Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies

David J. Balding

Centre for Biostatistics Imperial College London d.balding@ic.ac.uk

from 1/10/09 moving to: Institute of Genetics, University College London

Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies - p. 1/20

Simultaneous analysis of all SNPs

Why try to do it?

- additional power to detect true positives:
 - multiple true predictors in model \Rightarrow
 - less residual variation
 - better prediction of phenotype
 - capture all main effects for epistatic interactions
 - look for $G \times E$ joint/interaction effects with \approx all the G
- signal at a potential false +ve weakened by true +ves
 - better localisation and interpretability.

Counter-arguments:

- massive optimization problem
 - unlikely to find global maximum
 - so may lose some of the above advantages.

HyperLASSO algorithm

- Data: cases and controls GW genotypes (+ covariates)
- Model: logistic regression

$$\mathsf{logit}(y_i) = \beta_0 + \sum_j \beta_j x_{ij}$$

 $i \equiv \text{individuals}; j \equiv \text{SNPs}; x_{ij} \equiv \text{genotype} \in \{0, 1, 2\}.$

- **Problem:** too may predictors overfitting.
- **Solution:** prior/penalty strongly rewards $\beta_j = 0$ for each *j*:

Normal-Exponential-Gamma (NEG)

NEG is a generalisation of the DE (Laplace):

$$\begin{split} \mathsf{D}\mathsf{E}(\beta|\xi) &= \int_0^\infty \mathsf{N}(\beta|0,\sigma^2)\mathsf{G}(\sigma^2|1,\xi^2/2) \ d\sigma^2 &= \frac{\xi}{2} \exp\{-\xi|\beta|\}\\ \mathsf{N}\mathsf{E}\mathsf{G}(\beta|\lambda,\gamma) &= \int_0^\infty \int_0^\infty \mathsf{N}(\beta|0,\sigma^2)\mathsf{G}(\sigma^2|1,\psi)\mathsf{G}(\psi|\lambda,\gamma^2) \ d\sigma^2 d\psi\\ &= \kappa \exp\left\{\frac{\beta^2}{4\gamma^2}\right\} D_{-2\lambda-1}\left(\frac{|\beta|}{\gamma}\right), \end{split}$$

If $\lambda \uparrow \infty$ and $\gamma \uparrow \infty$ with $\xi = \sqrt{2\lambda}/\gamma$ constant, NEG \rightarrow DE.

- prior interpretation: most effects are \sim zero, agnostic about size of non-zero effects;
- flatter tails means
 - less shrinkage so sparser models
 - initial over-estimate of effect size penalised lightly.

log density of NEG prior

Choice of prior parameters

Some prior quantiles for three choices of λ and γ :

λ	1.0	1.4	1.8
γ	0.0012	0.006	0.015
P(x > 0.05)	5.8×10^{-4}	3.5×10^{-3}	1.7×10^{-2}
P(x > 0.1)	1.4×10^{-4}	5.3×10^{-4}	2.1×10^{-3}
P(x > 0.2)	3.6×10^{-5}	7.8×10^{-5}	2.0×10^{-4}
P(x > 0.4)	9.0×10^{-6}	1.1×10^{-5}	1.7×10^{-5}
P(x > 1)	1.4×10^{-6}	8.5×10^{-7}	6.2×10^{-7}

Larger shape parameter λ gives more weight to small, non-zero effects. Below, we choose λ to be very small (usually 0.05) to have very little shrinkage. Choose scale parameter γ to give desired type 1 error for given λ (see below).

The optimisation algorithm

Cyclic Co-ordinate Descent algorithm:

- **start with all** $\beta_j = 0$.
- update order is allocated randomly but fixed in each run.
- Newton-Raphson update step:

$$\beta_j^{new} = \beta_j - \frac{L'(\boldsymbol{\beta}) - f'(\beta_j)}{L''(\boldsymbol{\beta}) - f''(\beta_j)}$$

where each ' denotes derivative wrt β_j .

- Key shortcut: use computationally-fast bounds to avoid expensive computation of L' for all but a few SNPs.
- Seek local optimum in 100 runs; choose best solution:
 may not be global optimum but very similar model.

SNP selection

Given shrinkage prior:

- SNPs with non-zero posterior mode
 - $|(\log-lik)'| > |(\log-prior)'|$
 - not a Bayesian procedure: assess using type-1 error
 - use Bayesian language for penalised likelihood ("shrinkage regression")
- rescaling genotype scores alters prior; e.g. if genotypes are standardised to mean zero and unit variance then
 - type-1 error invariant with MAF
 - for 1 SNP, asymptotically \sim Armitage trend test (ATT).
 - supports larger effect sizes for lower MAF.

Type 1 error; Multiple genetic models

- explicit approximation for type 1 error in terms of derivative of log-prior
 - asymptotically correct for 1 SNP, otherwise conservative
 - avoids need for permutation
 - choose desired λ then assign γ to control type-1 error
- Can also consider dominant, recessive and heterozygous (1 df over-dominant) models, in addition to codominant (additive).
 - only one regression coefficient per SNP
 - no type-1 error approximation, but empirically the extra terms approximately double type-1 error.

Main simulation study

- IK cases, 1K controls;
- 80K SNPs on 20 \times 20 Mb chromosomes;
- 6 Causal SNPs all on one chromosome;
- 500 replicates, so 3K causal SNPs total;
- $\alpha = 10^{-5}$; additive-only model.

		Causal	False positives		
	SNPs	SNPs	min. separation (Kb)		
Method	selected	tagged	0	40	100
HyperLASSO	2097	1576	368	368	366
ATT	6810	1554	696	486	441

A causal variant is "tagged" if ≥ 1 selected SNP has $r^2 > 0{\cdot}05$ with it.

Main simulation study

causal SNPs tagged (/500) by MAF and risk ratio

	MAF and allelic risk ratio						
	15%		5%		2%		
Method	1.4	1.5	1.8	2.2	2.5	3.0	
HyperLASSO	252	360	209	370	146	239	
ATT	244	353	209	370	143	235	

- 54 SNPs tagged by HyperLASSO and not ATT;
- 32 SNPs tagged by ATT and not HyperLASSO;

●
$$p = 0.11$$

Tagging SNPs per causal SNP

Genome-wide simulation study

- IK cases, 1K controls;
- 120×20 Mb chromosome; 480K SNPs;
- 10 causal variants on one chromosome, each MAF = 0.15 and risk ratio = 2;
- $\alpha = 5 \times 10^{-7}$; additive-only model;
- compute time \approx 1 hour per mode.

Results:

- Both HyperLASSO and ATT tag all 10 causal SNPs;
- HyperLASSO selects 14 SNPs;
- ATT selects 35 SNPs.

Genome-wide simulation

Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies - p. 14/20

Resequencing simulation study

- IK cases, 1K controls;
- all 192K polymorphic sites on one 20 Mb chromosome;
- 6 Causal SNPs on the chromosome
 - same disease model as main study;
- 10 replicates;
- $\alpha = 10^{-5}$; additive-only model;

Results:

- Both ATT and HyperLASSO tagged 54 of 60 causals;
- HyperLASSO selected 64 SNPs
- ATT selected 599.

Selected SNPs: best r^2 with causal

T2D GWAS Sladek et al. 2007

- 694 cases, 654 controls;
- 300K Illumina Hap300 genotyping platform;
- 42 SNPs tagging 32 loci significant at 5×10^{-5} and were progressed to stage 2 (plus 15 from Hap100 chip not re-analysed here).
- NEG re-analysis using additive, dominant and recessive models:
 - 26 SNPs tagging 25 loci;
 - tagged all 5 loci confirmed in stage 2 with same model (3 dominant, 2 additive);
 - looking at sub-optimal modes generated 3 new SNPs, each in high LD with a selected SNP.

Prediction of case/control status

- much interest in prediction of phenotype, but widespread view that prospects are poor, e.g.
 - NEJM Nov 08: 18 confirmed SNPs add little to prediction of T2D from known risk factors
 - Nat Genet 08: 20 confirmed SNPs for human height explain 3% of variation

BUT these only include SNPs significant at very stringent levels. Many more true causal SNPs exist.

- relax penalty for prediction
 - Iarger models
 - greater shrinkage of effect sizes

NEG prior for prediction

Acknowledgments

- funding from UK Medical Research Council
- HyperLASSO software by Clive Hoggart, with help from Maria De Iorio and John Whittaker
- http://www.ebi.ac.uk/projects/BARGEN/
- Hoggart et al., PLoS Genetics 2008