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Simultaneous analysis of all SNPs
fWhy try to do it? T

# additional power to detect true positives:

s multiple true predictors in model =
s less residual variation
s better prediction of phenotype

s capture all main effects for epistatic interactions
s look for G xE joint/interaction effects with ~ all the G

# signal at a potential false +ve weakened by true +ves
» Dbetter localisation and interpretability.

Counter-arguments:

# massive optimization problem
s unlikely to find global maximum
s SO may lose some of the above advantages. J
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Hyper LASSO algorithm
-

o Data: cases and controls GW genotypes (+ covariates)

o Model: logistic regression

logit(y;) = B+ »  Bjwi
J

i+ = individuals; j = SNPs; z;; = genotype € {0, 1, 2}.
o Problem: too may predictors - overfitting.

» Solution: prior/penalty strongly rewards 3; = 0 for
each j:

o |
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Nor mal-Exponential-Gamma (NEG)

fNEG IS a generalisation of the DE (Laplace): T
DE(3]¢) = /O N(B0,0™)G(o7|1,¢%/2) do™ = gexp{—gw}

NEG(SI\,7) = / / N(810,02)G(0[1,1)G(1|A, 2) do2di

{500 (2)

If A 1 oo and v T oo with ¢ = v/2)/~ constant, NEG — DE.

# prior interpretation: most effects are ~ zero, agnostic
about size of non-zero effects;
o flatter tails means
» less shrinkage so sparser models
s Initial over-estimate of effect S|ze penallsed Ilghtly
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log density of NEG prior

NEG: A =10
DE
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fS

Larger shape parameter A\ gives more weight to small,
non-zero effects. Below, we choose )\ to be very small
(usually 0.05) to have very little shrinkage. Choose scale
arameter ~ to give desired type 1 error for given )\ (see
elow).

LE

Choice of prior parameters

ome prior quantiles for three choices of A and ~:

A 1.0 1.4 1.8
5 0.0012 0.006 0.015
P(z >0.05) 58x107% 35x1073 1.7x 1072
Pz >01) 14x107% 53x107* 21 x1073
P(z >0.2) 36x10° 7.8x107° 2.0x10™*
Pz >04) 90x107% 1.1x10™° 1.7x107”
Plz>1) 14x107% 85x107" 6.2x 107"
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yclic Co-ordinate Descent algorithm:

Theoptimisation algorithm

-

start with all 3; = 0.
update order is allocated randomly but fixed in each run.

Newton-Raphson update step:
new __ 2. _ L/(,B) o f/(ﬁj)
6] - ﬁJ L”(,@) _ f”(ﬂj)

where each ' denotes derivative wrt j3;.

Key shortcut. use computationally-fast bounds to avoid
expensive computation of L' for all but a few SNPs.

Seek local optimum in 100 runs; choose best solution:
s may not be global optimum but very similar model.

|
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SNP sealection
5

Given shrinkage prior:

-

# SNPs with non-zero posterior mode
s |(log-lik)| > |(log-prior)’|
» not a Bayesian procedure: assess using type-1 error
» use Bayesian language for penalised likelihood
(“shrinkage regression”)
# rescaling genotype scores alters prior; e.g. if genotypes
are standardised to mean zero and unit variance then
s type-1 error invariant with MAF
s for 1 SNP, asymptotically ~ Armitage trend test
(ATT).
» supports larger effect sizes for lower MAF.

o |
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Typelerror; Multiple genetic models
- n

o explicit approximation for type 1 error in terms of
derivative of log-prior

» asymptotically correct for 1 SNP, otherwise
conservative

» avoids need for permutation
s choose desired ) then assign ~ to control type-1
error

# Can also consider dominant, recessive and
heterozygous (1 df over-dominant) models, in addition
to codominant (additive).

» only one regression coefficient per SNP

s No type-1 error approximation, but empirically the
L extra terms approximately double type-1 error. J
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Main smulation study

1K cases, 1K controls: T
80K SNPs on 20 x 20 Mb chromosomes;
6 Causal SNPs all on one chromosome;

.

500 replicates, so 3K causal SNPs total,

© o o o

a=10"°; additive-only model.

Causal False positives

SNPs SNPs min. separation (Kb)
Method selected tagged 0 40 100
HyperLASSO 2097 1576 368 368 366
ATT 6810 1554 696 486 441

A causal variant is “tagged" if > 1 selected SNP has
r2 > 0-05 with it. o
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Main smulation study

- N

# causal SNPs tagged (/500) by MAF and risk ratio

MAF and allelic risk ratio

15% 5% 2%
Method 1.4 15 18 22 25 3.0
HyperLASSO 252 360 209 370 146 239
ATT 244 353 209 370 143 235

# 54 SNPs tagged by HyperLASSO and not ATT,;
# 32 SNPs tagged by ATT and not HyperLASSO;
® p=0-11

o |
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Tagging SNPs per causal SNP

NEG analysis
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Genome-wide ssmulation study

1K cases, 1K controls:
120 x 20 Mb chromosome; 480K SNPs:

#® 10 causal variants on one chromosome, each MAF
= (0-15 and risk ratio = 2;

o o

® a=5x10""; additive-only model;
# compute time ~ 1 hour per mode.

Results:

# Both HyperLASSO and ATT tag all 10 causal SNPs;
#® HyperLASSO selects 14 SNPs;

#® ATT selects 35 SNPs.

o |
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Genome-wide ssmulation

@

VI

oo L 3 L4
— Zoomed regions
| Causal SNPs

o Sig. p—values

- Selected by NEG

5 10 15 20
Position (Mb)

0 6L 0 5

0L 20 5

(o)
[ _J
> [ =
L _J
-
-
-
- ) - ) ) )
8.2 8.4 8.6 8.8
Position (Mb)
(=D
L _J
.-.. - -® -
i 1i.1 1i.2 1i.3 1i.4 1i.5 1i.6

FPosition (Mb)

Simultaneous analvsis of all SNPs in aenome-wide and re-seauencina association studies — p. 14/20



Resequencing simulation study
-

1K cases, 1K controls;
all 192K polymorphic sites on one 20 Mb chromosome;

o o

® 6 Causal SNPs on the chromosome
» same disease model as main study;,

# 10 replicates;
® o=10""; additive-only model;

Results:

# Both ATT and HyperLASSO tagged 54 of 60 causals;
#® HyperLASSO selected 64 SNPs

#® ATT selected 599.

o |

Simultaneous analvsis of all SNPs in aenome-wide and re-seauencina association studies — p. 15/20



Selected SNPs: best 2 with causal

NEG analysis
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o

T2D GWAS Sadek et al. 2007
-

694 cases, 654 controls;
300K I[llumina Hap300 genotyping platform;

42 SNPs tagging 32 loci significant at 5 x 107> and were
progressed to stage 2 (plus 15 from Hap100 chip — not
re-analysed here).

NEG re-analysis using additive, dominant and recessive
models:
s 26 SNPs tagging 25 loci;

» tagged all 5 loci confirmed in stage 2 — with same
model (3 dominant, 2 additive);

s |ooking at sub-optimal modes generated 3 new
SNPs, each in high LD with a selected SNP.

|
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Prediction of case/control status

- N

# much interest in prediction of phenotype, but
widespread view that prospects are poor, e.g.

o NEJM Nov 08: 18 confirmed SNPs add little to
prediction of T2D from known risk factors

» Nat Genet 08: 20 confirmed SNPs for human height
explain 3% of variation

BUT these only include SNPs significant at very
stringent levels. Many more true causal SNPs exist.

# relax penalty for prediction
s larger models
s greater shrinkage of effect sizes

o |
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NEG prior for prediction
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Larger val-
ues of shape
parameter )\
gives more
curvature

and greater
density away
from origin, so
more shrink-
age and more
non-zero
modes.

|
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