, j-1)+w\left(a_{i}, b_{j}\right) \\
D(i, j) \\
I(i, j)
\end{array}\right.
\end{aligned}
$$

Affine gap penalties

k best local alignments

- Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)
- FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)
- BLAST
(Altschul et al., 1990; Altschul et al., 1997)

k best local alignments

- Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)
- linear-space version : sim (Huang and Miller, 1991)
- linear-space variants : sim2 (Chao et al., 1995); sim3 (Chao et al., 1997)
- FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)
- linear-space band alignment (Chao et al., 1992)
- BLAST
(Altschul et al., 1990; Altschul et al., 1997)
- restricted affine gap penalties (Chao, 1999)

FASTA

1) Find runs of identities, and identify regions with the highest density of identities.
2) Re-score using PAM matrix, and keep top scoring segments.
3) Eliminate segments that are unlikely to be part of the alignment.
4) Optimize the alignment in a band.

FASTA

Step 1: Find runes of identities, and identify regions with the highest density of identities.

FASTA

Step 2: Re-score using PAM matrix, and keep top scoring segments.

FASTA

Step 3: Eliminate segments that are unlikely to be part of the alignment.

FASTA

Step 4: Optimize the alignment in a band.

BLAST

1) Build the hash table for Sequence A.
2) Scan Sequence B for hits.
3) Extend hits.

BLAST

Step 1: Build the hash table for Sequence A. (3-tuple example)

For DNA sequences:

```
Seq. A = AGATCGAT 12345678
AAA
AAC
..
AGA >1
. .
ATC}>
CGA}\longrightarrow
..
GAT>2>6
..
TCG}>
..
TTT

For protein sequences:
Seq. \(A=\) ELVIS

Add \(x y z\) to the hash table if Score \((x y z, E L V) \geqq T\);
Add \(x y z\), to the hash table if Score \((x y z, L V I) \geqq T\);
Add \(x y z\) to the hash table if Score \((x y z, V I S) \geqq T\);

\section*{BLAST}

Step2: Scan sequence B for hits.


\section*{BLAST}

Step2: Scan sequence B for hits.

Step 3: Extend hits.

\section*{BLAST 2.0 saves the time spent in extension, and considers gapped alignments.} score of the sxtension fades away.

\section*{Remarks}
- Filtering is based on the observation that a good alignment usually includes short identical or very similar fragments.
- The idea of filtration was used in both FASTA and BLAST.

\section*{Linear-space ideas}

Hirschberg, 1975; Myers and Miller, 1988


\section*{Two subproblems}
\(1 / 2\) original problem size


\section*{Four subproblems}
\(1 / 4\) original problem size


\section*{Time and Space Complexity}
- Space: \(O(M+N)\)
- Time:
\[
\mathrm{O}(\mathrm{MN}) *(\underbrace{1+1 / 2+1 / 4+\ldots}_{2})=\mathrm{O}(\mathrm{MN})
\]

\section*{Band Alignment}
(Joint work with W. Pearson and W. Miller)
Sequence A


\section*{Band Alignment in Linear Space}

The remaining subproblems are no longer only half of the original problem. In worst case, this could cause an additional \(\log n\) factor in


\section*{Band Alignment in Linear Space}


\section*{Multiple sequence alignment (MSA)}
- The multiple sequence alignment problem is to simultaneously align more than two sequences.
```

Seq1: GCTC GC-TC
Seq2: AC A---C
Seq3: GATC G-ATC

```

\section*{How to score an MSA?}
- Sum-of-Pairs (SP-score)
\[
\begin{array}{r}
\text { Score }\binom{G C-T C}{A---C} \\
\text { Score } \left.\left(\begin{array}{c}
G C-T C \\
A---C \\
G-A T C
\end{array}\right)=\begin{array}{c}
+ \\
\text { Score } \\
+ \\
\text { GC-TC } \\
G-A T C
\end{array}\right) \\
\text { Score }\binom{A---C}{G-A T C}
\end{array}
\]

\section*{MSA for three sequences}
- an \(O\left(n^{3}\right)\) algorithm


\section*{General MSA}
- For \(k\) sequences of length \(n: O\left(n^{k}\right)\)
- NP-Complete (Wang and Jiang)
- The exact multiple alignment algorithms for many sequences are not feasible.
- Some approximation algorithms are given. (e.g., 2- \(l / k\) for any fixed \(l\) by Bafna et al.)

\section*{Progressive alignment}
- A heuristic approach proposed by Feng and Doolittle.
- It iteratively merges the most similar pairs.
- "Once a gap, always a gap"


The time for progressive alignment in most cases is roughly the order of the time for computing all pairwise alignment, i.e., \(O\left(k^{2} n^{2}\right)\).

\section*{Concluding remarks}
- Three essential components of the dynamicprogramming approach:
- the recurrence relation
- the tabular computation
- the traceback
- The dynamic-programming approach has been used in a vast number of computational problems in bioinformatics.```

