Dynamic-Programming Strategies for Analyzing Biomolecular Sequences

Kun-Mao Chao
Department of Life Science
National Yang-Ming University, Taiwan
2002 in Singapore

E-mail: kmchao@ym.edu.tw

WWW: http://www.ym.edu.tw/~kmchao

1881

1991

2002

2112

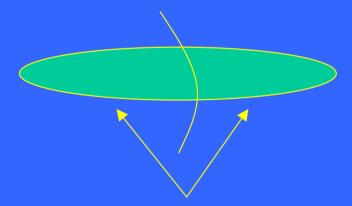
Dynamic Programming

- Dynamic programming is a class of solution methods for solving sequential decision problems with a compositional cost structure.
- Richard Bellman was one of the principal founders of this approach.

Two key ingredients

• Two key ingredients for an optimization problem to be suitable for a dynamic-programming solution:

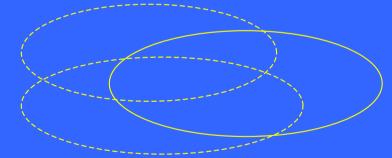
1. optimal substructures



Each substructure is optimal.

(Principle of optimality)

2. overlapping subproblems



Subproblems are dependent.

(otherwise, a divide-and-conquer approach is the choice.)

Three basic components

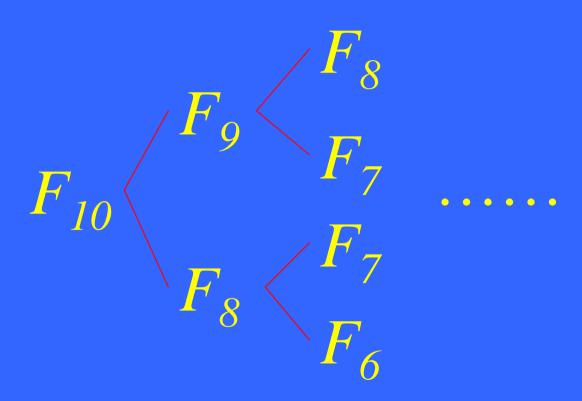
- The development of a dynamic-programming algorithm has three basic components:
 - The recurrence relation (for defining the value of an optimal solution);
 - The tabular computation (for computing the value of an optimal solution);
 - The traceback (for delivering an optimal solution).

Fibonacci numbers

The *Fibonacci numbers* are defined by the following recurrence:

$$F_0 = 0$$
 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ for $i > 1$.

How to compute F_{10} ?



Tabular computation

• The tabular computation can avoid recomputation.

F_0	F_{I}	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}
0	1	1	2	3	5	8	13	21	34	55

Maximum-sum interval

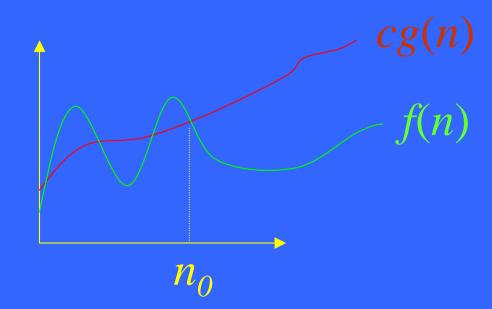
• Given a sequence of real numbers $a_1 a_2 ... a_n$, find a consecutive subsequence with the maximum sum.

```
9 -3 1 7 -15 2 3 -4 2 -7 6 -2 8 4 -9
```

For each position, we can compute the maximum-sum interval starting at that position in O(n) time. Therefore, a naive algorithm runs in $O(n^2)$ time.

O-notation: an asymptotic upper bound

• f(n) = O(g(n)) iff there exist two positive constant c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$



How functions grow?

function n	30n	92 <i>n</i> log <i>n</i>	$26n^2$	$0.68n^3$	2^n	
100	0.003 sec.	0.003 sec.	0.0026 sec.	0.00068 sec.	4 x 10 ¹⁶ yr.	
100,000	3.0 sec.	2.6 min.	3.0 days	22 yr.		

(Assume one million operations per second.)

For large data sets, algorithms with a complexity greater than $O(n \log n)$ are often impractical!

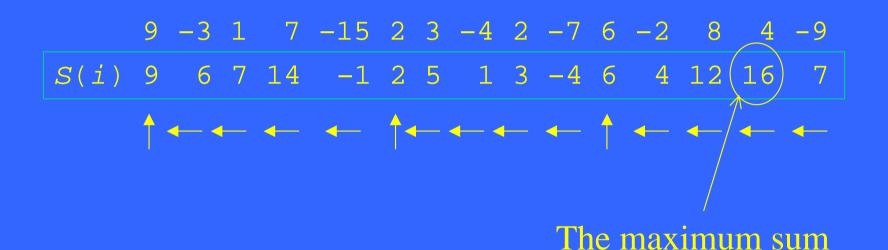
Maximum-sum interval (The recurrence relation)

• Define S(i) to be the maximum sum of the intervals ending at position i.

$$S(i) \leftarrow a_i + \max \begin{cases} S(i-1) \\ 0 \end{cases}$$

If S(i-1) < 0, concatenating a_i with its previous interval gives less sum than a_i itself.

Maximum-sum interval (Tabular computation)



Maximum-sum interval (Traceback)

The maximum-sum interval: 6 -2 8 4

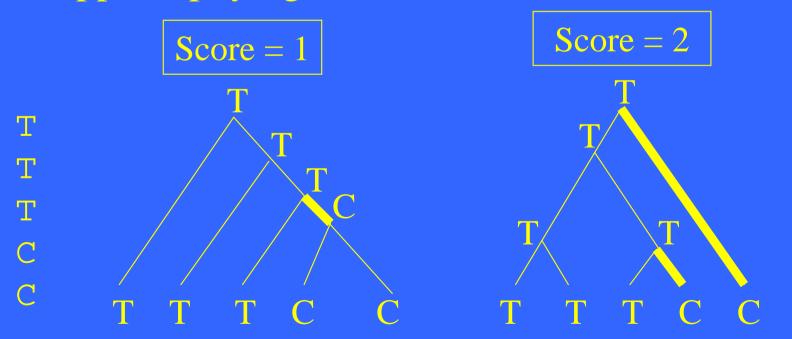
Defining scores for alignment columns

- infocon [Stojanovic et al., 1999]
 - Each column is assigned a score that measures its information content, based on the frequencies of the letters both within the column and within the alignment.

CGGATCAT—GGA CTTAACATTGAA GAGAACATAGTA

Defining scores (cont'd)

- phylogen [Stojanovic et al., 1999]
 - columns are scored based on the evolutionary relationships among the sequences implied by a supplied phylogenetic tree.



Two fundamental problems we recently solved (joint work with Lin and Jiang)

• Given a sequence of real numbers of length n and an upper bound U, find a consecutive subsequence of length at most U with the maximum sum --- an O(n)-time algorithm.

$$U = 3$$

9 -3 1 7 -15 2 3 -4 2 -7 6 -2 8 4 -9

Two fundamental problems we recently solved (joint work with Lin and Jiang)

• Given a sequence of real numbers of length n and a lower bound L, find a consecutive subsequence of length at least L with the maximum average. --- an $O(n \log L)$ -time algorithm.

$$L=4$$

3 2 14 6 6 2 10 2 6 6 14 2 1

Another example

Given a sequence as follows:

2, 6.6, 6.6, 3, 7, 6, 7, 2

and L=2, the highest-average interval is the squared area, which has the average value 20/3.

2, 6.6, 6.6, 3, 7, 6, 7, 2

C+G rich regions

• Our method can be used to locate a region of length at least L with the highest C+G ratio in $O(n \log L)$ time.

ATGACTCGAGCTCGTCA S 00101011011011010 ← i

Search for an interval of length at least *L* with the highest average.

Length-unconstrained version

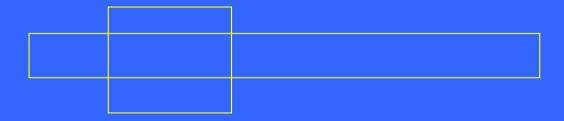
Maximum-average interval

3 2 14 6 6 2 10 2 6 6 14 2 1

The maximum element is the answer. It can be done in O(n) time.

A naive algorithm

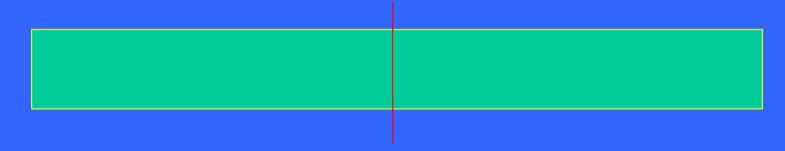
 A simple shift algorithm can compute the highest-average interval of a fixed length in O(n) time



• Try L, L+1, L+2, ..., n. In total, $O(n^2)$.

A pigeonhole principle

• Notice that the length of an optimal interval is bounded by 2L, we immediately have an O(nL)-time algorithm.



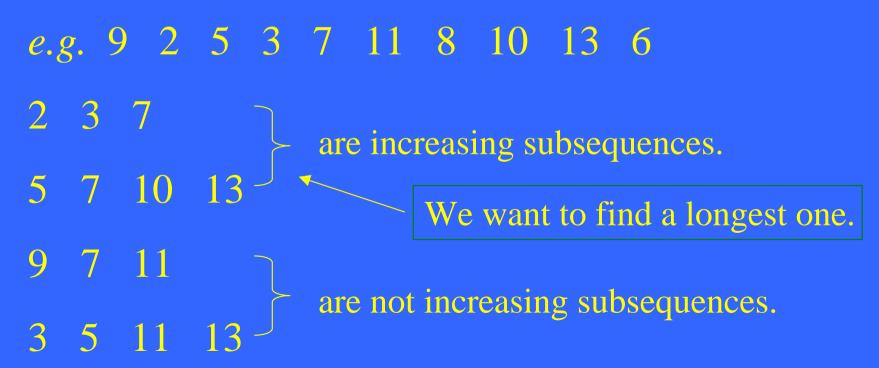
We can bisect a region of length >= 2L into two segments, where each of them is of length >= L.

Future Development

- Best *k* (nonintersecting) subsequences?
- Max-average with both upper and lower length bounds
- General (gapped) local alignment with length upper bound.
- Measurement of goodness?

Longest increasing subsequence(LIS)

• The longest increasing subsequence is to find a longest increasing subsequence of a given sequence of distinct integers $a_1 a_2 ... a_n$.



A naive approach for LIS

• Let *L*[*i*] be the length of a longest increasing subsequence ending at position *i*.

```
L[i] = 1 + \max_{j=0..i-1} \{L[j] \mid a_j < a_i\}
(use a dummy a_0 = \text{minimum}, and L[0] = 0)
```

A naive approach for LIS

$$L[i] = 1 + \max_{j = 0..i-1} \{L[j] \mid a_j < a_i\}$$

$$9 2 5 3 7 11 8 10 13 6$$

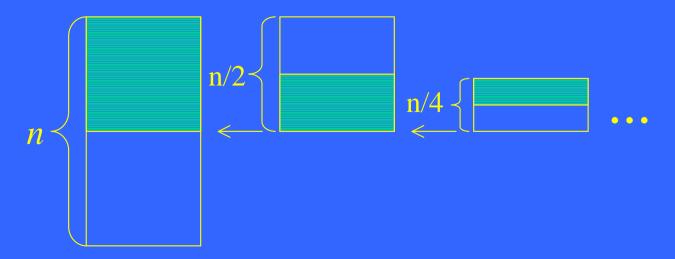
$$L[i] 1 1 2 2 3 4 4 5 6 3$$
The maximum length

The subsequence 2, 3, 7, 8, 10, 13 is a longest increasing subsequence.

This method runs in $O(n^2)$ time.

Binary search

• Given an ordered sequence $x_1x_2...x_n$, where $x_1 < x_2 < ... < x_n$, and a number y, a binary search finds the largest x_i such that $x_i < y$ in $O(\log n)$ time.



Binary search

• How many steps would a binary search reduce the problem size to 1?

$$n = n/2 = n/4 = n/8 = n/16 \dots 1$$

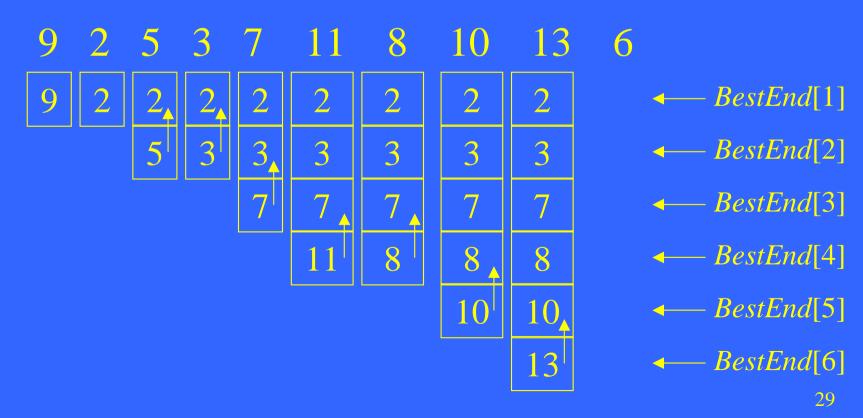
How many steps? $O(\log n)$ steps.

$$n/2^{s} = 1$$

$$\Rightarrow s = \log_2 n$$

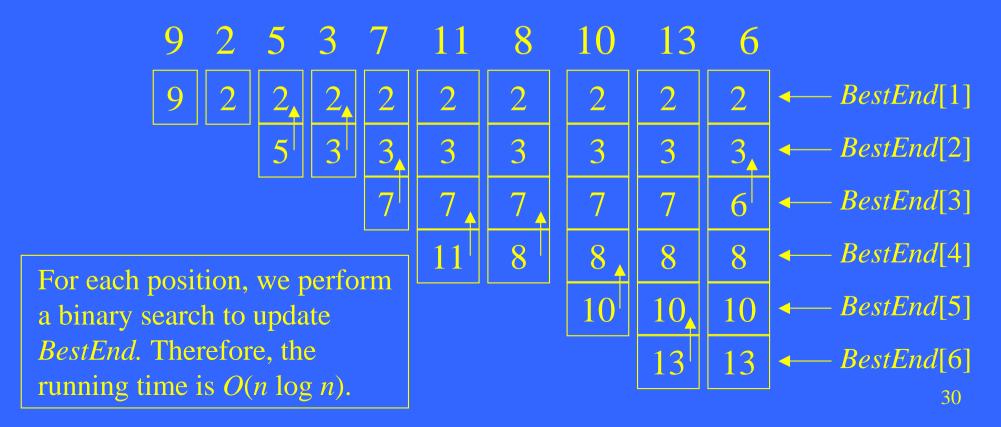
An $O(n \log n)$ method for LIS

• Define *BestEnd*[*k*] to be the smallest number of an increasing subsequence of length *k*.



An $O(n \log n)$ method for LIS

• Define *BestEnd*[*k*] to be the smallest number of an increasing subsequence of length *k*.



Longest Common Subsequence (LCS)

- A subsequence of a sequence *S* is obtained by deleting zero or more symbols from *S*. For example, the following are all subsequences of "president": pred, sdn, predent.
- The longest common subsequence problem is to find a maximum-length common subsequence between two sequences.

LCS

For instance,

Sequence 1: president

Sequence 2: providence

Its LCS is priden.

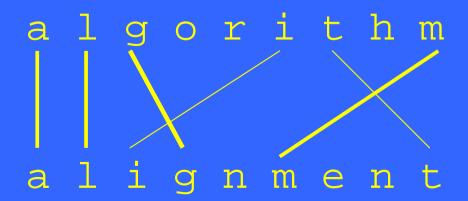
LCS

Another example:

Sequence 1: algorithm

Sequence 2: alignment

One of its LCS is algm.



How to compute LCS?

- Let $A=a_1a_2...a_m$ and $B=b_1b_2...b_n$.
- len(i, j): the length of an LCS between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_j$
- With proper initializations, *len(i, j)*can be computed as follows.

$$len(i, j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ len(i-1, j-1) + 1 & \text{if } i, j > 0 \text{ and } a_i = b_j, \\ \max(len(i, j-1), len(i-1, j)) & \text{if } i, j > 0 \text{ and } a_i \neq b_j. \end{cases}$$

procedure LCS-Length(A, B)

- 1. **for** $i \leftarrow 0$ **to** m **do**len(i,0) = 0
- 2. **for** $j \leftarrow 1$ **to** n **do**len(0,j) = 0
- 3. for $i \leftarrow 1$ to m do
- 4. **for** $j \leftarrow l$ **to** n **do**

5. **if**
$$a_i = b_j$$
 then
$$\begin{bmatrix} len(i,j) = len(i-1,j-1) + 1 \\ prev(i,j) = len(i-1,j-1) + 1 \end{bmatrix}$$

6. **else if**
$$len(i-1, j) \ge len(i, j-1)$$

7. **then**
$$\begin{bmatrix} len(i,j) = len(i-1,j) \\ pren(i,j) = " & " \end{bmatrix}$$

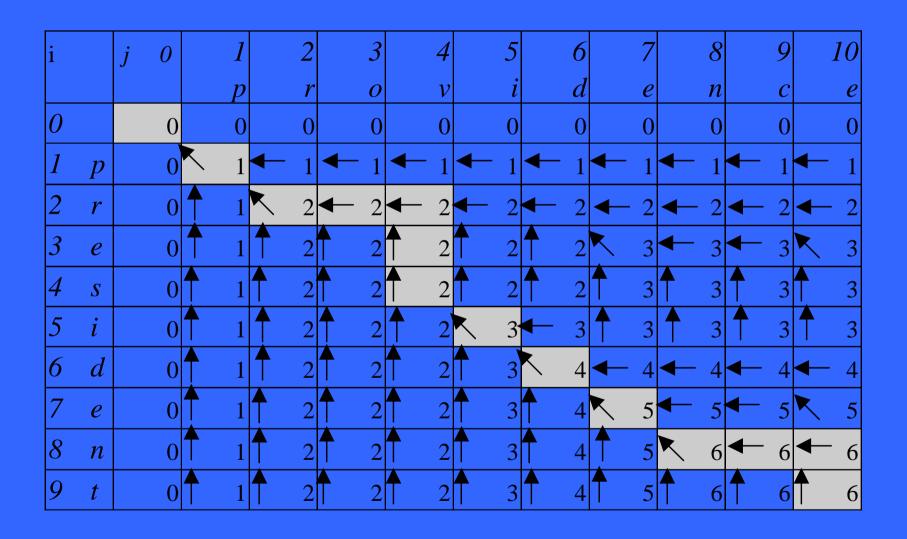
8. else
$$\begin{bmatrix} len(i,j) = len(i,j-1) \\ prev(i,j) = \text{"} - \text{"} \end{bmatrix}$$

9. **return** len and prev

i		j (0	-	1	2	3	4	5	6	7	8	9	10
				1	p	r	0	ν	i	d	e	n	С	e
0			0		0	0	0	0	0	0	0	0	0	0
1	p		0	<u> </u>	1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1	← 1
2	r		0		1	2	← 2	— 2	<u> </u>	— 2	← 2	← 2	← 2	← 2
3	e		0		1	1 2	2	2	2	\uparrow 2	3	← 3	← 3	3
4	S		0		1	\uparrow 2	2	\uparrow 2	\uparrow 2	\uparrow 2	3	3	3	3
5	i		0		1	1 2	2	\uparrow 2	3	← 3	3	3	3	3
6	d		0		1	1 2	2	2	3	4	← 4	← 4	← 4	← 4
7	e		0		1	2	2	2	3	4	5	← 5	← 5	× 5
8	n		0		1	2	2	2	3	4	5	6	← 6	← 6
9	t		0		1	\uparrow 2	2	2	3	4	5	6	6	6

```
procedure Output-LCS(A, prev, i, j)
```

- 1 if i = 0 or j = 0 then return
- **if** prev(i, j) = " **then** $\begin{bmatrix} Output LCS(A, prev, i-1, j-1) \\ print a_i \end{bmatrix}$
- **else if** prev(i, j) =" $^+$ " **then** Output-LCS(A, prev, i-1, j)
- **else** Output-LCS(A, prev, i, j-1)

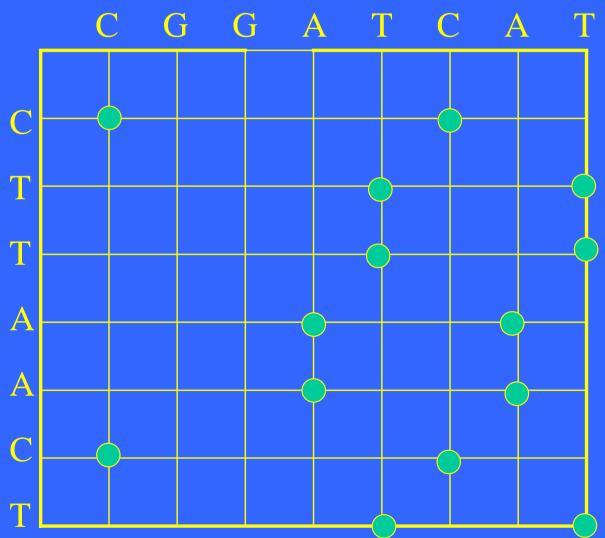


Output: priden

Dot Matrix

Sequence A: CTTAACT

Sequence B: CGGATCAT



Pairwise Alignment

Sequence A: CTTAACT

Sequence B: CGGATCAT

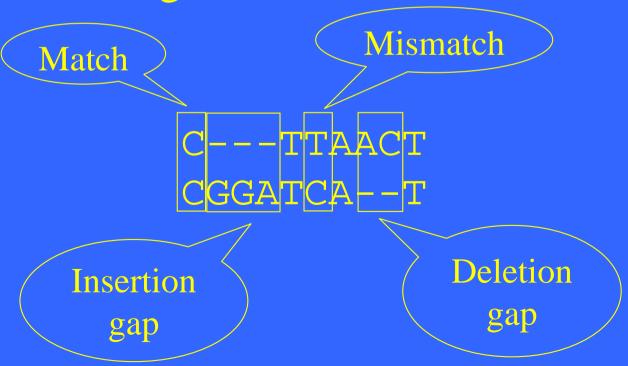
An alignment of A and B:

Pairwise Alignment

Sequence A: CTTAACT

Sequence B: CGGATCAT

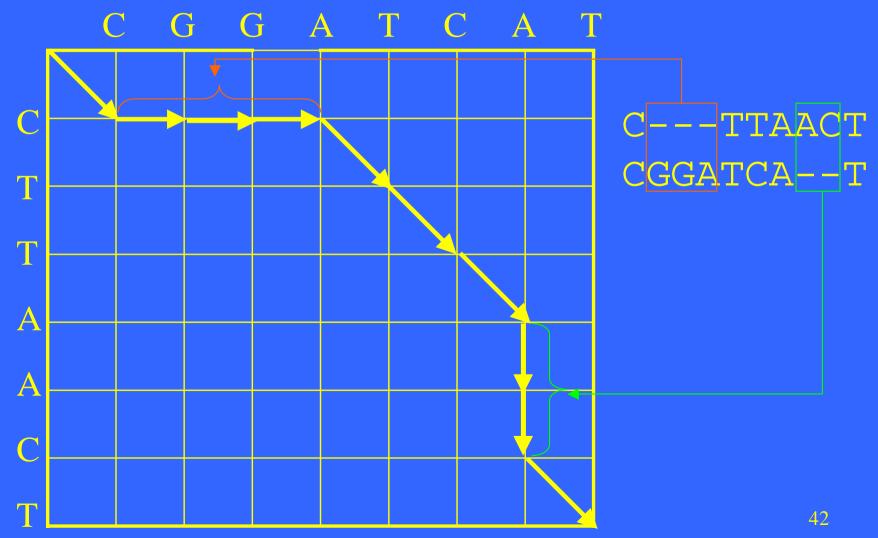
An alignment of A and B:



Alignment Graph

Sequence A: CTTAACT

Sequence B: CGGATCAT



A simple scoring scheme

- Match: +8 (w(x, y) = 8, if x = y)
- Mismatch: -5 $(w(x, y) = -5, \text{ if } x \neq y)$
- Each gap symbol: -3 (w(-,x)=w(x,-)=-3)

$$C - - - T T A A C T$$
 $C G G A T C A - T$
 $+8 -3 -3 -3 +8 -5 +8 -3 -3 +8 = +12$

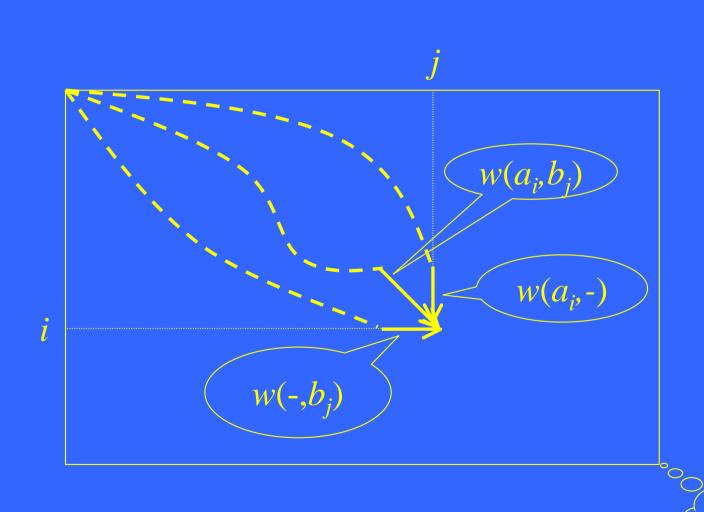
An optimal alignment

-- the alignment of maximum score

- Let $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$.
- $S_{i,j}$: the score of an optimal alignment between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_j$
- With proper initializations, $S_{i,j}$ can be computed as follows.

$$S_{i,j} = \max \begin{cases} S_{i-1,j} + w(a_i, -) \\ S_{i,j-1} + w(-, b_j) \\ S_{i-1,j-1} + w(a_i, b_j) \end{cases}$$

Computing $S_{i,j}$



Initializations

		C	G	G	A	T	C	A	T
	0	-3	-6	-9	-12	-15	-18	-21	-24
C	-3								
T	-6								
T	-9								
A	-12								
A	-15								
C	-18								
T	-21								

$$S_{3,5} = ?$$

		C	G	G	A	T	C	A	T
	0	-3	-6	-9	-12	-15	-18	-21	-24
C	-3	8	5	2	-1	-4	-7	-10	-13
T	-6	5	3	0	-3	7	4	1	-2
T	-9	2	0	-2	-5	?			
A	-12								
A	-15								
C	-18								
T	-21								

$$S_{3,5} = ?$$

		C	G	G	A	T	C	A	T
	0	-3	-6	-9	-12	-15	-18	-21	-24
C	-3	8	5	2	-1	-4	-7	-10	-13
T	-6	5	3	0	-3	7	4	1	-2
T	-9	2	0	-2	-5	5	-1	-4	9
A	-12	-1	-3	-5	6	3	0	7	6
A	-15	-4	-6	-8	3	1	-2	8	5
C	-18	-7	-9	-11	0	-2	9	6	3 <
T	-21	-10	-12	-14	-3	8	6	4	14 ^e

optimal score

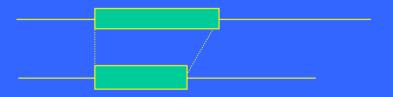
C T T A A C - T
C G G A T C A T
8-5-5+8-5+8-3+8=14

		C	G	G	A	T	C	A	T
	0	-3	-6	-9	-12	-15	-18	-21	-24
C	-3	8	5	2	-1	-4	-7	-10	-13
T	-6	5	3	0	-3	7	4	1	-2
T	-9	2	0	-2	-5	5	-1	-4	9
A	-12	-1	-3	-5	6	3	0	7	6
A	-15	-4	-6	-8	3	1	-2	8	5
C	-18	-7	-9	-11	0	-2	9	6	3
T	-21	-10	-12	-14	-3	8	6	4	14

Global Alignment vs. Local Alignment

• global alignment:

• local alignment:



An optimal local alignment

- $S_{i,j}$: the score of an optimal local alignment ending at a_i and b_j
- With proper initializations, $S_{i,j}$ can be computed as follows.

$$S_{i,j} = \max \begin{cases} 0 \\ S_{i-1,j} + w(a_i, -) \\ S_{i,j-1} + w(-, b_j) \\ S_{i-1,j-1} + w(a_i, b_j) \end{cases}$$

Match: 8

local alignment

Mismatch: -5

Gap symbol: -3

01: -3		C	G	G	A	T	C	A	T
	0	0	0	0	0	0	0	0	0
C	0	8	5	2	0	0	8	5	2
T	0	5	3	0	0	8	5	3	13
T	0	2	0	0	0	8	5	2	11
A	0	0	0	0	8	5	3	?	
A	0								
C	0								
T	0								

Match: 8

local alignment

Mismatch: -5

Gap symbol: -3

ری		C	G	G	A	T	C	A	T
	0	0	0	0	0	0	0	0	0
C	0	8	5	2	0	0	8	5	2
T	0	5	3	0	0	8	5	3	13
Т	0	2	0	0	0	8	5	2	11
A	0	0	0	0	8	5	3	13	10
A	0	0	0	0	8	5	2	11	8
C	0	8	5	2	5	3	13	10	7
Т	0	5	3	0	2	13	10	8	18°

The best score

$$A - C - T$$

 $A T C A T$
 $8-3+8-3+8 = 18$

		C	G	G	A	T	C	A	T
	0	0	0	0	0	0	0	0	0
C	0	8	5	2	0	0	8	5	2
Т	0	5	3	0	0	8	5	3	13
T	0	2	0	0	0	8	5	2	11
A	0	0	0	0	8	5	3	13	10
A	0	0	0	0	8	5	2	11	8
C	0	8	5	2	5	3	13	10	7
T	0	5	3	0	2	13	10	8	18°

The best score

- Match: +8 (w(x, y) = 8, if x = y)
- Mismatch: -5 $(w(x, y) = -5, \text{ if } x \neq y)$
- Each gap symbol: -3 (w(-,x)=w(x,-)=-3)
- Each gap is charged an extra gap-open penalty: -4.

Alignment score: 12 - 4 - 4 = 4

• A gap of length k is penalized $x + k \cdot y$.

Three cases for alignment endings:

gap-symbol penalty

```
\left\{\begin{array}{c} 1. \dots x \\ \dots x \end{array}\right\} an aligned pair
```

$$2 \cdot \dots \times$$
 a deletion

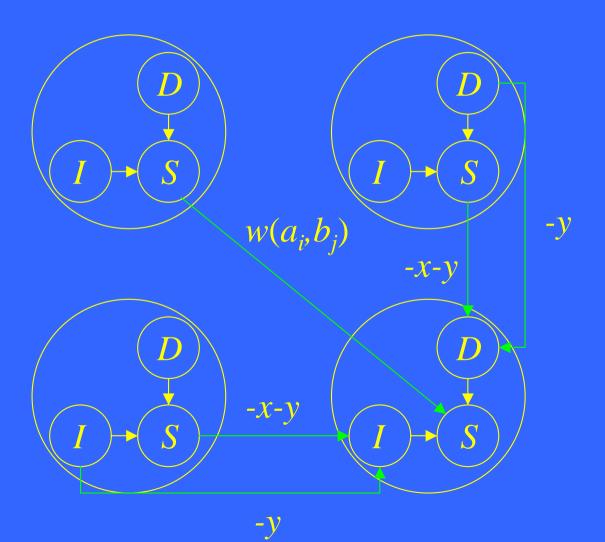
3. ...
$$\rightarrow$$
 an insertion

- Let D(i, j) denote the maximum score of any alignment between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_j$ ending with a deletion.
- Let I(i, j) denote the maximum score of any alignment between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_j$ ending with an insertion.
- Let S(i, j) denote the maximum score of any alignment between $a_1 a_2 ... a_i$ and $b_1 b_2 ... b_i$.

$$D(i, j) = \max \begin{cases} D(i-1, j) - y \\ S(i-1, j) - x - y \end{cases}$$

$$I(i, j) = \max \begin{cases} I(i, j-1) - y \\ S(i, j-1) - x - y \end{cases}$$

$$S(i, j) = \max \begin{cases} S(i-1, j-1) + w(a_i, b_j) \\ D(i, j) \\ I(i, j) \end{cases}$$



k best local alignments

- Smith-Waterman (Smith and Waterman, 1981; Waterman and Eggert, 1987)
- FASTA
 (Wilbur and Lipman, 1983; Lipman and Pearson, 1985)
- BLAST (Altschul et al., 1990; Altschul et al., 1997)

k best local alignments

Smith-Waterman

(Smith and Waterman, 1981; Waterman and Eggert, 1987)

- linear-space version : sim (Huang and Miller, 1991)
- linear-space variants: sim2 (Chao et al., 1995); sim3 (Chao et al., 1997)

FASTA

(Wilbur and Lipman, 1983; Lipman and Pearson, 1985)

linear-space band alignment (Chao et al., 1992)

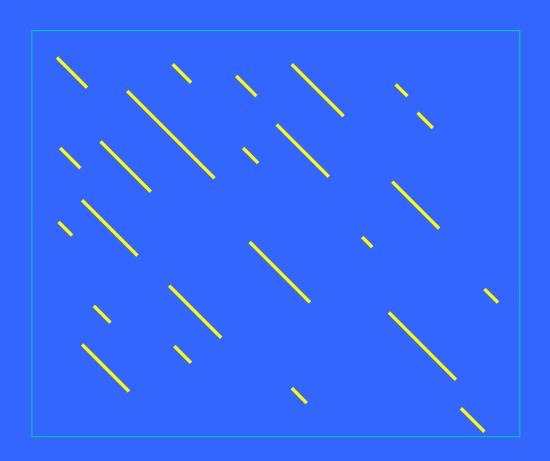
BLAST

(Altschul et al., 1990; Altschul et al., 1997)

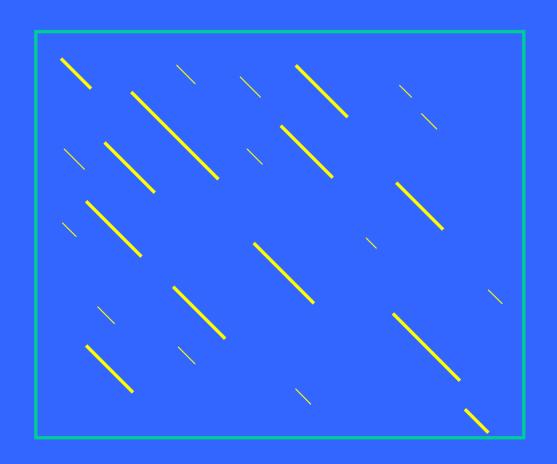
restricted affine gap penalties (Chao, 1999)

- 1) Find runs of identities, and identify regions with the highest density of identities.
- 2) Re-score using PAM matrix, and keep top scoring segments.
- 3) Eliminate segments that are unlikely to be part of the alignment.
- 4) Optimize the alignment in a band.

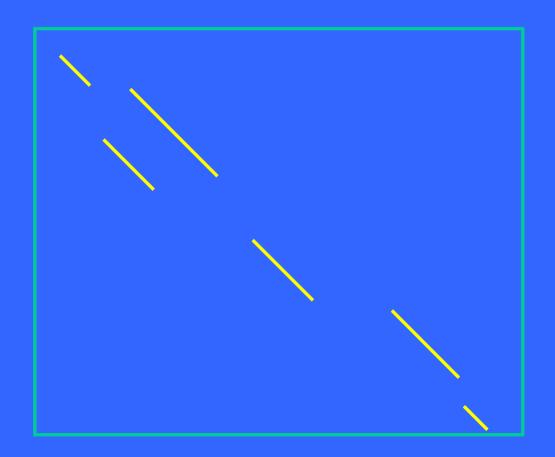
Step 1: Find runes of identities, and identify regions with the highest density of identities.



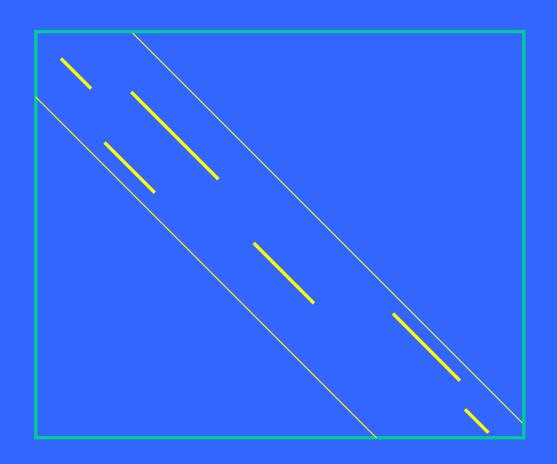
Step 2: Re-score using PAM matrix, and keep top scoring segments.



Step 3: Eliminate segments that are unlikely to be part of the alignment.



Step 4: Optimize the alignment in a band.



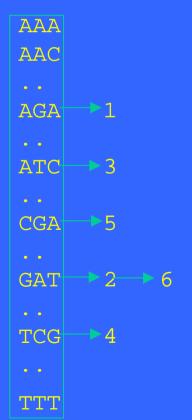
- 1) Build the hash table for Sequence A.
- 2) Scan Sequence B for hits.
- 3) Extend hits.

Step 1: Build the hash table for Sequence A. (3-tuple example)

For DNA sequences:

Seq.
$$A = AGATCGAT$$

12345678



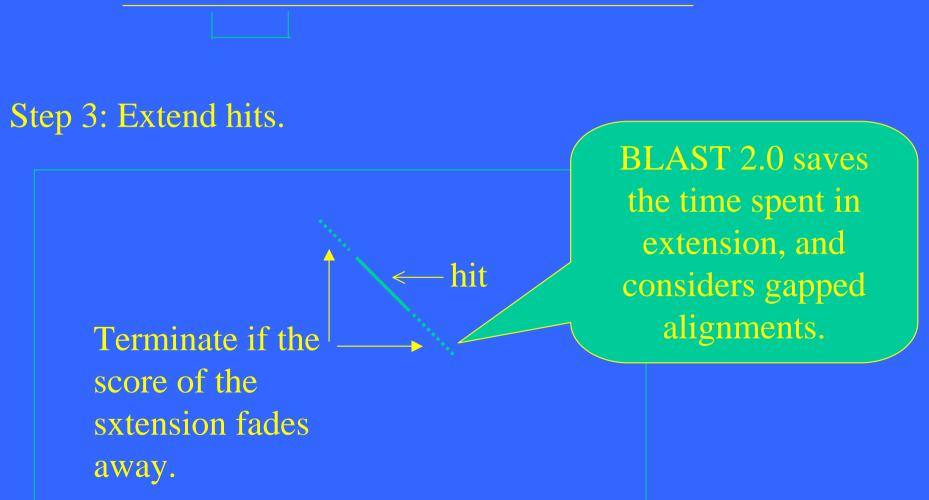
For protein sequences:

Seq.
$$A = ELVIS$$

Add xyz to the hash table if $Score(xyz, ELV) \ge T$; Add xyz to the hash table if $Score(xyz, LVI) \ge T$; Add xyz to the hash table if $Score(xyz, VIS) \ge T$;

Step2: Scan sequence B for hits.

Step2: Scan sequence B for hits.

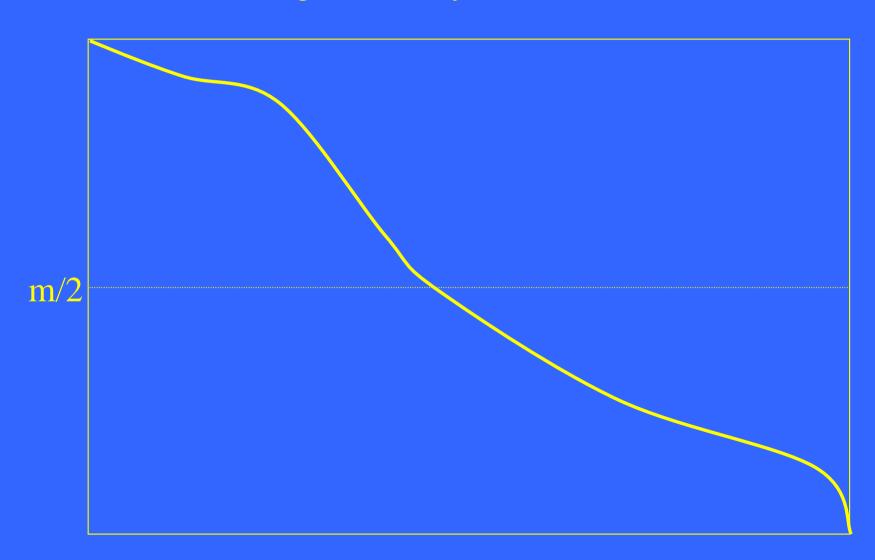


Remarks

- Filtering is based on the observation that a good alignment usually includes short identical or very similar fragments.
- The idea of filtration was used in both FASTA and BLAST.

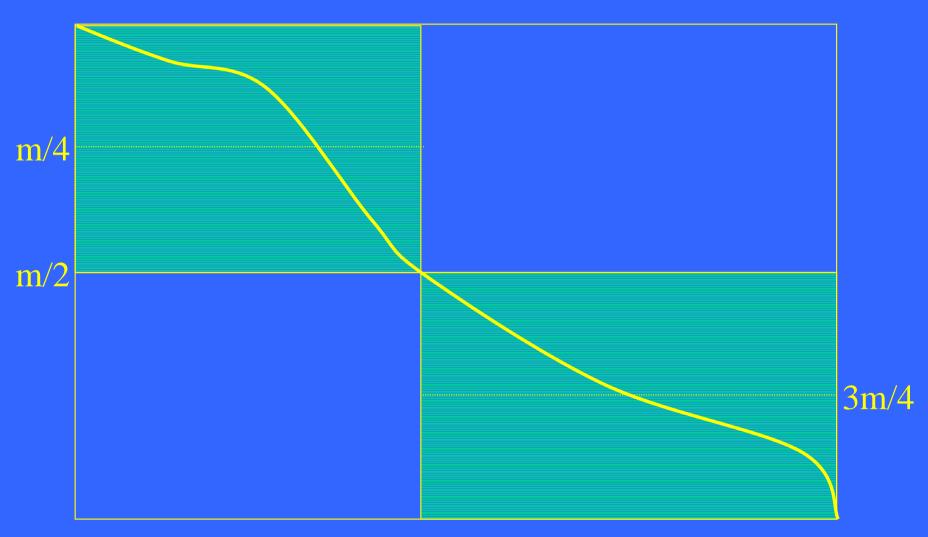
Linear-space ideas

Hirschberg, 1975; Myers and Miller, 1988



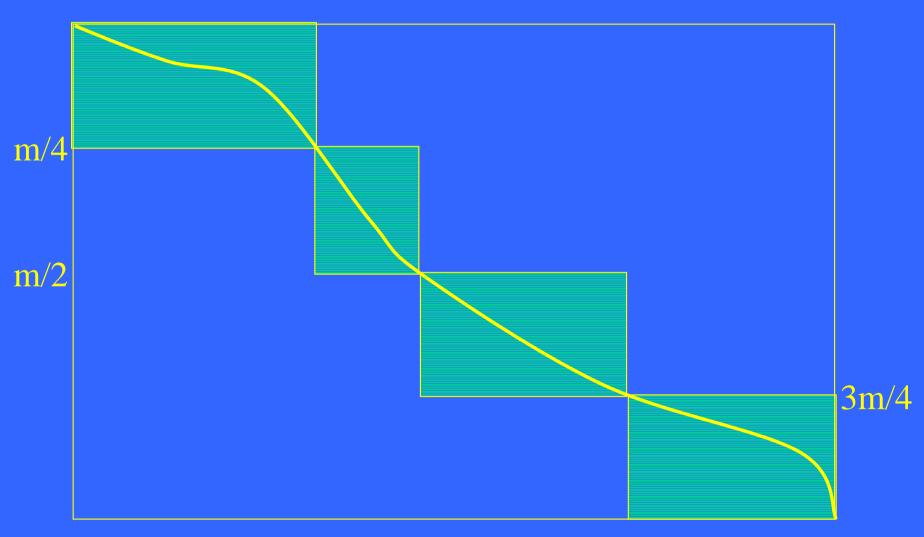
Two subproblems

½ original problem size



Four subproblems

1/4 original problem size



Time and Space Complexity

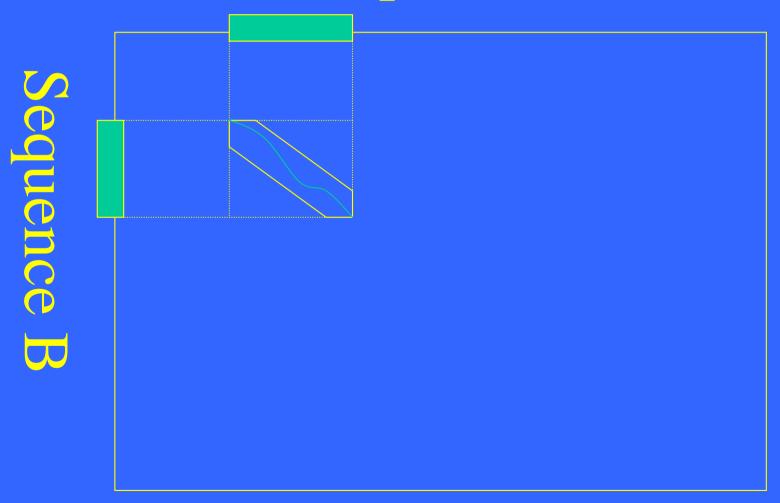
- Space: O(M+N)
- Time:

$$O(MN)*(1+\frac{1}{2}+\frac{1}{4}+...) = O(MN)$$

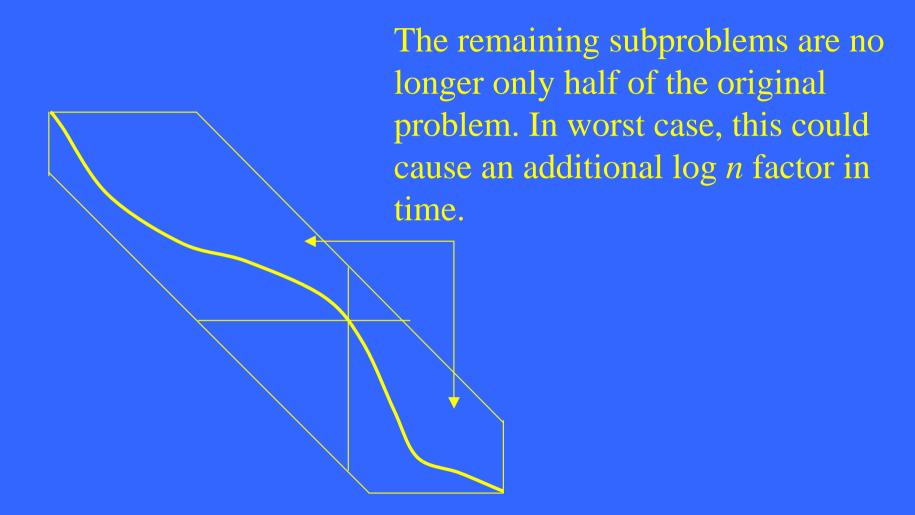
Band Alignment

(Joint work with W. Pearson and W. Miller)

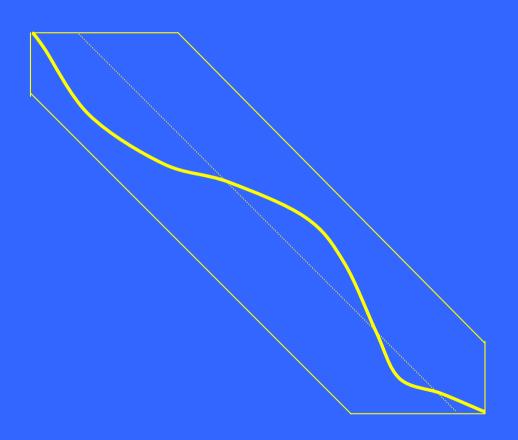
Sequence A



Band Alignment in Linear Space



Band Alignment in Linear Space



Multiple sequence alignment (MSA)

• The multiple sequence alignment problem is to simultaneously align more than two sequences.

Seq1: GCTC GC-TC

Seq2: AC A---C

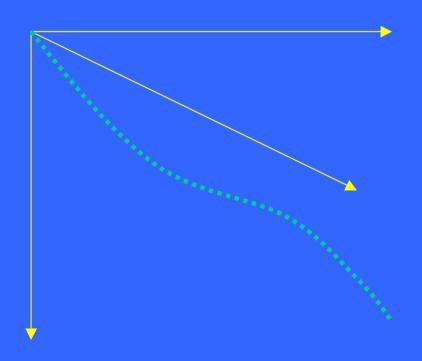
Seq3: GATC G-ATC

How to score an MSA?

• Sum-of-Pairs (SP-score)

MSA for three sequences

• an $O(n^3)$ algorithm

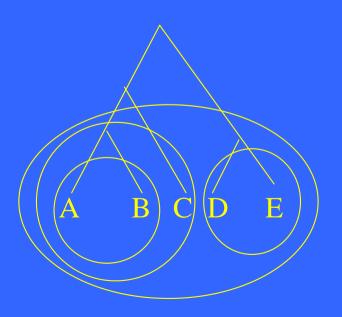


General MSA

- For k sequences of length n: $O(n^k)$
- NP-Complete (Wang and Jiang)
- The exact multiple alignment algorithms for many sequences are not feasible.
- Some approximation algorithms are given. (*e.g.*, 2- *l/k* for any fixed *l* by Bafna *et al*.)

Progressive alignment

- A heuristic approach proposed by Feng and Doolittle.
- It iteratively merges the most similar pairs.
- "Once a gap, always a gap"



The time for progressive alignment in most cases is roughly the order of the time for computing all pairwise alignment, i.e., $O(k^2n^2)$.

Concluding remarks

- Three essential components of the dynamicprogramming approach:
 - the recurrence relation
 - the tabular computation
 - the traceback
- The dynamic-programming approach has been used in a vast number of computational problems in bioinformatics.