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OUTLINE for Part 1

e Review of Parametric Regression Modelling
e Nonparametric Regression Model
e Nonparametric Smoothing Methods

e Regression Spline Modelling
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Review of parametric modelling
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Figure 1: Examples for parametric regression
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Regression Spline Smoothing

Polynomial Regression

e Model y, = (I)()(CEZ)T,B +e€,1=1,2,--- ,n.

e Polynomial basis vector ®,(z) = [1, z, 22, ...,2*]T

e Matrix form y = X3 + €.

e Easy to fit 8= (XTX)1XTy.
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Regression Spline Smoothing

Advantages for Parametric Regression Modelling

e Easy to fit

e Methods for estimation, hypothesis testing and

prediction well established

Drawbacks for Parametric Regression Modelling

e Parametric models applied, e.g., linear or quadratic, must be

valid

e Invalid parametric models may lead to misleading results
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Regression Spline Smoothing

The Motivating Data
The motorcycle data (Silverman 1985)

e Collected to study the crashed effects after the motorcycles hit
by a stimulated impact

e Dependent variable: time after a stimulated impact with

motorcycles

e Response variable: head acceleration of a PTMO (post

mortem human test object), capturing the crash effects
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Motocycle data
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Figure 2: The motorcycle data
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Poly Order k=1 Poly Order k=2
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Figure 3: Polynomial fits for the motorcycle data
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Nonparametric Regression Model

For a data set (x;,v;), ¢=1,2,---,n,

vi = f(z;) +e, i=1,..,n,
e f(-) unknown but smooth, target for estimation
o f(x) = E(y;|x; = x), conditional expectation of the response
e E(¢;) = 0 and Var(e;) = o

e It reduces to a parametric model if f(-) is known except a

parameter
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Nonparametric Smoothing Methods

e Local Polynomial Kernel Smoothing (Wand and Jones
1995, Fan & Gijbels 1996)

e Regression Splines (Eubank 1988)

e Smoothing Splines (Wahba 1990, Green and Silverman 1994)

e P-splines (Ruppert, Wand and Carroll, 2003)
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Regression Spline Smoothing

Regression Spline Fit (p=2)
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Figure 4: Regression spline fit for the motorcycle data
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Regression Spline Smoothing

Regression Splines

e The simplest smoothing technique available
e A natural generalization of the polynomial regression
e Fasy to understand and implement

e Widely used in data analysis
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Regression Spline Smoothing

Motivation

e Polynomials are not flexible to model data in a big range

e They work well with a small range since within a small range, a
Taylor’s expansion up to some order is valid

e One can divide a big range, say [a, b] into a few of small

intervals:

[7_7"77_7“—|-1)7T — 07 17 T 7K7
where interior knots: 7,.,7r=1,2,--- , K, boundary knots:
a,b

a=T)g<T1 <Tg < - <Tg <Tg+1 =0b.
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Regression Spline Smoothing

Definition

e A regression spline is a piecewise polynomial

e It is a polynomial of some order within any two neighboring

knots 7. and 7.1 for r =0,1,--- | K
e The spline is jointed together at knots properly

e The spline allows discontinuous derivatives at the knots.
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Truncated power basis (TPB)

e A regression spline can be constructed using a k-order TPB

e Given K interior knots 71,79, -, Tk, the k-order TPB is

1,x,--- ,xk,(w—ﬁ)’i,--- ,(ZE—TK)I_T_.

e The truncated power function wf = [w]"

e First k + 1 basis functions are polynomials of order up to £

, wye = max(0,w).

e Last K basis functions are truncated power basis functions of

order k

-
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Regressin splines using TPB:

k K
f(:E) — Zﬁsajs + Zﬁk—i—r(aj - TT)]—T—'
s=0 r=1

e Within |7, 7,11), f(x) is a k-order polynomial:
k T
fl@)=> Ba®+ > Brulz—7)F,
s=0 [=1

o f(k)(:v) jumps at 7, with amount S ,.-k!, i.e.,

f(k) (7_7“"') — f(k) (7_7“_) — 6k—|—rk!-
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Regression Spline Smoothing

(a) A Regression Spline Basis (b) Three Regression Splines
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Figure 5: (a) a cubic truncated power basis (k = 3) with interior knots

2,.4,.6, and .8; and (b) three cubic regression splines.
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Regression Spline Model

e Denote as the TPB as
q)(x) — (an" ) 7$k7(x _7-1)]—?—7"' 7(37 _TK)ﬁ—)T

e A regression spline can be written as f(z) = ®(z)’ 3

e The model y; = f(x;) +€;,i=1,--- ,n becomes
y=XpB+e,

where X = (®(x1),--- , ®(x,))!.
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Regression Spline Smoother

e The LS estimator 8 = (X7 X) 1 X7y
e The RS smoother f(z) = ®(z)73

e The fitted response vector y = Ay with the RS smoother
matrix A = X (X' X)"1x?*

e A is a projection matrix satisfying AY = A, A = A and
tr(A) = K 4+ k + 1. The trace of A measures the RS model

complexity

-

20



-

Regression Spline Smoothing

Remarks for Nonparametric Regression

For parametric regression, the model is fixed
For nonparametric regression, the model is data-driven

For the regression spline smoother, the model is specified by
the TPB ®(x)

The TPB ®(x) is specified by the knot locations 71, -+ , 7k
and the number of knots, K

Knot locating is important but the choice of the knot number

1S more important

/

21



-

Regression Spline Smoothing

Two Widely Used Knot Locating Methods

Equally Spaced Method Take K equally spaced points in the

range of interest, say, |a, b, as knots:
=a+b—a)yr/(K+1),r=12,--- K.
e The method is independent of the design time points

e Employed when design time points are uniformly scattered

-
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Regression Spline Smoothing

Equally Spaced Sample Quantiles Method Use equally

spaced sample quantiles of the design time points z;, 1 =1,2,--- ., n
as knots:
Tr = L(1+[rn/(K+1)]): T = 1,2,--- K,
® (1), ,T(y) the order statistics of the design time points.

e |a| denotes the integer part of a.
e The method is design adaptive.

e More knots located where more design time points scattered.
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Knot Number Selection
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Figure 6:

RS fits to the

motocycle data with different K.
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A Criterion for Knot Number Selection

Generalized Cross-Validation(GCV)

e This method was motified from cross-validation (CV) method
e Use SSE = y!(I,, — Px)y to measure goodness of fit
e Use tr(A) = K 4+ k + 1 to measure model complexity

e GCV =SSE/(1 —tr(A)/n)? trades off between goodness of fit
and model complexity

e GCV often works well in choosing a good K
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Knot Number Selection for the motocycle data
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Figure 7: GCYV for knot number selection for the motocycle data.
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Regression Spline Fit (p=2)
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Figure 8: Regression spline fit for the motorcycle data
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Regression Spline Smoothing for Longitudinal Data

OUTLINE for Part 11

-

Review of LME Modelling

Motivating Longitudinal Data

Nonparametric Mixed-effects (NPME) Model
Fitting the NPME Model Using Regression Splines

Extensions to other Nonparametric/Semiparametric ME
Models
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Review of the LME Model:

-

Yij — ZUZ;,B-FZ;SI)@—FEU, j:1727°'°7ni;7::1727"'7”7
b; ~ N(0,D), € ~ N(0,0°I,,)
T;i, zi;: fixed-effects (FE) and random-effects(RE) covariates,

3,b;: FE and RE vectors, modeling population and individual

features respectively
€;;: Mmeasurements errors
D and o?: variance components

Mixed-effects modelling allows to pull information across

subjects to estimate 3 and b;

/
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The LME Solution: Given the variance components D and R,

B — (XTV_lX)_lXTV_ly,
b = DZ'V l(y-Xp),

with X, Z properly defined,

A

e (3 is the generalized least squares estimator of 3

e V and R are estimated using EM-algorithm (Vonesh and
Chinchilli 1996)

e Existing software for solving LME models, e.g., Ime in Splus
and Proc Mized in SAS.

- /
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Advantages for LM E Modelling

e Fasy to fit

e Information across subjects and within subjects are used

e Methods for fitting the LME models well established
Drawbacks for LME Modelling

e Strong assumption about the model form needed

e Invalid parametric models may lead to misleading results

-
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Motivating Longitudinal Data(Park and Wu 2004)

e Collected in an AIDS clinical study conducted by the AIDS
Clinical Trials Group (ACTG), called ACTG 388 data.

e The study randomized 517 HIV-1 infected patients in three
antiviral treatments. The data from one of the three

treatments used

e 166 patients treated with highly active antiviral therapy
(HAART) for 120 weeks during which CD4 cell counts were
monitored at weeks 4, 8, and every 8 weeks thereafter (up to
120 weeks)

for assessing immunologic response of an antiviral regimen.

\o Covariate: time after antiviral treatments

e Response variable: CD4 cell counts as an important marker

~

/

32



Regression Spline Smoothing for Longitudinal Data

The ACTG388 Data

Raw Curves
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Regression Spline Smoothing for Longitudinal Data

Six Selected Subjects
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Nonparametric Mixed-effects (NPME) Model

~

Yi; — 77(75@]) +U’L(t’bj) _I_Eij) ]: 1727"' y T4, 1= 1727"' y Ty

’Ui(t) ~ GP(O,V), €, — [6@1, cee ,Eini]T ~ N(O,O‘QIW),

where
® ¢;;: j-th measurement error of ¢-th subject
e 7)(t): smooth FE function, modelling the popular feature
e v;(t): smooth RE function, modelling the individual feature

Aims: Estimate n(t), v(s,t) and o?

-
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Fitting the NPME model Using Regression Splines

e Approximating 7(t) by a regression spline ®(¢)!' 3
e Approximating v;(t) by regression splines ¥ (¢)!b;
e ®(t): order £k TPB with K interior knots

e W(t): order k, TPB with K, interior knots

e 3 and b; are the associated coeflicient vectors
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The Approximation LME Model

yz'j = ZIZZ;,B—I—Z,Z;I)Z—I—GZJ, j:1,2,---,n7;;i:1,2,---,n,
b, ~ N(0,D), € ~ N(0,0°I,,)
® Tij = @(tij) and Rij = \I’(tij)

e For given ®(t) and W¥(t), the approximation LME model can

be fitted easily using existing software

-
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Remarks for NPME Modelling
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Regression Spline Smoothing for Longitudinal Data

For parametric ME modelling, the model is fixed
For NPME modelling, the model is data-driven

For the regression spline-based approximation LME model, the
model is specified by the TPBs ®(t) and ¥(t)

The knots of ®(t) and W¥(¢) can be located using the two
methods described in Part I

Choosing the knot numbers, K and K, to tradeoff the

goodness of fit and model complexity

38



-

Regression Spline Smoothing for Longitudinal Data

Model Complexity and Goodness of Fit

e FE and RE Predictions: y = XB = Ay and
v=2b= A,y

e FE and RE Smoother Matrices: A and A,

e FE and RE Model Complexity: df = tr(A) and
df, = tr(A,)

e Goodness of fit: Loglik (Log-likelihood)

-
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Criteria for Knot Number Selection: AIC and BIC

e A Criterion should trade off “Goodness of Fit” and “Model

Complexity”
e For the regression spline-based NPME modelling, one may
define
— AIC(K, K,) = —2Loglik 4 2(df + df, + 1),
— BIC(K, K,) = —2Loglik + log(N)(df 4+ df, + 1).
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Applications to the ACTG 388 Data

4.465

446
4.455¢
4.45¢
4.445¢
4.44}

4435

443

x 10" (@) AIC v 10" (b) BIC

417

Value

4667

N \\W
i M

4,62

~

41



Regression Spline Smoothing for Longitudinal Data

Plots of six individual fits
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Extensions to other Non/Semiparametric ME Models

e Semiparametric ME Model:

yi; = n(tij) + Zijb?? + €ij,
Yij = w‘}}ﬂ + v (tiz) + €.

e Varying-coefficients ME Model:

Yij = iBZ; (tij) + viltsj) + €ij

e Random-coefficient Model: y;; = :Bg;{n(tz-j) + v (tij)} + €ij,

e (Generalized Nonparametric ME Model:
Yi; = ¢{n(tij) +vi(ti;)} + €, where ¢(+) is known.

/
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Summary

In Part I, we show how to fit a single curve using regression

splines

In Part II, we show how to fit a group of curves using

regression splines

Regression splines can be used to fit other non/semiparametric

models

Other smoothing methods can also be applied; see Wu and
Zhang (2006) for details
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That’s all!

THANK YOU VERY MUCH
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