Nonparametric Methods for Longitudinal Data Using Regression Splines

Jin-Ting Zhang
National University of Singapore
NUS Summer School
June 17, 2009

stazjt@nus.edu.sg

OUTLINE

- Part I: Regression Spline Smoothing
- Part II: Regression Spline Smoothing for Longitudinal Data
- Summary

OUTLINE for Part I

- Review of Parametric Regression Modelling
- Nonparametric Regression Model
- Nonparametric Smoothing Methods
- Regression Spline Modelling

Review of parametric modelling

Figure 1: Examples for parametric regression

Polynomial Regression

- Model $y_i = \mathbf{\Phi}_0(x_i)^T \boldsymbol{\beta} + \epsilon_i, i = 1, 2, \dots, n.$
- Polynomial basis vector $\Phi_0(x) = [1, x, x^2, ..., x^k]^T$
- Matrix form $y = X\beta + \epsilon$.
- Easy to fit $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$.

Advantages for Parametric Regression Modelling

- Easy to fit
- Methods for <u>estimation</u>, <u>hypothesis testing</u> and <u>prediction</u> well established

Drawbacks for Parametric Regression Modelling

- Parametric models applied, e.g., linear or quadratic, must be valid
- Invalid parametric models may lead to misleading results

The Motivating Data

The motorcycle data (Silverman 1985)

- Collected to study the crashed effects after the motorcycles hit by a stimulated impact
- <u>Dependent variable</u>: time after a stimulated impact with motorcycles
- Response variable: head acceleration of a PTMO (post mortem human test object), capturing the crash effects

Figure 2: The motorcycle data

Figure 3: Polynomial fits for the motorcycle data

Nonparametric Regression Model

For a data set (x_i, y_i) , $i = 1, 2, \dots, n$,

$$y_i = f(x_i) + \epsilon_i, \quad i = 1, ..., n,$$

- $f(\cdot)$ unknown but smooth, target for estimation
- $f(x) = E(y_i|x_i = x)$, conditional expectation of the response
- $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$
- It reduces to a parametric model if $f(\cdot)$ is known except a parameter

Nonparametric Smoothing Methods

- <u>Local Polynomial Kernel Smoothing</u> (Wand and Jones 1995, Fan & Gijbels 1996)
- Regression Splines (Eubank 1988)
- Smoothing Splines (Wahba 1990, Green and Silverman 1994)
- P-splines (Ruppert, Wand and Carroll, 2003)

Figure 4: Regression spline fit for the motorcycle data

Regression Splines

- The simplest smoothing technique available
- A natural generalization of the polynomial regression
- Easy to understand and implement
- Widely used in data analysis

Motivation

- Polynomials are not flexible to model data in a big range
- They work well with a small range since within a small range, a Taylor's expansion up to some order is valid
- One can divide a big range, say [a, b] into a few of small intervals:

$$[\tau_r, \tau_{r+1}), r = 0, 1, \cdots, K,$$

where <u>interior knots</u>: $\tau_r, r = 1, 2, \dots, K$, <u>boundary knots</u>: a, b

$$a = \tau_0 < \tau_1 < \tau_2 < \dots < \tau_K < \tau_{K+1} = b.$$

Definition

- A regression spline is a piecewise polynomial
- It is a polynomial of some order within any two neighboring knots τ_r and τ_{r+1} for $r=0,1,\cdots,K$
- The spline is jointed together at knots properly
- The spline allows discontinuous derivatives at the knots.

Truncated power basis (TPB)

- A regression spline can be constructed using a k-order TPB
- Given K interior knots $\tau_1, \tau_2, \cdots, \tau_K$, the k-order TPB is

$$1, x, \dots, x^k, (x - \tau_1)_+^k, \dots, (x - \tau_K)_+^k$$

- The truncated power function $w_+^k = [w_+]^k$, $w_+ = \max(0, w)$.
- First k+1 basis functions are polynomials of order up to k
- Last K basis functions are truncated power basis functions of order k

Regressin splines using TPB:

$$f(x) = \sum_{s=0}^{k} \beta_s x^s + \sum_{r=1}^{K} \beta_{k+r} (x - \tau_r)_+^k.$$

• Within $[\tau_r, \tau_{r+1})$, f(x) is a k-order polynomial:

$$f(x) = \sum_{s=0}^{k} \beta_s x^s + \sum_{l=1}^{r} \beta_{k+l} (x - \tau_l)^k,$$

• $f^{(k)}(x)$ jumps at τ_r with amount $\beta_{k+r}k!$, i.e.,

$$f^{(k)}(\tau_r +) - f^{(k)}(\tau_r -) = \beta_{k+r} k!.$$

Figure 5: (a) a cubic truncated power basis (k = 3) with interior knots .2, .4, .6, and .8; and (b) three cubic regression splines.

Regression Spline Model

• Denote as the TPB as

$$\mathbf{\Phi}(x) = (1, x, \cdots, x^k, (x - \tau_1)_+^k, \cdots, (x - \tau_K)_+^k)^T$$

- A regression spline can be written as $f(x) = \Phi(x)^T \beta$
- The model $y_i = f(x_i) + \epsilon_i, i = 1, \dots, n$ becomes

$$y = X\beta + \epsilon$$
,

where
$$\boldsymbol{X} = (\boldsymbol{\Phi}(x_1), \cdots, \boldsymbol{\Phi}(x_n))^T$$
.

Regression Spline Smoother

- The LS estimator $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- The RS smoother $\hat{f}(x) = \mathbf{\Phi}(x)^T \hat{\boldsymbol{\beta}}$
- The fitted response vector $\hat{\mathbf{y}} = A\mathbf{y}$ with the RS smoother matrix $\mathbf{A} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$
- A is a projection matrix satisfying $A^T = A$, $A^2 = A$ and tr(A) = K + k + 1. The trace of A measures the RS model complexity

Remarks for Nonparametric Regression

- For parametric regression, the model is fixed
- For nonparametric regression, the model is data-driven
- For the regression spline smoother, the model is specified by the TPB $\Phi(x)$
- The TPB $\Phi(x)$ is specified by the knot locations τ_1, \dots, τ_K and the number of knots, K
- Knot locating is important but the choice of the knot number is more important

Two Widely Used Knot Locating Methods

Equally Spaced Method Take K equally spaced points in the range of interest, say, [a, b], as knots:

$$\tau_r = a + (b-a)r/(K+1), r = 1, 2, \dots, K.$$

- The method is independent of the design time points
- Employed when design time points are uniformly scattered

Equally Spaced Sample Quantiles Method Use equally spaced sample quantiles of the design time points x_i , $i = 1, 2, \dots, n$ as knots:

$$\tau_r = x_{(1+[rn/(K+1)])}, r = 1, 2, \cdots, K,$$

- $x_{(1)}, \dots, x_{(n)}$ the order statistics of the design time points.
- [a] denotes the integer part of a.
- The method is design adaptive.
- More knots located where more design time points scattered.

Knot Number Selection

Figure 6: RS fits to the motocycle data with different K.

A Criterion for Knot Number Selection

Generalized Cross-Validation(GCV)

- This method was motified from cross-validation (CV) method
- Use SSE = $\mathbf{y}^T (\mathbf{I}_n \mathbf{P}_X) \mathbf{y}$ to measure goodness of fit
- Use tr(A) = K + k + 1 to measure model complexity
- GCV = SSE/ $(1 \text{tr}(A)/n)^2$ trades off between goodness of fit and model complexity
- GCV often works well in choosing a good K

Figure 7: GCV for knot number selection for the motocycle data.

Figure 8: Regression spline fit for the motorcycle data

OUTLINE for Part II

- Review of LME Modelling
- Motivating Longitudinal Data
- Nonparametric Mixed-effects (NPME) Model
- Fitting the NPME Model Using Regression Splines
- Extensions to other Nonparametric/Semiparametric ME Models

Review of the LME Model:

$$y_{ij} = x_{ij}^T \boldsymbol{\beta} + z_{ij}^T \boldsymbol{b}_i + \epsilon_{ij}, \quad j = 1, 2, \dots, n_i; \ i = 1, 2, \dots, n,$$

$$\boldsymbol{b}_i \sim N(0, \boldsymbol{D}), \quad \boldsymbol{\epsilon}_i \sim N(0, \sigma^2 \boldsymbol{I}_{n_i})$$

- x_{ij}, z_{ij} : fixed-effects (FE) and random-effects(RE) covariates,
- β , b_i : FE and RE vectors, modeling population and individual features respectively
- ϵ_{ij} : measurements errors
- D and σ^2 : variance components
- Mixed-effects modelling allows to pull information across subjects to estimate β and b_i

The LME Solution: Given the variance components D and R,

$$\hat{oldsymbol{eta}} = (oldsymbol{X}^T oldsymbol{V}^{-1} oldsymbol{X})^{-1} oldsymbol{X}^T oldsymbol{V}^{-1} oldsymbol{y}, \ \hat{f b} = oldsymbol{D} oldsymbol{Z}^T oldsymbol{V}^{-1} (oldsymbol{y} - oldsymbol{X} \hat{oldsymbol{eta}}),$$

with $\boldsymbol{X}, \boldsymbol{Z}$ properly defined,

- $\hat{\boldsymbol{\beta}}$ is the generalized least squares estimator of $\boldsymbol{\beta}$
- V and R are estimated using EM-algorithm (Vonesh and Chinchilli 1996)
- Existing software for solving LME models, e.g., *lme* in Splus and *Proc Mixed* in SAS.

Advantages for LME Modelling

- Easy to fit
- Information across subjects and within subjects are used
- Methods for fitting the LME models well established

Drawbacks for LME Modelling

- Strong assumption about the model form needed
- Invalid parametric models may lead to misleading results

Motivating Longitudinal Data(Park and Wu 2004)

- Collected in an AIDS clinical study conducted by the AIDS Clinical Trials Group (ACTG), called ACTG 388 data.
- The study randomized 517 HIV-1 infected patients in three antiviral treatments. The data from one of the three treatments used
- 166 patients treated with highly active antiviral therapy (HAART) for 120 weeks during which CD4 cell counts were monitored at weeks 4, 8, and every 8 weeks thereafter (up to 120 weeks)
- Response variable: CD4 cell counts as an important marker for assessing immunologic response of an antiviral regimen.
- Covariate: time after antiviral treatments

The ACTG388 Data

Six Selected Subjects

Nonparametric Mixed-effects (NPME) Model

$$y_{ij} = \eta(t_{ij}) + v_i(t_{ij}) + \epsilon_{ij}, \quad j = 1, 2, \dots, n_i; \ i = 1, 2, \dots, n,$$

$$v_i(t) \sim \operatorname{GP}(0, \gamma), \quad \boldsymbol{\epsilon}_i = [\epsilon_{i1}, \dots, \epsilon_{in_i}]^T \sim N(0, \sigma^2 \boldsymbol{I}_{n_i}),$$

where

- ϵ_{ij} : j-th measurement error of i-th subject
- $\eta(t)$: smooth FE function, modelling the popular feature
- $v_i(t)$: smooth RE function, modelling the individual feature

<u>Aims:</u> Estimate $\eta(t)$, $\gamma(s,t)$ and σ^2

Fitting the NPME model Using Regression Splines

- Approximating $\eta(t)$ by a regression spline $\Phi(t)^T \beta$
- Approximating $v_i(t)$ by regression splines $\mathbf{\Psi}(t)^T \mathbf{b}_i$
- $\Phi(t)$: order k TPB with K interior knots
- $\Psi(t)$: order k_v TPB with K_v interior knots
- β and b_i are the associated coefficient vectors

The Approximation LME Model

$$y_{ij} = x_{ij}^T \boldsymbol{\beta} + z_{ij}^T \boldsymbol{b}_i + \epsilon_{ij}, \quad j = 1, 2, \dots, n_i; \ i = 1, 2, \dots, n,$$

$$\boldsymbol{b}_i \sim N(0, \boldsymbol{D}), \quad \boldsymbol{\epsilon}_i \sim N(0, \sigma^2 \boldsymbol{I}_{n_i})$$

- $x_{ij} = \mathbf{\Phi}(t_{ij})$ and $z_{ij} = \mathbf{\Psi}(t_{ij})$
- For given $\Phi(t)$ and $\Psi(t)$, the approximation LME model can be fitted easily using existing software

Remarks for NPME Modelling

- For parametric ME modelling, the model is fixed
- For NPME modelling, the model is data-driven
- For the regression spline-based approximation LME model, the model is specified by the TPBs $\Phi(t)$ and $\Psi(t)$
- The knots of $\Phi(t)$ and $\Psi(t)$ can be located using the two methods described in Part I
- Choosing the knot numbers, K and K_v to tradeoff the goodness of fit and model complexity

Model Complexity and Goodness of Fit

- FE and RE Predictions: $\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = Ay$ and $\hat{\mathbf{v}} = Z\hat{\mathbf{b}} = A_vy$
- FE and RE Smoother Matrices: A and A_v
- FE and RE Model Complexity: df = tr(A) and $df_v = tr(A_v)$
- Goodness of fit: Loglik (Log-likelihood)

Criteria for Knot Number Selection: AIC and BIC

- <u>A Criterion</u> should trade off "Goodness of Fit" and "Model Complexity"
- For the regression spline-based NPME modelling, one may define
 - $AIC(K, K_v) = -2Loglik + 2(df + df_v + 1),$
 - $BIC(K, K_v) = -2Loglik + log(N)(df + df_v + 1).$

Applications to the ACTG 388 Data

Plots of six individual fits

Extensions to other Non/Semiparametric ME Models

• Semiparametric ME Model:

$$y_{ij} = \eta(t_{ij}) + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i + \epsilon_{ij},$$

 $y_{ij} = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + v_i(t_{ij}) + \epsilon_{ij}.$

• Varying-coefficients ME Model:

$$y_{ij} = \boldsymbol{x}_{ij}^T \boldsymbol{\beta}(t_{ij}) + v_i(t_{ij}) + \epsilon_{ij}$$

- Random-coefficient Model: $y_{ij} = x_{ij}^T \{ \eta(t_{ij}) + v_i(t_{ij}) \} + \epsilon_{ij}$
- Generalized Nonparametric ME Model: $y_{ij} = \phi \{ \eta(t_{ij}) + v_i(t_{ij}) \} + \epsilon_{ij}$, where $\phi(\cdot)$ is known.

Summary

- In Part I, we show how to fit a single curve using regression splines
- In Part II, we show how to fit a group of curves using regression splines
- Regression splines can be used to fit other non/semiparametric models
- Other smoothing methods can also be applied; see Wu and Zhang (2006) for details

That's all!

THANK YOU VERY MUCH