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Multiple-hypothesis testing problem

Consider simultaneous testing ofm null hypotheses where we test

the simpleH0i versusH1i, i = 1, · · · ,m, on the basis of thep-values:

p1, p2, · · · , pm
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Basic assumptions:

All pi’s are independent.

All pi’s are continuous-type.

The same test statistic is used for all null hypotheses.
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Multiple-hypothesis testing problem

Consider simultaneous testing ofm null hypotheses where we test

the simpleH0i versusH1i, i = 1, · · · ,m, on the basis of thep-values:

p1, p2, · · · , pm

Basic assumptions:

All pi’s are independent.

All pi’s are continuous-type.

The same test statistic is used for all null hypotheses.

So underH0i, pi follows the uniform distribution on (0,1), for

i = 1, · · · ,m. In genome studies with microarray data,m is usually

the number of genes and typically large.
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The Leukemia gene expression data

In Golube et al (1999), the leukemia gene microarray data are

produced from 38 bone marrow samples [27 acute lymphoblastic

(ALL) and 11 acute myeloid leukemia (AML)]. Each patient’s

marrow cells are analyzed on a separate microarray plate that

measures expression levels for 6817 genes. After pre-processing,

only 3051 genes are accurately readable so that the microarray data

are altogether given in a3051 × 38 matrix in expression levels.
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Leukemia gene expression data
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The Leukemia gene example

For each of the 3051 genes, one wishes to know if the ALL group is

significantly different from the AML group. So for each row ofthe

microarray data matrix, ap-value is computed based on the

two-samplet-test statistic with degree 36 of freedom (two-sided):

m = 3051

H0i : µALL = µAML

pi = P (|T36| ≥ |ti|)
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Overall false rejection rate

Question: Suppose thatH0i is rejected if and only ifpi ≤ α. How to

measure the overall false rejection rate and how to chooseα so that

the overall false rejection rate is under controlled?
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Overall false rejection rate

Question: Suppose thatH0i is rejected if and only ifpi ≤ α. How to

measure the overall false rejection rate and how to chooseα so that

the overall false rejection rate is under controlled?

Note that in the traditional testing theory, if one wishes tohave the

overall false rejection rate≤ 0.05, thenα has to be at most

1 − (0.95)1/3051 = 0.0000168
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Overall false rejection rate

Question: Suppose thatH0i is rejected if and only ifpi ≤ α. How to

measure the overall false rejection rate and how to chooseα so that

the overall false rejection rate is under controlled?

Note that in the traditional testing theory, if one wishes tohave the

overall false rejection rate≤ 0.05, thenα has to be at most

1 − (0.95)1/3051 = 0.0000168

In a seminal paper, Benjamini and Hochberg (1995) proposed anew

approach to control the mean false rejection rate, i.e., thefalse

discovery rate (FDR) approach.
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FDR and pFDR

Given a decision rule, letR be the number of rejections andV be the

number of false rejections. Define

FDR = E{(V/R)I(R > 0)}

pFDR = E{(V/R)|R > 0}

Note thatV is unobservable. Therefore FDR or pFDR needs to be

estimated in its application. This is a difficult task.
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FDR and pFDR

Given a decision rule, letR be the number of rejections andV be the

number of false rejections. Define

FDR = E{(V/R)I(R > 0)}

pFDR = E{(V/R)|R > 0}

Note thatV is unobservable. Therefore FDR or pFDR needs to be

estimated in its application. This is a difficult task.

Benjamini and Hochberg (1995) shows that FDR of Simes’ rule is

not greater thanπα, whereπ is the proportion of the true

null-hypotheses amongm null-hypotheses.
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A Bayes approach

Define iid Bernoulli random variablesH1, · · · , Hm, whereHi = 0 iff

H0i is true, so thatP (H1 = 0) = π. Let pi have the pdfh(x) given

Hi = 1. Then the marginal distribution ofpi is as follows:

f(x) = π + (1 − π)h(x).

Storey (2002) shows that if the rejection region for testingH0i is

{pi ≤ α}, then

pFDR =
πα

P (p ≤ α)
.

Note thatP (p ≤ α) can be estimated by the empirical distribution of

p1, · · · , pm. Estimation of pFDR is then accomplished by estimating

π.
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Theλ-estimator ofπ

Schweder and Spjotvoll (1982) and Storey (2002) suggest the

λ-estimator ofπ as follows. For anyλ ∈ (0, 1),

P (p > λ) = π(1 − λ) + (1 − π)

∫

1

λ

h(x)dx.

Forλ not too small, the integral
∫

1

λ
h(x)dx should be small.

Consequently,π can be estimated, albeit conservative, by

π̂(λ) =
#{pi > λ}

m(1 − λ)
=

1 − F̂ (λ)

1 − λ
.
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Theλ-estimator ofπ

Schweder and Spjotvoll (1982) and Storey (2002) suggest the

λ-estimator ofπ as follows. For anyλ ∈ (0, 1),

P (p > λ) = π(1 − λ) + (1 − π)

∫

1

λ

h(x)dx.

Forλ not too small, the integral
∫

1

λ
h(x)dx should be small.

Consequently,π can be estimated, albeit conservative, by

π̂(λ) =
#{pi > λ}

m(1 − λ)
=

1 − F̂ (λ)

1 − λ
.

Obviously, the choice ofλ is crucial. Storey (2002) suggests a

bootstrap method to chooseλ to minimize MSE ofπ̂(λ).

Conservativeness stays, though, and is hard to clean up.
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Decreasingh(x)

Assumeh(x) is decreasing withh(1) = 0 so thatf(x) is decreasing

with f(1) = π. Thus

1 = F (1) = F (λ) + (1 − λ)f(λ) + o(λ).

π(λ) =
1 − F (λ)

1 − λ
≈ f(λ).
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Decreasingh(x)

Assumeh(x) is decreasing withh(1) = 0 so thatf(x) is decreasing

with f(1) = π. Thus

1 = F (1) = F (λ) + (1 − λ)f(λ) + o(λ).

π(λ) =
1 − F (λ)

1 − λ
≈ f(λ).

Let f̂ is the isotonic nonparametric estimate forf . Define

π̂ = min
λ<p(m)

{

1 − F̂ (λ)

1 − λ

}

.
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Convex decreasing model

To improve the estimate, Langaas and Lindqvist (2005) suggests to

use a convex decreasing estimatef̂(x). If f(x) is convex and

decreasing, there is a mixing distributionµ such that

f(x) =

∫

1

0

fθ(x)µ(dθ),

wherefθ(x) = 2(θ − x)I(θ > x)/θ2. Let f̂(x) be the isotonic

estimate subject to convex decreasingf(x). Then

π̂ = f̂(1).
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Estimatingπ via Bernstein polynomials

Guan, Wu and Zhao (2008) proposes to estimateπ based on

Bernstein polynomials as follows: LetBj,k(x) = Ck
j xj(1 − x)k−j.

Define

F̂k(x) =

k
∑

j=0

F̂ (j/k)Bj,k(x)

f̂k(x) =
k−1
∑

j=0

f̂(j/(k − 1))Bj,k−1(x).

Propose

π̂ =
1

r

r
∑

i=1

f̂k(1 − i/k),

wherer andk are chosen to minimize an upper bound of the MSE.
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The mixture model structure

All the approaches above do not get use of the finite mixture model

structure except in their last steps to construct the estimate ofπ.

They can be summarized as follows:
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The mixture model structure

All the approaches above do not get use of the finite mixture model

structure except in their last steps to construct the estimate ofπ.

They can be summarized as follows:

Estimatef̂(x) of f(x).

Then solveπ to give an estimate ofπ from f̂(x), attributing to

the expressionf(x) = π + (1 − π)h(x).
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The mixture model structure

All the approaches above do not get use of the finite mixture model

structure except in their last steps to construct the estimate ofπ.

They can be summarized as follows:

Estimatef̂(x) of f(x).

Then solveπ to give an estimate ofπ from f̂(x), attributing to

the expressionf(x) = π + (1 − π)h(x).

The structure of finite mixture model is too important to ignore in

the present problem, sinceπ is identified only in the upper end of

support interval off(x). One can’t expect an estimatêf(x) of f(x)

to perform well whenx is nearing the boundaries of support set.

Simply it is unfair to expect and demand so.
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The latent model

Let random variablesp andz be defined as follows:

P (z = 0) = π

(p|z = 0) follows uniform distribution.

(p|z = 1) follows h(x).

Then(p, z) has the pdf:π1−z{(1 − π)h(x)}z, and the marginal

distribution ofp is exactly

f(x) = π + (1 − π)h(x).

Note that in the Bayes approach,z is the Bernoulli variable to

indicate the status of null hypothesis.
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Log-likelihood of complete data

Given a sample(pi, zi), i = 1, · · · ,m from (p, z), the log-likelihood

is

l(π, h) =

m
∑

i=1

{(1 − zi) log π + zi log(1 − π) + zi log h(pi)}.
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Log-likelihood of complete data

Given a sample(pi, zi), i = 1, · · · ,m from (p, z), the log-likelihood

is

l(π, h) =

m
∑

i=1

{(1 − zi) log π + zi log(1 − π) + zi log h(pi)}.

In the present problem,p1, · · · , pm (p-values) are observed, but

z1, · · · , zm are unobservable. This defines a typical missing-value

problem with missing valuesz1, · · · , zm.
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EM algorithm

In the EM algorithm, letπ0 andf0(x) = π0 + (1 − π0)h0(x) be the

current approximation toπ andf(x). The next step is to maximize

E0{l(π, h)|p1, · · · , pm} = m log(π)+
m

∑

i=1

{

ẑi[log
1 − π

π
+ log h(pi)]

}

,

where

ẑi =
π0

f0(pi)
, i = 1, · · · ,m.

Thus,π̂ = 1

m

∑

ẑi andĥ maximizes

Q(h) =
m

∑

i=1

ẑi log{h(pi)}.
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Weighted log-likelihood

The object functionQ is a weighted log-likelihood ofh. In general,

let 0 ≤ wi = wi(π0, f0) ≤ 1 be a proposed weighting system and

define

Q(h) =
m

∑

i=1

wi log{h(pi)}.
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Weighted log-likelihood

The object functionQ is a weighted log-likelihood ofh. In general,

let 0 ≤ wi = wi(π0, f0) ≤ 1 be a proposed weighting system and

define

Q(h) =
m

∑

i=1

wi log{h(pi)}.

With observationpi, the weightwi tells us how much we can trust

uponh(pi) as a likelihood. Ifzi = 1, i.e.,pi is actually sampled from

h, then the ideal weightwi should bewi = 100%. Thus, when

wi = ẑi as an estimate ofzi, we expect it to do a reasonable job. The

membership estimatewi = I(ẑi > 1/2) in the finite mixture model

may be another good choice.
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Constraints

The crucial issue in optimization ofQ(h) is then the constraint

set-up on the nonparametrich.

h(x) = P (p = x|z = 1).

Only need to consider discreteh: πi = h(pi).

0 ≤ πi,
∑

πi = 1.

Common and reasonable restriction:h is decreasing. Whenpi

is sorted, requireπ1 ≥ · · · ≥ πm.
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Constraints

The crucial issue in optimization ofQ(h) is then the constraint

set-up on the nonparametrich.

h(x) = P (p = x|z = 1).

Only need to consider discreteh: πi = h(pi).

0 ≤ πi,
∑

πi = 1.

Common and reasonable restriction:h is decreasing. Whenpi

is sorted, requireπ1 ≥ · · · ≥ πm.

These constraints are not enough to identify the parameterπ of

interest.
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Identifiability of π

Central to any approach, nonparametric or parametric, is the

identifiability of π.

Lemma 1 Given any family ofh, the modelf(x) = π +(1−π)h(x)

is identifiable inπ if and only if anyh in the family is not a strict

mixture ofU(0, 1) and another distribution in the family.

Corollary 1 LetH be the class of all decreasing pdf over[0, 1].

Then the modelf(x) = π + (1 − π)h(x) is identifiable inπ if and

only if h(1) = 0 for anyh ∈ H.

Question: How to imposeh(1) = 0 in maximizingQ(h)?
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Finite Beta mixture models

Parker and Rothenberg (1998) points out that any distribution over

(0,1) can be modeled as a beta mixture distribution. So Allison et al

(2002) suggests to consider a finite parametric beta mixturemodel:

Let

f(x) = πb(x|1, 1) +
k

∑

i=1

πib(x|ai, bi),

whereb(x|a, b) is the pdf ofBeta(a, b) distribution. Unknown

parameters are:π, πi, ai, bi, i = 1, · · · , k subject toπ +
∑

πi = 1.

Noteb(x|1, 1) = 1 is the uniform on (0,1).
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Finite Beta mixture models

Parker and Rothenberg (1998) points out that any distribution over

(0,1) can be modeled as a beta mixture distribution. So Allison et al

(2002) suggests to consider a finite parametric beta mixturemodel:

Let

f(x) = πb(x|1, 1) +
k

∑

i=1

πib(x|ai, bi),

whereb(x|a, b) is the pdf ofBeta(a, b) distribution. Unknown

parameters are:π, πi, ai, bi, i = 1, · · · , k subject toπ +
∑

πi = 1.

Noteb(x|1, 1) = 1 is the uniform on (0,1).

Wu, Guang and Zhao (2006) suggests to use a finite normal mixture

model in the scale of original test statistic rather thanp-value.
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Nonparametric Beta mixture

Tang, Ghosal and Roy (2007) considers a nonparametric Bayes

model: Given a distribution over0 < a ≤ 1, b ≥ 1, p1, · · · , pm is a

random sample from

f(x) = π + (1 − π)

∫

b(x|a, b)dG(a, b).
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Nonparametric Beta mixture

Tang, Ghosal and Roy (2007) considers a nonparametric Bayes

model: Given a distribution over0 < a ≤ 1, b ≥ 1, p1, · · · , pm is a

random sample from

f(x) = π + (1 − π)

∫

b(x|a, b)dG(a, b).

A Dirichlet process prior onG is suggested. Givenpi’s, MCMC

algorithm is used to sample from the posterior distribution. Let πj be

the value onπ in thej-th posterior sample. The approximating

Bayes estimate ofπ is given by

π̂ =
1

M

M
∑

j=1

πj.
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Identifiable nonparametric model

Assume the random samplep1, · · · , pm is from:

f(x) = π + (1 − π)

∫

1

0

∫

∞

1

b(x|a, b)dG(a, b).

That is, consider

H =

{

h(x) =

∫

b(x|a, b)dG(a, b) : G{(a, 1) : 0 < a ≤ 1} < 1

}

.

The model is identifiable inπ, andh(1) = 0 for anyh ∈ H.
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Basic properties of MLE

Lemma 2 The log-likelihoodl(π,G) is strictly concave downward.

The concavity nature ensures convergence of EM algorithm.
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Basic properties of MLE

Lemma 3 The log-likelihoodl(π,G) is strictly concave downward.

The concavity nature ensures convergence of EM algorithm.

Furthermore,

f(x) is decreasing inx with f(1) = π.

The MLE is consistent in proper metric of(π, h).

The efficiency of the MLÊπ can be studied in the

semi-parametric model.
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Why decreasing?

Consideration of decreasingh(x) is appropriate.
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Why decreasing?

Consideration of decreasingh(x) is appropriate.

Wu, Guan and Zhao (2006) shows that if the rejection region of

one-sided test is constructed by the likelihood ratio, thenthep-value

has a nonincreasing pdf.
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Why decreasing?

Consideration of decreasingh(x) is appropriate.

Wu, Guan and Zhao (2006) shows that if the rejection region of

one-sided test is constructed by the likelihood ratio, thenthep-value

has a nonincreasing pdf.

Ghosal, Roy and Tang (2008) shows that if the testistic possesses the

MLR property, then thep-value has decreasing pdf.
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Why should be Beta mixture?

Ghosal, Roy and Tang (2008) proves the following results:
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Why should be Beta mixture?

Ghosal, Roy and Tang (2008) proves the following results:

h(x) =
∫

1

0
axa−1dµ(a) for some probability measureµ if and

only if h(x) is decreasing andH(e−x) is completely monotone,

i.e.,(−1)ndnH(e−x)/dxn ≥ 0 for n = 1, 2, · · ·
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Why should be Beta mixture?

Ghosal, Roy and Tang (2008) proves the following results:

h(x) =
∫

1

0
axa−1dµ(a) for some probability measureµ if and

only if h(x) is decreasing andH(e−x) is completely monotone,

i.e.,(−1)ndnH(e−x)/dxn ≥ 0 for n = 1, 2, · · ·

h(x) =
∫

∞

1
b(1− x)b−1dµ(b) for some probability measureµ if

and only ifh(x) is decreasing and1 − H(1 − e−x) is

completely monotone.
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Further model reduction

Although l(π,G) is concave, it is not clear how to compute the MLE

in the nonparametric infinite mixture model, i.e., how to maximize

Q(h) in the M-step of EM algorithm.
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Further model reduction

Although l(π,G) is concave, it is not clear how to compute the MLE

in the nonparametric infinite mixture model, i.e., how to maximize

Q(h) in the M-step of EM algorithm.

Reduce the nonparametric model further by considering independent

mixing distribution:G(a, b) = G1(a)G2(b).

G1{(0, 1]} = 1

G2{(1, C]} = 1 for some finiteC > 0.
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Although l(π,G) is concave, it is not clear how to compute the MLE

in the nonparametric infinite mixture model, i.e., how to maximize

Q(h) in the M-step of EM algorithm.

Reduce the nonparametric model further by considering independent

mixing distribution:G(a, b) = G1(a)G2(b).

G1{(0, 1]} = 1

G2{(1, C]} = 1 for some finiteC > 0.
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Reimman sum approximation

Approximate the integral
∫

b(x|a, b)dG1(a)dG2(b) by the Reimman

sum as follows:

Let {a1, · · · , al} be a net on(0, 1] and{b1, · · · , bk} be a net on(1, C]

such that

G1l(a)G2k(b) =
l

∑

s=1

k
∑

t=1

γsβtI(as ≤ a)I(bt ≤ b)

approachesG(a, b).
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Reimman sum approximation

Approximate the integral
∫

b(x|a, b)dG1(a)dG2(b) by the Reimman

sum as follows:

Let {a1, · · · , al} be a net on(0, 1] and{b1, · · · , bk} be a net on(1, C]

such that

G1l(a)G2k(b) =
l

∑

s=1

k
∑

t=1

γsβtI(as ≤ a)I(bt ≤ b)

approachesG(a, b). The Reimman sum approximation results in a

finite Beta mixture:

hlk(x) =

l
∑

s=1

k
∑

t=1

γsβtb(x|as, bt).
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The M-step

Q(hlk) =
m

∑

i

ẑi log

{

l
∑

s=1

k
∑

t=1

γsβtb(x|as, bt)

}

.
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The M-step

Q(hlk) =
m

∑

i

ẑi log

{

l
∑

s=1

k
∑

t=1

γsβtb(x|as, bt)

}

.

In the M-step,

π̂ =
1

m

m
∑

i=1

π0

f0(pi)

γ̂s =
1 − π0

1 − π̂

γ0s

m

m
∑

i=1

∑k
t=1

β0tb(pi|as, bt)

f0(pi)

β̂t =
1 − π0

1 − π̂

β0t

m

m
∑

i=1

∑l
s=1

γ0sb(pi|as, bt)

f0(pi)
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Consequences of Reimman sum approximation

Uniformly,

1

m
l(π,G) → E{log f(P |π,G)}.

E{log f(P |π,G)} is strictly concave downward.

(1/m)l(π,G) − (1/m)l(π,Glm,km) = o(1).

(1/m)l(π,Glm,km) is strictly concave downward.

The maximizer ofl(π,Glm,km) converges to the maximizer of

E{log f(P |π,G)}.

The approximating MLE is consistent.
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Leukemia gene expression data
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The Leukemia gene expression data example

m = 3051. TakeC = 5.

Takel = k = 50; as = s/50, bt = 5t/50.
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The Leukemia gene expression data example

m = 3051. TakeC = 5.

Takel = k = 50; as = s/50, bt = 5t/50.

π̂ = 0.4601

A lot of γ̂s are almost zero.

β̂t are quite evenly distributed.

The score functions are reasonably close to zero.
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Example EM MLE C=5 Result.txt

Leukemia gene expression example

> data(golub);
> TT<-teststat<-mt.teststat(golub,golub.cl,test="t") 
> #  the two samples t test for equal variance 
> m<-length(TT); # Sample size
> P<-2*(1-pt(abs(TT),df=36));
> 
> am=50
> bm=50
> C=5
> 
> 
> print("PI0")
[1] "PI0"
> print(PI0)
[1] 0.460122
> print("GAMMA")
[1] "GAMMA"
> print(GAMMA)
 [1] 2.173417e-106  9.610702e-57  8.682050e-34  4.920911e-21  2.161781e-13
 [6]  1.198973e-08  1.151412e-05  8.473611e-04  1.176600e-02  5.450118e-02
[11]  1.220770e-01  1.692373e-01  1.714750e-01  1.421649e-01  1.041613e-01
[16]  7.107813e-02  4.681205e-02  3.047824e-02  1.993181e-02  1.322855e-02
[21]  8.967835e-03  6.233229e-03  4.450746e-03  3.267002e-03  2.464919e-03
[26]  1.910265e-03  1.519048e-03  1.237922e-03  1.032443e-03  8.799829e-04
[31]  7.654195e-04  6.784751e-04  6.120509e-04  5.611700e-04  5.222947e-04
[36]  4.928792e-04  4.710724e-04  4.555172e-04  4.452134e-04  4.394221e-04
[41]  4.375990e-04  4.393468e-04  4.443810e-04  4.525050e-04  4.635917e-04
[46]  4.775702e-04  4.944153e-04  5.141401e-04  5.367900e-04  5.624381e-04
> print("BETA")
[1] "BETA"
> print(BETA)
 [1] 0.03404166 0.02881158 0.02537966 0.02300246 0.02128951 0.02001810
 [7] 0.01905295 0.01830783 0.01772573 0.01726788 0.01690725 0.01662469
[13] 0.01640632 0.01624200 0.01612415 0.01604706 0.01600636 0.01599866
[19] 0.01602128 0.01607209 0.01614939 0.01625176 0.01637806 0.01652733
[25] 0.01669877 0.01689170 0.01710554 0.01733981 0.01759409 0.01786805
[31] 0.01816138 0.01847383 0.01880522 0.01915537 0.01952415 0.01991148
[37] 0.02031729 0.02074154 0.02118421 0.02164534 0.02212494 0.02262310
[43] 0.02313988 0.02367539 0.02422976 0.02480313 0.02539566 0.02600754
[49] 0.02663896 0.02729014
> 
> 
> print("SCORE")
[1] "SCORE"
> print(SCORE)
 [1]  1.375696e-01 -1.061758e+03 -6.857300e+02 -4.396215e+02 -2.780448e+02
 [6] -1.719303e+02 -1.024596e+02 -5.732600e+01 -2.840709e+01 -1.029933e+01
[11]  6.153460e-01  6.771187e+00  9.810821e+00  1.084382e+01  1.061881e+01
[16]  9.639057e+00  8.240628e+00  6.645583e+00  4.998310e+00  3.390424e+00
[21]  1.877852e+00  4.925647e-01 -7.493937e-01 -1.842404e+00 -2.787530e+00
[26] -3.589988e+00 -4.257438e+00 -4.798853e+00 -5.223777e+00 -5.541845e+00
[31] -5.762481e+00 -5.894722e+00 -5.947114e+00 -5.927666e+00 -5.843831e+00
[36] -5.702518e+00 -5.510103e+00 -5.272458e+00 -4.994982e+00 -4.682625e+00
[41] -4.339924e+00 -3.971032e+00 -3.579741e+00 -3.169516e+00 -2.743512e+00
[46] -2.304606e+00 -1.855412e+00 -1.398303e+00 -9.354307e-01 -4.687432e-01
[51]  2.910765e-01  1.331956e-01  8.025329e-02  8.355356e-02  1.151065e-01
[56]  1.583646e-01  2.034684e-01  2.446642e-01  2.788069e-01  3.044339e-01
[61]  3.211639e-01  3.292951e-01  3.295329e-01  3.228037e-01  3.101315e-01
[66]  2.925552e-01  2.710767e-01  2.466297e-01  2.200620e-01  1.921289e-01
[71]  1.634915e-01  1.347204e-01  1.063010e-01  7.864067e-02  5.207649e-02
[76]  2.688299e-02  3.279729e-03 -1.856152e-02 -3.851017e-02 -5.647074e-02
[81] -7.237751e-02 -8.618965e-02 -9.788699e-02 -1.074663e-01 -1.149382e-01
[86] -1.203240e-01 -1.236540e-01 -1.249648e-01 -1.242981e-01 -1.216988e-01
[91] -1.172144e-01 -1.108936e-01 -1.027856e-01 -9.293961e-02 -8.140413e-02
[96] -6.822674e-02 -5.345370e-02 -3.712979e-02 -1.929811e-02
> 
> 
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Example EM MLE C=5 Result.txt
> 
> 
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The Leukemia example: Delete zero-gamma

Among γ̂1, · · · , γ̂50, only γ̂9, · · · , γ̂20 are greater than 0.009. Delete

all otherγs and rerun the EM algorithm. The result is almost the

same:

π̂ = 0.4611
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The Leukemia example: Delete zero-gamma

Among γ̂1, · · · , γ̂50, only γ̂9, · · · , γ̂20 are greater than 0.009. Delete

all otherγs and rerun the EM algorithm. The result is almost the

same:

π̂ = 0.4611

We also run the EM algorithm withl = 25, k = 35 andC = 3:

π̂ = 0.4534
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Example EM MLE 3 Select Result.txt

> data(golub);
> TT<-teststat<-mt.teststat(golub,golub.cl,test="t") 
> #  the two samples t test for equal variance 
> m<-length(TT); # Sample size
> P<-2*(1-pt(abs(TT),df=36));
> 
> am=25
> bm=35
> M=3
> 
> aa<-1:am
> bb<-1:bm
> aa=aa/(am+1)
> bb=bb*M/bm
> ca=c(6:9)
> aa=aa[ca]
> am=length(aa)
> 

> print("PI0")
[1] "PI0"
> print(PI0)
[1] 0.453145
> print("GAMMA")
[1] "GAMMA"
> print(GAMMA)
[1] 0.41991467 0.43258538 0.12303543 0.02446452
> print("BETA")
[1] "BETA"
> print(BETA)
 [1] 0.02869092 0.02177004 0.01802176 0.01588381 0.01465945 0.01400251
 [7] 0.01372607 0.01372244 0.01392641 0.01429704 0.01480808 0.01544258
[13] 0.01618978 0.01704320 0.01799946 0.01905748 0.02021800 0.02148319
[19] 0.02285639 0.02434200 0.02594525 0.02767221 0.02952964 0.03152500
[25] 0.03366637 0.03596243 0.03842247 0.04105636 0.04387452 0.04688795
[31] 0.05010822 0.05354745 0.05721836 0.06113423 0.06530892
> 
> print("SCORE")
[1] "SCORE"
> print(SCORE)
 [1]  0.2471124  2.7559327  4.5748350  2.8644245 -1.6870540 -2.0662217
 [7] -2.2988175 -2.4313474 -2.4942600 -2.5081998 -2.4875502 -2.4425185
[13] -2.3804249 -2.3065397 -2.2246516 -2.1374685 -2.0469063 -1.9543015
[19] -1.8605680 -1.7663139 -1.6719279 -1.5776441 -1.4835894 -1.3898180
[25] -1.2963370 -1.2031249 -1.1101441 -1.0173501 -0.9246978 -0.8321451
[31] -0.7396558 -0.6472005 -0.5547571 -0.4623114 -0.3698559 -0.2773898
[37] -0.1849178 -0.0924499
> 
> 
> 
> 
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The example: Who is right?

The example is studied by many authors in various approaches:

New λ-Boot Convex Density Bernstein Polynomial

0.461 0.499 0.376 0.449
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New λ-Boot Convex Density Bernstein Polynomial

0.461 0.499 0.376 0.449

Who is right?

π = 0.376 or π = 0.499?
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The example: Who is right?

The example is studied by many authors in various approaches:

New λ-Boot Convex Density Bernstein Polynomial

0.461 0.499 0.376 0.449

Who is right?

π = 0.376 or π = 0.499?

Note that a 12% difference onπ means about 360 genes.
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Remark

What if the trueh(1) 6= 0?
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Remark

What if the trueh(1) 6= 0?

The area of square[0, a] × [0, a] equals

A = a2

What if the object is not a square?
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THANK YOU.
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