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Simultaneous analysis of all SNPs

Why try to do it?

additional power to detect true positives:
multiple true predictors in model ⇒

less residual variation
better prediction of phenotype

capture all main effects for epistatic interactions
look for G×E joint/interaction effects with ≈ all the G

signal at a potential false +ve weakened by true +ves
better localisation and interpretability.

Counter-arguments:

massive optimization problem
unlikely to find global maximum
so may lose some of the above advantages.
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HyperLASSO algorithm

Data: cases and controls GW genotypes (+ covariates)

Model: logistic regression

logit(yi) = β0 +
∑

j

βjxij

i ≡ individuals; j ≡ SNPs; xij ≡ genotype ∈ {0, 1, 2}.

Problem: too may predictors - overfitting.

Solution: prior/penalty strongly rewards βj = 0 for
each j:
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Normal-Exponential-Gamma (NEG)
NEG is a generalisation of the DE (Laplace):

DE(β|ξ) =

∫

∞

0

N(β|0, σ2)G(σ2|1, ξ2/2) dσ2 =
ξ

2
exp{−ξ|β|}

NEG(β|λ, γ) =

∫

∞

0

∫

∞

0

N(β|0, σ2)G(σ2|1, ψ)G(ψ|λ, γ2) dσ2dψ

= κ exp

{

β2

4γ2

}

D−2λ−1

( |β|
γ

)

,

If λ ↑ ∞ and γ ↑ ∞ with ξ =
√

2λ/γ constant, NEG → DE.

prior interpretation: most effects are ∼ zero, agnostic
about size of non-zero effects;

flatter tails means
less shrinkage so sparser models
initial over-estimate of effect size penalised lightly.
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log density of NEG prior
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Choice of prior parameters

Some prior quantiles for three choices of λ and γ:

λ 1.0 1.4 1.8
γ 0.0012 0.006 0.015

P(x > 0.05) 5.8 × 10−4 3.5 × 10−3 1.7 × 10−2

P(x > 0.1) 1.4 × 10−4 5.3 × 10−4 2.1 × 10−3

P(x > 0.2) 3.6 × 10−5 7.8 × 10−5 2.0 × 10−4

P(x > 0.4) 9.0 × 10−6 1.1 × 10−5 1.7 × 10−5

P(x > 1) 1.4 × 10−6 8.5 × 10−7 6.2 × 10−7

Larger shape parameter λ gives more weight to small,
non-zero effects. Below, we choose λ to be very small
(usually 0.05) to have very little shrinkage. Choose scale
parameter γ to give desired type 1 error for given λ (see
below).
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The optimisation algorithm

Cyclic Co-ordinate Descent algorithm:

start with all βj = 0.

update order is allocated randomly but fixed in each run.

Newton-Raphson update step:

βnew
j = βj −

L′(β) − f ′(βj)

L′′(β) − f ′′(βj)

where each ′ denotes derivative wrt βj .

Key shortcut: use computationally-fast bounds to avoid
expensive computation of L′ for all but a few SNPs.

Seek local optimum in 100 runs; choose best solution:
may not be global optimum but very similar model.
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SNP selection

Given shrinkage prior:

SNPs with non-zero posterior mode
|(log-lik)′| > |(log-prior)′|
not a Bayesian procedure: assess using type-1 error
use Bayesian language for penalised likelihood
(“shrinkage regression”)

rescaling genotype scores alters prior; e.g. if genotypes
are standardised to mean zero and unit variance then

type-1 error invariant with MAF
for 1 SNP, asymptotically ∼ Armitage trend test
(ATT).
supports larger effect sizes for lower MAF.
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Type 1 error; Multiple genetic models

explicit approximation for type 1 error in terms of
derivative of log-prior

asymptotically correct for 1 SNP, otherwise
conservative
avoids need for permutation
choose desired λ then assign γ to control type-1
error

Can also consider dominant, recessive and
heterozygous (1 df over-dominant) models, in addition
to codominant (additive).

only one regression coefficient per SNP
no type-1 error approximation, but empirically the
extra terms approximately double type-1 error.
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Main simulation study
1K cases, 1K controls;

80K SNPs on 20 × 20 Mb chromosomes;

6 Causal SNPs all on one chromosome;

500 replicates, so 3K causal SNPs total;

α = 10−5; additive-only model.

Causal False positives
SNPs SNPs min. separation (Kb)

Method selected tagged 0 40 100
HyperLASSO 2097 1576 368 368 366

ATT 6810 1554 696 486 441

A causal variant is “tagged" if ≥ 1 selected SNP has
r2 > 0·05 with it.
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Main simulation study

# causal SNPs tagged (/500) by MAF and risk ratio

MAF and allelic risk ratio
15% 5% 2%

Method 1.4 1.5 1.8 2.2 2.5 3.0
HyperLASSO 252 360 209 370 146 239
ATT 244 353 209 370 143 235

54 SNPs tagged by HyperLASSO and not ATT;

32 SNPs tagged by ATT and not HyperLASSO;

p = 0·11
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Tagging SNPs per causal SNP
NEG analysis

Number of selected SNPs tagging each causal variant
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Genome-wide simulation study

1K cases, 1K controls;

120 × 20 Mb chromosome; 480K SNPs;

10 causal variants on one chromosome, each MAF
= 0·15 and risk ratio = 2;

α = 5 × 10−7; additive-only model;

compute time ≈ 1 hour per mode.

Results:

Both HyperLASSO and ATT tag all 10 causal SNPs;

HyperLASSO selects 14 SNPs;

ATT selects 35 SNPs.
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Genome-wide simulation
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Resequencing simulation study

1K cases, 1K controls;

all 192K polymorphic sites on one 20 Mb chromosome;

6 Causal SNPs on the chromosome
same disease model as main study;

10 replicates;

α = 10−5; additive-only model;

Results:

Both ATT and HyperLASSO tagged 54 of 60 causals;

HyperLASSO selected 64 SNPs

ATT selected 599.
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Selected SNPs: best r2 with causal
NEG analysis

Highest r2 with a causal variant for each selected SNP
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T2D GWAS Sladek et al. 2007

694 cases, 654 controls;

300K Illumina Hap300 genotyping platform;

42 SNPs tagging 32 loci significant at 5× 10−5 and were
progressed to stage 2 (plus 15 from Hap100 chip – not
re-analysed here).

NEG re-analysis using additive, dominant and recessive
models:

26 SNPs tagging 25 loci;
tagged all 5 loci confirmed in stage 2 – with same
model (3 dominant, 2 additive);
looking at sub-optimal modes generated 3 new
SNPs, each in high LD with a selected SNP.
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Prediction of case/control status

much interest in prediction of phenotype, but
widespread view that prospects are poor, e.g.

NEJM Nov 08: 18 confirmed SNPs add little to
prediction of T2D from known risk factors
Nat Genet 08: 20 confirmed SNPs for human height
explain 3% of variation

BUT these only include SNPs significant at very
stringent levels. Many more true causal SNPs exist.

relax penalty for prediction
larger models
greater shrinkage of effect sizes
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NEG prior for prediction
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