EStimating the Proportion of True Null Hypotheses In
|dentifiable Nonparametric Models

June 19, 2009

Statistical Genomics Programs
IMS at National University of Singapore

Based on joint work with X. Wu

Hanfeng Chen @ Bowling Green State - p.



Multiple-hypothesis testing problem

Consider simultaneous testingafnull hypotheses where we test
the simpleH,; versusH,;,» = 1, - - -, m, on the basis of the-values:

P1,P2," ", Pm
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Consider simultaneous testingafnull hypotheses where we test
the simpleH,; versusH,;,» = 1, - - -, m, on the basis of the-values:
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Basic assumptions:

A
A
T

| p;’s are independent.

| p;’s are continuous-type.

ne same test statistic is used for all null hypotheses.
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Consider simultaneous testingafnull hypotheses where we test
the simpleH,; versusH,;,» = 1, - - -, m, on the basis of the-values:

P1,DP2, "y Pm

Basic assumptions:

A
A
T

| p;’s are independent.

| p;’s are continuous-type.

ne same test statistic is used for all null hypotheses.

So underH,;, p; follows the uniform distribution on (0,1), for

i=1,.

.- m. In genome studies with microarray datajs usually

the number of genes and typically large.
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In Golube et al (1999), the leukemia gene microarray data are
produced from 38 bone marrow samples [27 acute lymphoblasti
(ALL) and 11 acute myeloid leukemia (AML)]. Each patient’s
marrow cells are analyzed on a separate microarray plate tha
measures expression levels for 6817 genes. After pre-psoae
only 3051 genes are accurately readable so that the miayoaata
are altogether given in&>51 x 38 matrix in expression levels.
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For each of the 3051 genes, one wishes to know if the ALL greup
significantly different from the AML group. So for each rowthie
microarray data matrix, a-value is computed based on the
two-sample--test statistic with degree 36 of freedom (two-sided):

m = 3001

Hy; : HALL — LWAML

p; = P(|T36] > |ts])
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Question: Suppose thafy; is rejected if and only ip; < a. How to
measure the overall false rejection rate and how to choasethat
the overall false rejection rate is under controlled?
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Question: Suppose thafy; is rejected if and only ip; < a. How to
measure the overall false rejection rate and how to choasethat
the overall false rejection rate is under controlled?

Note that in the traditional testing theory, if one wishes#@wve the
overall false rejection ratg 0.05, thena has to be at most

1 — (0.95)!/3%! = 0.0000168
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Question: Suppose thafy; is rejected if and only ip; < a. How to
measure the overall false rejection rate and how to choasethat
the overall false rejection rate is under controlled?

Note that in the traditional testing theory, if one wishes#@wve the
overall false rejection ratg 0.05, thena has to be at most

1 — (0.95)!/3%! = 0.0000168

In a seminal paper, Benjamini and Hochberg (1995) proposenha
approach to control the mean false rejection rate, i.e false
discovery rate (FDR) approach.
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Given a decision rule, le® be the number of rejections afdbe the
number of false rejections. Define

FDR = E{(V/R)I(R > 0)}
pEDR = E{(V/R)|R > 0}

Note thatl” is unobservable. Therefore FDR or pFDR needs to be
estimated in its application. This is a difficult task.
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Given a decision rule, le® be the number of rejections afdbe the
number of false rejections. Define

FDR = E{(V/R)I(R > 0)}
pEDR = E{(V/R)|R > 0}

Note thatl” is unobservable. Therefore FDR or pFDR needs to be
estimated in its application. This is a difficult task.

Benjamini and Hochberg (1995) shows that FDR of Simes’ mile |
not greater thama, wherer is the proportion of the true
null-hypotheses among null-hypotheses.
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Define iid Bernoulli random variables,, - - -, H,,, whereH; = 0 Iff
Hy; is true, so that’(H,; = 0) = «. Letp,; have the pdh(x) given
H; = 1. Then the marginal distribution @f is as follows:

flz) =7+ (1 =7)h(z).

Storey (2002) shows that if the rejection region for testihgis
{p; < a}, then

T
FDR = :
‘ P(p < a)
Note thatP(p < «) can be estimated by the empirical distribution ¢
p1,- -, pm- EStimation of pFDR is then accomplished by estimatin

7.
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Schweder and Spjotvoll (1982) and Storey (2002) suggest the
A-estimator ofr as follows. For any € (0, 1),

Pp>A)=m(1—-XN)+(1—mn) /: h(x)dz.

For A not too small, the integraﬁ; h(x)dxz should be small.
Consequentlyy can be estimated, albeit conservative, by

_#{pz>)\}_1—ﬁ()\)
 om(l—=X)  1—-X

(M)
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Schweder and Spjotvoll (1982) and Storey (2002) suggest the
A-estimator ofr as follows. For any € (0, 1),

Pp>A)=m(1—-XN)+(1—mn) /: h(x)dz.

For A not too small, the integraﬁ; h(x)dxz should be small.
Consequentlyy can be estimated, albeit conservative, by

A

_#Hp> A} 1 —F()\)
 om(l—=X)  1—-X

(M)

Obviously, the choice ok is crucial. Storey (2002) suggests a
bootstrap method to choogeo minimize MSE ofr ().

Conservativeness stays, though, and is hard to clean up.
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Assumeh(x) is decreasing with (1) = 0 so thatf(x) is decreasing
with f(1) = 7. Thus
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Assumeh(x) is decreasing with (1) = 0 so thatf(x) is decreasing
with f(1) = 7. Thus

Let f is the isotonic nonparametric estimate forDefine
: o [1=-FO)
T = 111111 .
)\<p(m) 1 — )\

Hanfeng Chen @ Bowling Green State - p.




To improve the estimate, Langaas and Lindgvist (2005) sstgde
use a convex decreasing estimafe). If f(z) is convex and
decreasing, there is a mixing distributiprsuch that

/() = / fol)u(d),

wherefy(z) = 2(6 — z)I(0 > z)/62. Let f(x) be the isotonic
estimate subject to convex decreasfiig). Then

= f(1),
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Guan, Wu and Zhao (2008) proposes to estimabased on
Bernstein polynomials as follows: Lé&t; ,(z) = C¥a/(1 — ).
Define

Propose
Ll .
W:;;fk(l—l/k),

wherer andk are chosen to minimize an upper bound of the MSE.
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All the approaches above do not get use of the finite mixturdeho
structure except in their last steps to construct the egtiimiar.
They can be summarized as follows:
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All the approaches above do not get use of the finite mixturdeho
structure except in their last steps to construct the egtiimiar.
They can be summarized as follows:

Estimatef (z) of f(z).

Then solver to give an estimate af from f(x), attributing to
the expressiorf(x) =7+ (1 — m)h(z).
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All the approaches above do not get use of the finite mixturdeho
structure except in their last steps to construct the egtiimiar.
They can be summarized as follows:

Estimatef (z) of f(z).

Then solver to give an estimate af from f(x), attributing to
the expressiorf(x) =7+ (1 — m)h(z).

The structure of finite mixture model is too important to igam
the present problem, sineeis identified only in the upper end of
support interval off (z). One can't expect an estimaféz) of f(z)
to perform well whene is nearing the boundaries of support set.

Simply it is unfair to expect and demand so.
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Let random variableg andz be defined as follows:
P(z=0)=m
(p|z = 0) follows uniform distribution.
(p|z = 1) follows h(x).
Then(p, z) has the pdfx*~*{(1 — =)h(z)}?, and the marginal
distribution ofp is exactly

f(x)=m4 (1 —m)h(x).

Note that in the Bayes approachis the Bernoulli variable to
Indicate the status of null hypothesis.
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Log-likelihood of complete data

Given a samplép;, z;),i = 1,--- ,m from (p, z), the log-likelihood
IS
I, h) =) {(1—2)logm+ 2 log(1 — m) + 2 log h(p;)}.
1=1
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Given a samplép;, z;),i = 1,--- ,m from (p, z), the log-likelihood
IS

m

I, h) =) {(1—2)logm+ 2 log(1 — m) + 2 log h(p;)}.

=1

In the present problemy, - - -, p,, (p-values) are observed, but
z1,- -+, 2, are unobservable. This defines a typical missing-value
problem with missing values,, - - -, z,,.
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In the EM algorithm, letry and fy(z) = 7y + (1 — 7o) ho(x) be the
current approximation te and f(z). The next step is to maximize

Eo{l(m W)lpr. - .p} = mlog(m) 4 {zinog L7 4 og h(pm} |

: T
1=1

where
o

- fo(]Oz')7

Thus,7 = + Y 2, andh maximizes
m

A

<

1=1,---,m.

m

Q(h) = Z Z;log{h(p:)}-

1=1
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The object functior() is a weighted log-likelihood ok. In general,
let0 < w; = w;(mg, fo) < 1 be a proposed weighting system and
define

Q(h) = Z w; log{h(p;)}.
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The object functior() is a weighted log-likelihood ok. In general,
let0 < w; = w;(mg, fo) < 1 be a proposed weighting system and
define

Q(h) = Zw log{h(p:)}.

With observatiornp;, the weightw; tells us how much we can trust
uponh(p;) as a likelihood. Ifz; = 1, i.e.,p; is actually sampled from
h, then the ideal weighi; should bew; = 100%. Thus, when

w; = 2; as an estimate af, we expect it to do a reasonable job. Th
membership estimate; = 1(2; > 1/2) in the finite mixture model
may be another good choice.
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The crucial issue in optimization @} (5) is then the constraint
set-up on the nonparametic

h(z) = P(p=ux|z=1).
Only need to consider discrete m; = h(p;).
0 S Ty Z’ﬂ'i = 1.

Common and reasonable restrictidgnis decreasing. When,
IS sorted, require; > --- > m,,.
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The crucial issue in optimization @} (5) is then the constraint
set-up on the nonparametic

h(z) = P(p=ux|z=1).
Only need to consider discrete m; = h(p;).
0 S Ty Z’ﬂ'i = 1.

Common and reasonable restrictidgnis decreasing. When,
IS sorted, require; > --- > m,,.

These constraints are not enough to identify the parametér
Interest.
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Central to any approach, nonparametric or parametriceis th
identifiability of .

Lemmal Given any family of,, the modelf(z) = 7+ (1 — 7)h(x)
IS Identifiable inx if and only if anyh in the family is not a strict
mixture ofU (0, 1) and another distribution in the family.

Corollary 1 Let’H be the class of all decreasing pdf overi|.
Then the modef(x) = 7 + (1 — 7)h(x) is identifiable inr if and
only if (1) = 0 foranyh € H.

Question: How to imposg(1) = 0 in maximizingQ(h)?
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Parker and Rothenberg (1998) points out that any distolbuver

(0,1) can be modeled as a beta mixture distribution. Sodllet al
(2002) suggests to consider a finite parametric beta mixhadel:

Let

whereb(x|a, b) is the pdf of Beta(a, b) dlstrlbutlon. Unknown
parameters aret, 7;, a;,b;,1 = 1,-- -, k subject tor + > m; = 1.
Noteb(x|1,1) = 1 is the uniform on (0,1).
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Parker and Rothenberg (1998) points out that any distolbuver

(0,1) can be modeled as a beta mixture distribution. Sodllet al
(2002) suggests to consider a finite parametric beta mixhadel:

Let

whereb(x|a, b) is the pdf of Beta(a, b) dlstrlbutlon. Unknown
parameters aret, 7;, a;,b;,1 = 1,-- -, k subject tor + > m; = 1.
Noteb(x|1,1) = 1 is the uniform on (0,1).

Wu, Guang and Zhao (2006) suggests to use a finite normal maixt
model in the scale of original test statistic rather tharalue.
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Tang, Ghosal and Roy (2007) considers a nonparametric Bayes
model: Given a distribution ovér< a < 1,b>1,p1, -+ ,pm IS A
random sample from

fl@) =+ (1 —w)/b(x|a,b)dG(a, b).
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Tang, Ghosal and Roy (2007) considers a nonparametric Bayes
model: Given a distribution ovér< a < 1,0 > 1,p1,---,pm IS A
random sample from

fl@) =+ (1 —w)/b(zp|a,b)dG(a, b).

A Dirichlet process prior ofd- is suggested. Given’'s, MCMC
algorithm is used to sample from the posterior distributioet 7/ be

the value onr in the j-th posterior sample. The approximating
Bayes estimate af is given by

1 <&
1 i
T M;ﬂ'
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Assume the random sample, - - -, p,,, IS from:

f(z) =7+ (1—m) /01 /100 b(z|a, b)dG(a, b).

That Is, consider

H — {h(x) _ /b(x\a, DAG(a,b) : G{(a,1): 0 < a < 1} < 1} .

The model is identifiable i, andh(1) = 0 for anyh € H.
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Lemma 2 The log-likelihood (7, GG) is strictly concave downward.

The concavity nature ensures convergence of EM algorithm.
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Lemma 3 The log-likelihood (7, GG) is strictly concave downward.

The concavity nature ensures convergence of EM algorithm.
Furthermore,

f(x) is decreasing i with f(1) = .
The MLE is consistent in proper metric of, h).

The efficiency of the MLEr can be studied in the
semi-parametric model.

Hanfeng Chen @ Bowling Green State —Pp. 2



ecreasing?

2ration of decreasirtgx) is appropriate.



Consideration of decreasirigx) is appropriate.

Wu, Guan and Zhao (2006) shows that if the rejection region of
one-sided test is constructed by the likelihood ratio, tim&p-value
has a nonincreasing pdf.
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Consideration of decreasirigx) is appropriate.

Wu, Guan and Zhao (2006) shows that if the rejection region of
one-sided test is constructed by the likelihood ratio, tim&p-value
has a nonincreasing pdf.

Ghosal, Roy and Tang (2008) shows that if the testistic B3&sethe
MLR property, then the-value has decreasing pdf.

Hanfeng Chen @ Bowling Green State —Pp. 2



hould be Beta mixture?

. Roy and Tang (2008) proves the following results:



Ghosal, Roy and Tang (2008) proves the following results:

h(z) = fol ax® 'du(a) for some probability measugeif and
only if A(x) is decreasing anff (e~*) is completely monotone,
l.e.,(—1)"d"H(e™™)/dz™ > 0forn=1,2,---
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Ghosal, Roy and Tang (2008) proves the following results:

h(z) = fol ax® 'du(a) for some probability measugeif and
only if A(x) is decreasing anff (e~*) is completely monotone,
l.e.,(—1)"d"H(e™™)/dz™ > 0forn=1,2,---

h(z) = [ b(1 —x)*~'du(b) for some probability measureif

and only ifh(x) is decreasing antl— H(1 — e ™) is
completely monotone.
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Although!(w, G) is concave, it is not clear how to compute the ML
In the nonparametric infinite mixture model, i.e., how to maxe
Q(h) in the M-step of EM algorithm.
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Although!(w, G) is concave, it is not clear how to compute the ML
In the nonparametric infinite mixture model, i.e., how to maxe
Q(h) in the M-step of EM algorithm.

Reduce the nonparametric model further by consideringoeddent
mixing distribution:G(a, b) = G1(a)Gs(b).

Go{(1,C]} = 1 for some finiteC' > 0.
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Although!(w, G) is concave, it is not clear how to compute the ML
In the nonparametric infinite mixture model, i.e., how to maxe
Q(h) in the M-step of EM algorithm.

Reduce the nonparametric model further by consideringoeddent
mixing distribution:G(a, b) = G1(a)Gs(b).

Go{(1,C]} = 1 for some finiteC' > 0.
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Approximate the integraJ b(z|a, b)dG:(a)dG2(b) by the Reimman
sum as follows:

Let{ai,---,a;} be anetor0, 1] and{by,---,b.} be anetonl, C|
such that

[ k

Gu(a)Gar(b) = > Y 7abil(as < a)I(by < b)

s=1 t=1

approaches:(a, b).
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Approximate the integraJ b(z|a, b)dG:(a)dG2(b) by the Reimman
sum as follows:

Let{ai,---,a;} be anetor0, 1] and{by,---,b.} be anetonl, C|
such that

[ k

Gu(a)Gau(®) = Y Y vsBil(as < a)I(b, < b)

s=1 t=1

approaches:(a,b). The Reimman sum approximation results in a
finite Beta mixture:

[ k

hy (2 Z Z Vs Beb(x|as, by).

s=1 t=1
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[ k
Q(hlk) Z <i 1Og {Z Z /ysﬁtb £U|CLS, bt }

s=1 t=1

In the M-step,

~ 1 ”O
= = E
m 1 7

A _ 1_7707082275 15075[7 pz‘asabt)
s IL—7m m fO pz

B 1—7705075223 1’705 pz|a87bt)
¢ A
I -7 m - fO pz)
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Uniformly,
1
—1
m

(7, G) — E{log f(P|r,G)}.

E{log f(P|m,G)} is strictly concave downward.
(1/m)l(m,G) — (1/m)l(7, Gl km) = 0o(1).
(1/m)l(m, Gim.rm) 1S Strictly concave downward.

The maximizer of (7, Gy, k) CONVErges to the maximizer of
E{log f(P|m,G)}.

The approximating MLE is consistent.
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ukemia gene expression data example

= 3051. TakeC = 5.
kel = k = 50; a; = /50, b; = 5t/50.



The Leukemia gene expression data example

® m = 3051. TakeC = 5.

m Takel = k = 50; a5 = s/50, b, = 5t/50.
w1 = 0.4601

® A lot of %, are almost zero.

= (3, are quite evenly distributed.

m The score functions are reasonably close to zero.
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Leukemia gene expression example

data(golub);

am=50
bm=50
Cc=5

print("PI0")
1] llPIO"

> print(P10)

[1] 0.460122

> print("GAMMA™)
[1] "GAMMA™

> print(GAMMA)

—mVVVVVVVVVYVVYV

[1] 2.173417e-106

[6] 1.198973e-08
[11] 1.220770e-01
[16] 7.107813e-02
[21] 8.967835e-03
[26] 1.910265e-03
[31] 7.654195e-04
[36] 4.928792e-04
[41] 4.375990e-04
[46] 4.775702e-04
> print("BETA")
[1] "BETA"
> print(BETA)

[1] 0.03404166 0

[7] 0.01905295 0
[13] 0.01640632 0
[19] 0.01602128 0O
[25] 0.01669877 0
[31] 0.01816138 0
[37] 0.02031729 O
[43] 0.02313988 0
[49] 0.02663896 0
>
>
> print("SCORE")
[1] "SCORE"
> print(SCORE)

[11 1.375696e-01
[6] -1.719303e+02
[11] 6.153460e-01
[16] 9.639057e+00
[21] 1.877852e+00
[26] -3.589988e+00
[31] -5.762481e+00
[36] -5.702518e+00
[41] -4.339924e+00
[46] -2.304606e+00
[51] 2.910765e-01
[56] 1.583646e-01
[61] 3.211639e-01
[66] 2.925552e-01
[71] 1.634915e-01
[76] 2.688299e-02
[81] -7.237751e-02
[86] -1.203240e-01
[91] -1.172144e-01
[96] -6.822674e-02
>

ARDORODRRO

.02881158
.01830783
.01624200
.01607209
.01689170
.01847383
.02074154
.02367539
.02729014

-1.
-1.
6.
8.
4.
5.257438e+00
-5.
-3.
-1.
1.
2.034684e-01
3.292951e—01
%.347204e—01
-8.
-1.
-1.
-5.

-4

.610702e-57
.151412e-05
.692373e-01
.681205e-02
.233229e-03
.519048e-03
.784751e-04
.710724e-04
.393468e-04
.944153e-04

OQOOOOOOO

061758e+03
024596e+02
771187e+00
240628e+00
925647e-01

894722e+00
510103e+00
971032e+00
855412e+00
331956e-01

710767e-01

279729e-03
618965e-02
236540e-01
108936e-01
345370e-02

Example EM MLE C=5 Result.txt

VRO RDAWEROO®

.02537966
.01772573
.01612415
.01614939
.01710554
.01880522
.02118421
.02422976

-6.
.732600e+01

9.

6.
-7.
.798853e+00
.947114e+00
.272458e+00
-3.
-1.

8.
.446642e-01
.295329e-01
.466297e-01

1.
-1.
-9.
-1.
-1.
.712979e-02

-5

-4
-5
-5

2
3
2

-3

.682050e-34
.473611e-04
.714750e-01
.047824e-02
.450746e-03
.237922e-03
.120509e-04
.555172e-04
.443810e-04
.141401e-04

OOOOOOOO

857300e+02

810821e+00
645583e+00
493937e-01

579741e+00
398303e+00
025329e-02

063010e-01
856152e-02
788699e-02
249648e-01
027856e-01

VRRUIRWRRRA

.02300246
.01726788
.01604706
.01625176
.01733981
.01915537
.02164534
.02480313

TT<-teststat<-mt.teststat(golub,golub.cl,test="t")
# the two samples t test for equal variance
m<-Tength(TT); # Sample size
P<-2*(1-pt(abs(TT),df=36));

.920911e-21
.176600e-02
.421649e-01
.993181e-02
.267002e-03
.032443e-03
.611700e-04
.452134e-04
.525050e-04
.367900e-04

QOO OOOOO0O

-4,

-2

1.
4.
-1.
.223777e+00
.927666e+00

-5
-5

-4,
-3.
-9.

8.
3.788069e—01
.200620e-01

7.
-3.
-1.
-1.
-9.
-1.

2
2

.02128951
.01690725
.01600636
.01637806
.01759409
.01952415
.02212494
.02539566

396215e+02
084382e+01

998310e+00
842404e+00

994982e+00
169516e+00
355356e-02
228037e-01
864067e-02
851017e-02

293961e-02
929811e-02

Page 1

OO OOOOOO

VA DhUIOONR R UIN

.161781e-13
.450118e-02
.041613e-01
.322855e-02
.464919e-03
.799829e-04
.222947e-04
.394221e-04
.635917e-04
.624381e-04

.02001810
.01662469
.01599866
.01652733
.01786805
.01991148
.02262310
.02600754

-2.
.840709e+01 —%.
3.
-2.
-5.
-5.
-4,
-2.
354307e-01 -4.
1.151065e-01
3.044339e—01
1
5
-5.
074663e-01 -1.
242981e-01 -1.
-8.

780448e+02
029933e+01
061881e+01
390424e+00
787530e+00
541845e+00
843831e+00
682625e+00
743512e+00
687432e-01

101315e-01

.921289%e-01
.207649e-02

647074e-02
149382e-01
216988e-01
140413e-02



Example EM MLE C=5 Result.txt
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The Leukemia example: Delete zero-gamma

Among~i, - - -, Y50, ONIY Ag, - - -, 9o are greater than 0.009. Delete
all other~, and rerun the EM algorithm. The result is almost the
same:

7 = 0.4611
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Among~i, - - -, Y50, ONlY A9, - - -, 9o are greater than 0.009. Delete
all other~, and rerun the EM algorithm. The result is almost the
same:

7 = 0.4611
We also run the EM algorithm with= 25, £k = 35 andC' = 3:

m = 0.4534
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data(golub);

am=25
bm=35
M=3

aa<-1:am
bb<-1:bm
aa=aa/(am+1)
bb=bb*M/bm
ca=c(6:9)
aa=aalca]
am=length(aa)

VVVVVVVVVVVVVVVYVVYV

> print("PI0")
[1] llPIO"

> print(P10)

[1] 0.453145

> print("GAMMA™)
[1] "GAMMA™

> print(GAMMA)

Example EM MLE 3 Select Result.txt

[1] 0.41991467 0.43258538 0.12303543 0.02446452

> print("BETA")

[1] "BETA"
> print(BETA)
[1] 0.02869092 0.02177004
[7] 0.01372607 0.01372244
[13] 0.01618978 0.01704320
[19] 0.02285639 0.02434200
[25] 0.03366637 0.03596243
[31] 0.05010822 0.05354745
>
> print("SCORE")
[1] "SCORE"
> print(SCORE)
[1] 0.2471124 2.7559327
[7] -2.2988175 -2.4313474
[13] -2.3804249 -2.3065397
[19] -1.8605680 -1.7663139
[25] -1.2963370 -1.2031249
[31] -0.7396558 -0.6472005
[37] -0.1849178 -0.0924499

VVVYV

.01802176
.01392641
.01799946
.02594525
.03842247
.05721836

QOO OOO

4.5748350
-2.4942600
-2.2246516
-1.6719279
-1.1101441
-0.5547571

.01588381
.01429704
.01905748
.02767221
.04105636
.06113423

OQOOOOO

2.8644245
-2.5081998
-2.1374685
-1.5776441
-1.0173501
-0.4623114

TT<-teststat<-mt.teststat(golub,golub.cl,test="t")
# the two samples t test for equal variance
m<-Tength(TT); # Sample size
P<-2*(1-pt(abs(TT),df=36));

.01465945
.01480808
.02021800
.02952964
.04387452
.06530892

eoleolelelele]

-1.6870540
-2.4875502
-2.0469063
-1.4835894
-0.9246978
-0.3698559

Page 1

0.01400251
0.01544258
0.02148319
0.03152500
0.04688795

-2
-2

.0662217
.4425185
-1.
-1.
-0.
-0.

9543015
3898180
8321451
2773898



The example Is studied by many authors in various approaches

New A-Boot Convex Density Bernstein Polynomial
0.461 0.499 0.376 0.449

Hanfeng Chen @ Bowling Green State —p. 3



The example Is studied by many authors in various approaches

New A-Boot Convex Density Bernstein Polynomial
0.461 0.499 0.376 0.449

Who Is right?
m = 0376 orm = 0.499?
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The example Is studied by many authors in various approaches

New A-Boot Convex Density Bernstein Polynomial
0.461 0.499 0.376 0.449

Who Is right?
m = 0376 orm = 0.499?

Note that a 12% difference anmeans about 360 genes.
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the trueh(1) # 07?



the trueh(1) # 07?

a of squarn®, a] x |0, a] equals

A= a?



What if the trueh (1) # 07?

The area of squar®, a| x |0, a| equals

A = a?

What if the object is not a square?

Hanfeng Chen @ Bowling Green State



THANK YOU.
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