Dynamic-Programming Strategies for
Analyzing Biomolecular Sequences

Kun-Mao Chao
Department of Life Science
National Y ang-Ming University, Taiwan
2002 In Singapore

E-mall: kmchao@ym.edu.tw
WWW: http://www.ym.edu.tw/~kmchao

1881
1991
2002
2112




Dynamic Programming

e Dynamic programming Is a class of solution

methods for solving sequential decision
problems with a compositional cost

structure.

* Richard Bellman was one of the principal
founders of this approach.




Two key ingredients

e Two key ingredients for an optimization problem
to be suitable for a dynamic-programming solution:

1. optimal substructures 2. overl appl ng subprobl ems

- C -

\/ Subprobl ems are dependent

Each substructureisoptimal.  (otherwise, a divide-and-conquer
(Principle of optimality) approach is the choice.)

3




Three basic components

* The development of a dynamic-programming
algorithm has three basic components:

— The recurrence relation (for defining the value of
an optimal solution);

— The tabular computation (for computing the value
of an optimal solution);

— The traceback (for delivering an optimal solution).




Fibonaccl numbers

The Fibonacci numbers are defined by the
following recurrence:




How to compute F,, 7

o

\l

o
O

11 T1 T1 TI
\l

o




Tabular computation

e The tabular computation can avoid
recompuation.

Fo

F1

F>

F3

0

1

1

2

13

21

34

29




M aximum-sum Interval

» Glven a sequence of real numbers a,a....a,,

find a consecutive subsequence with the
maximum sum.

9 317 -1523-42-76-2814-9

For each position, we can compute the maximum-sum
Interval starting at that position in O(n) time. Therefore, a
naive algorithm runs in O(n?) time.




O-notation: an asymptotic upper bound

e f(n) = O(g(n)) Iff there exist two positive
constant cand nysuchthat 0  f(n) cg(n)
foraln n,

A

@




How functions grow?

function
\ 30n| 92nlogn| 26n°|0.68n°| 2"

0.0026 0.00068 | 4 x 10%6
SEC. SEC. yI.

100 | 0.003 sec. 0.003 sec.

100,000 | 3.0sec. 26min. | 3.0days 22 yr.

(Assume one million operations per second.)

For large data sets, algorithms with a complexity
greater than O(n log n) are often impractical!

10




Maximum-sum interval
(The recurrence relation)

e Define i) to be the maximum sum of the
Intervals ending at position |.

g

\J/

If J(i-1) <0, concatenating a with its previous
Interval gives less sum than a, itself.

11




Maximum-sum interval
(Tabular computation)

931 7-1523 -42-76-2 8 4-9

S(i) 9 6714 -125 13 -46 4127
T<<< < T<<<< T<<<<

The maximum sum

12




Maximum-sum Interval
(Traceback)

9 31 7-1523-42-76-2 8 4 -9
S(i) 9 6714 -125 13 -46 4 12(16) 7

T( < < < T( < < < T< < < <

The maximum-sum interval: 6 -2 8 4

13




Defining scores for alignment columns

 Infocon [Stojanovic et al., 1999]

— Each column is assigned a score that measures its
Information content, based on the frequencies of the
letters both within the column and within the alignment.

-
TAACA
GAACA

CA-

—CGGA
' TGAA

'AGTA

14




Defining scores (cont’ d)

e phylogen [Stojanovic et al., 1999]
— columns are scored based on the evolutionary
relationships among the sequences implied by a
supplied phylogenetic tree.

Score=1 Score=2

15




Two fundamental problems we recently
solved (joint work with Lin and Jiang)

e Glven asequence of real numbers of length
n and an upper bound U, find a consecutive
subsequence of length at most U with the
maximum sum --- an O(n)-time algorithm.

U=3
9 317 -1523 -42-76-2084-9

16




Two fundamental problems we recently
solved (Jjoint work with Lin and Jiang)

Glven a seguence of real numbers of length
n and alower bound L, find a consecutive
subsequence of length at least L with the
maximum average. --- an O(n log L)-time

algorithm.
L =14

3214606 2|10 2 6 6 14

a1

17




Another example

Glven a sequence as follows:
2,6.6,6.6,3,7,6,7,2

and L = 2, the highest-average interval isthe
sguared area, which has the average value
20/3.

2, 6.6, 6.6, 3,|7, 6, 7,2

18




C+Grichregions

* Our method can be used to locate aregion
of length at least L with the highest C+G

ratioin O(nlog L) time.

ATGACTCGAGCCTCGTCA
00101011011011010 <«—

Search for an
Interval of length
at least L with the
highest average.

19




L ength-unconstrained version

 Maximum-average interval

32140662 1026614 21

The maximum element 1s the answer. It can
be done in O(n) time.

20




A nalve algorithm

* A simple shift algorithm can compute the
highest-average interval of afixed length in
O(n) time

e TryL,L+1, L+2, ..., n. Intotal, O(n?).

21




A pigeonhole principle

* Noticethat the length of an optimal interval
IS bounded by 2L, we immediately have an
O(nL)-time algorithm.

We can bisect aregion of length >= 2L into two
segments, where each of them is of length >= L.

22




Future Devel opment

e Best k (nonintersecting) subsequences?

 Max-average with both upper and lower
length bounds

o Genera (gapped) local aignment with
length upper bound.

 Measurement of goodness?

23




L ongest increasing subsequence(L1S)

 Thelongest increasing subsequenceisto find a
longest increasing subsequence of agiven
sequence of distinct integersa,a,...a,, .

eg. 9 2 5 3 7 11 8 10 13 6

2 3 7 . :
} are increasing subseguences.
5 7 10 13- “—

9 7 11
3 5 11 13

We want to find alongest one.

} are not increasi ng subseguences.

24




A nave approach for LIS
o Let L[i] bethelength of alongest increasing
subsequence ending at position I.

L[] =1+max;_qaLl] &< a}
(use a dummy a, = minimum, and L[0]=0)

O 25 37 11 8 10 13 6
L[i]1 1 2 2 3 4 ?

‘u%JTT

25




A nave approach for LIS

Lf=1+max; o 1L0] |8 < &

925 3 11 |8 |10 6
i]1 1 2 3

7
3
RS

The subseguence 2, 3, 7, 8, 10, 13 isalongest
Increasi ng subseguence.

This method runsin O(n?) time.

26




Binary search

» Glven an ordered sequence XX, ... X., where
X <X< ... <X, and anumber y, a binary
search finds the largest x; such that x< y In
O(log n) time.

e ~

e n/4 {

n< -

27




Binary search

 How many steps would a binary search
reduce the problem sizeto 1?

n n/f2 nf4 nl8 nfl6 ... 1

N !
—~

How many steps? O(log n) steps.

28




An O(nlog n) method for LIS

* Define BestEnd[k] to be the smallest number of an
INncreasing subsequence of length k.

92537 11 8 10 13 6

9|l2]2)lall2]22]]2]|2 +— BestEnd[1
5313/ 3] 3||3] 3 «— BestEnd[2

7| 74 74 7 1 7 «— BestEnd[3]

11 8'|| 8,|| 8 «— BestEnd[4

10/ 10, ~ +— BestEnd[5

13 «— BestEnd[6]

29




An O(nlog n) method for LIS

* Define BestEnd[k] to be the smallest number of an
INncreasing subsequence of length k.

92537 11 8 10 13 6

9112/12]|2]|2| 2| 2]| 2| 2| 2|« Beskndl
5113|331 3||3]| 3] 3,|«—BestEnd(2

7| 74 74 7 7 6| +«— BestEnd[3]

11/ 8| 8,/ 8| 8 |+— BestEnd[4

For each position, we perform T N
a binary search to update 10'|| 10,|| 10 | «— BestEnd[5
BestEnd. Therefore, the 13| 13 | «— BestEnd[6]
running time is O(n log n). 30




L ongest Common Subsequence (LCS)

A subseguence of a seguence Sis obtained
by deleting zero or more symbolsfrom S
For example, the following are all
subsequences of “president”: pred, sdn,
predent.

e Thelongest common subseguence problem

IS to find a maximum-length common
subseguence between two sequences.

31




For Instance,

WO

Seguence 1: president
Seguence 2: providence

Its LCS

or esi o

|k

IS priden.

ent

RN

Or oVI1

ence

32




WO

Another example:
Seguence 1: algorithm
Seguence 2: alignment

Oneof itsLCSisalgm.

al gor i t hm

N A

al 1 gnment

33




How to compute LCS?

 Let A=a,a,...a,,and B=Db;b,...b .
e len(l, )): thelength of an LCS between
a,8,...3;and byb,...b
o With proper initializations, len(i, j)can be
computed as follows.




35




36




37




38




Dot Matrix

Sequence A @ CTTAACT
Sequence B : CGGATCAT

C G G A T C A T
C—=< O
T O O
T O O
A O C
A O O
C O O
T 39

Q
O




Pairwise Alignment

Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

C- - - TTAACT <«—— Sequence A
CGCGATCA- - T «—SequenceB

40




Pairwise Alignment

Sequence A: CTTAACT
Sequence B: CGGATCAT

An alignment of A and B:

| nsertion Deletion
gap gap

41




Alignment Graph
Sequence A: CTTAACT

Sequence B: CGGATCAT
C G G A T C A

C---TTAACT
CCRAATCA--T

=1 O >» » 4 4 O

42




A simple scoring scheme

o Match: +8 (W(Xx, y) = 8, if x =)
e« Mismatch: -5 (W(X, y) = -5, if X # V)

e Each gap symbol: -3 (W(-,X)=w(X,-)=-3)

C---TTAACT

CGGATCA- - T
+8 -3 -3 -3 +8 -5 +8 -3 -3 +8 =

+12

43




An optimal alignment

-- the alignment of maximum score

 Let A=a,a,...a,,and B=Db;b,...b .
* §;: the score of an optimal alignment between
a,8,...3;and byb,...b
* With proper initializations, § ; can be computed
as follows.




Computing § ;




Initializations

C G G A T C A T
0 -3|-6|-9]|-12|-15|-18|-21|-24

4 0 > > 4 4 0O
.
N

46




N~
4

-10-13

-4
-
-

-12(-15|-18|-21|-24
-7
A

-1
3
-5

»

=9
2
0
-2

-6
S}
3
0

Cc G G AT C A T

-3
38
5
2

0
-3
6
-9
-12
-15
-18
-21




T @\
Eg 7
D 0
@
_.
< | ™
_|n4_1__n/__9653M
—
A2m1A__.7864
| I |
QD I~ ] N
C1___4_O_96
Q- (S [T I~ o |m |a | |
|
Nild o |0 ™
—— A1_____630_
LO) — | <
30,69202561__1__
N
Ol |v ™o |V 9P D |
o
O|® | |wv |~ T I¥ K=
N [ [0 |
© |V TP [F | [T S

C
T
T
A
A
C
T




—
| <
O O
<
< <<
= O
= O
ON®

8—5-5+8 -5 +8 -3+8=14

Cc G G AT C A T

(©))
4

9

3

-10-13

4

6

4 |14

-7

-1

9
6

-4

-2

-121-15|-18|-21|-24

=1l

-5 | D
6
3

-3 | 8

=5,

2

-2

-5

-8

-111 O

-6

S

0
=

-6

=2,

=&
8

2

-1

4

-7

0
-3

-9

-12

-15

-18

-21(-10(-12|-14

A
A

C
-




Global Alignment vs. Local Alignment

e global alignment:

e |ocal alignment:

50




An optimal local alignment

* §;: the score of an optimal local alignment ending
a aandb

* With proper initializations, § ; can be computed
as follows.

51




o
Lo

local alignment
C G G A T C A T
0
0
0
0
8

Mismatch: -5
Gap symbol: -3

0 0]
=
O
©
=




53

(ab)
< ¥

o
S
7p
‘3

0

S}

3

2
3 13|10
2 11| 8

0
0
38
38
5
5

3 13|10 7
2 113|110| 8 | 18°

0
2
0
0
0
0
2
0

local alignment
C G G A T C A T
0
0
0
0
38
38
5

Mismatch: -5
Gap symbol: -3

0 0]
=
O
©
=




54

(ab)
< ¥

o
S
7p
‘3

0

S

3

2
3 13|10
2 11| 8

0
0
38
38
5
5

3 (1310 7
2 113|110| 8 | 18°

0
2
0
0
0
0
2
0

Cc G G AT C A T
0
0
0
0
38
38
5

0
— o (00 LO [ QN o o (00 LO
[
— — oo o o o o o o o o
+
<L O F - < < O F
O O o
+
| — ™
< < ©




Affine gap penalties

« Match: +8 (W(x,y) = 8, 1f x =)

e Mismatch: -5 (W(X,y) = -5, If X V)

o Each gap symbol: -3 (W(-,X)=w(X,-)=-3)

e Each gap Is charged an extra gap-open penalty: -4.

bR .
C---TTAACT
CGGATCA- - T

+8 -3 -3 -3 +8 -5 +8 -3 -3 +8 =

+12

Alignment score: 12—-4-4=4

5




Affine gap panalties

* A gap of length kispenalized x + k-y.

gap-open penal ty]

Three cases for alignment endings:
1. ... X : :
¥ }anallgnedpaw
2. ...X :
~_ | adeletion

3. ...- : :
___X}anlnsertlon

gap-symbol penalty

56




Affine gap penalties

e Let D(I, ]) denote the maximum score of any
alignment between a,a,...a and b;b,...b, ending
with a deletion.

e Letl(l, ]) denote the maximum score of any
alignment between a,a,...a;and b;b,...b, ending
with an insertion.

e Let i, ]) denote the maximum score of any
alignment between a,a,...a and b;b,...b;.

S7




Affine gap penalties




Affine gap penalties

o3 23,
2408




k best local alignments

o Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)

e FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

e BLAST
(Altschul et al., 1990; Altschul et al., 1997)

60




k best local alignments

e Smith-Waterman
(Smith and Waterman, 1981; Waterman and Eggert, 1987)
— linear-space version : sim (Huang and Miller, 1991)
— linear-space variants : sim2 (Chao et al., 1995); sm3 (Chao et al., 1997)

e FASTA
(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)
— linear-space band alignment (Chao et al., 1992)

e BLAST
(Altschul et al., 1990; Altschul et al., 1997)
— restricted affine gap penalties (Chao, 1999)

61




1)

2)
)

4)

FASTA

Find runs of identities, and identify
regions with the highest density of
Identities.

Re-score using PAM matrix, and keep top
Scoring segments.

Eliminate segments that are unlikely to be
part of the alignment.

Optimize the alignment in a band.

62




FASTA

Step 1. Find runes of identities, and identify regions
with the highest density of identities.

NN \\ N
\\\\\ :
N\ N\
N
AN

N

N

\ N

N\

63




FASTA

Step 2: Re-score using PAM matrix, and
keep top scoring segments.

N D\ \\ N
\\\\\ \
L N\
N
AN

N

N

\ N

N




FASTA

Step 3: Eliminate segments that are unlikely to be part of
the alignment.

N

W\

AN
N\

65




FASTA

Step 4: Optimize the alignment in a band.

66




BLAST

1) Build the hash table for Sequence A.
2) Scan Seguence B for hits.
3) Extend hits.

67




BLAST

Step 1: Build the hash table for Sequence A. (3-tuple example)
For DNA sequences. For protein sequences:

Seq. A= ELVIS

Seq. A = AGATCGAT

" Lz Add xyz to the hash table
AAC If Score(xyz, ELV) = T,
el g Add xyz to the hash table
- If Score(xyz, LVI) =T,
ATG—3 Add xyz to the hash table
CCA  +5 If Score(xyz, VIS = T,
.G.AT 2 6

TCG 4

TTT
68




BLAST
Step2: Scan sequence B for hits.

69




BLAST
Step2: Scan sequence B for hits.

Step 3: Extend hits.

" BLAST 20 sves )
the time spent in
extension, and

I <—hit considers gapped
Terminateif the! alignments. N

score of the
sxtension fades
away.

70




Remarks

* Filtering Is based on the observation that a
good alignment usually includes short
Identical or very similar fragments.

e Theideaof filtration was used in both
FASTA and BLAST.

71




L Inear-space Ideas
Hirschberg, 1975; Myers and Miller, 1988

m/2

72




Two subproblems

Y5 original problem size

m/4\

m/2

\3m/4

73




Four subproblems

Yaoriginal problem size

m/4

m/2

3m/4

74




Time and Space Complexity

o Space: O(M+N)

e TIMe

O(MN)*(1+ Yo+ Y4+ ...) = O(MN)
. J

o
2

I6)




Band Alignment
(Joint work with W. Pearson and W. Miller)

Seguence A

g 9ouanbag

76




Band Alignment In Linear Space

The remaining subproblems are no
longer only half of the original
problem. In worst case, this could
cause an additional log n factor in
time.

77




Band Alignment In Linear Space

78




Multiple seqguence alignment (MSA)

* The multiple sequence alignment problem isto
simultaneously align more than two seguences.

Seql: GCTC GC-TC
Seq2: AC A---C
Seq3: GATC G ATC

79




How to scorean MSA?

o Sum-of-Pairs (SP-score)

GCC-TC
Score
A---C
T GC-TCH +
- GCC-TC
A---C — ore
Score G ATC
G ATC 4

80




MSA for three sequences

e an O(n3) algorithm

.

81




General M SA

For k sequences of length n: O(n)
NP-Complete (Wang and Jiang)

The exact multiple alignment algorithms for
many seguences are not feasible.

Some approximation algorithms are given.
(e.q., 2- l/k for any fixed | by Bafna et al.)

82




Progressive alignment

A heuristic approach proposed by Feng and Doalittle.
e |titeratively mergesthe most ssmilar pairs.
* “Once agap, aways agap’

The time for progressive
alignment in most cases s

AN
roughly the order of the time
for computing all pairwise
alignment, i.e., O(k°n?) .

83




Concluding remarks

e Three essential components of the dynamic-
programming approach:

— the recurrence relation
— the tabular computation
— the traceback

e The dynamic-programming approach has
been used In avast number of computational
problems in bioinformatics.




