Statistical methods for mapping quantitative traits using high density SNPs in family samples

Josée Dupuis

Department of Biostatistics Boston University School of Public Health

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 Results from the Framingham Heart Study

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 ⇒ Results from the Framingham Heart Study

FHS Families

• Original cohort enrolled 5,209 men and women from the town of Framingham

⇒ Examination biennially since 1948

• The Framingham Offspring cohort (n=5,124) enrolled children of the original cohort and their spouses

⇒ Examination roughly every four years since 1971

• Third cohort (Gen3; n=4,095) enrolled in 2002

⇒ Grandchildren of original cohort members

 \Rightarrow Data from a single exam available; 2nd exam on-going

FHS: Phenotypes

- Multiple phenotypes collected at each exam
- Example of qualitative traits collected:
 - \Rightarrow Cardiovascular disease
 - \Rightarrow Hypertension
 - \Rightarrow Diabetes, etc.
- Example of quantitative traits collected:
 - \Rightarrow Blood pressure
 - \Rightarrow Lipid profile
 - ⇒ Fasting glucose, etc.

FHS: Genotypes

 > 400 polymorphic genetic markers (single tandem repeats or STRs) covering the genome

 \Rightarrow Available on all three generations

• 100K Affy SNP array for a subset of 1345 individuals from original and offspring cohorts

◆ 258 from original cohort + 1087 from offspring cohort

- 550K Affy SNP arrays for 9274 individuals from all three cohorts
 - SNP Health Association REsource (SHARe) project
 - Imputed SNP genotypes (~2.5 millions) using MACH software

FHS: Genetic analyses

- FHS cohorts were not ascertained for any particular traits or diseases
 - ⇒ Very few families with 2 or more affected individuals for a particular qualitative trait
- Most genetic linkage analyses have been performed on quantitative phenotypes
- Correlation between relatives must be accounted for when performing populationbased association analysis

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 ⇒ Results from the Framingham Heart Study

Quantitative Trait Mapping

• Ultimate goal is to identify quantitative trait loci (QTL) defined as genetic variants influencing quantitative traits of interest

 \Rightarrow Blood pressure, body mass index, etc.

- Great success has been achieved in mapping disease with simple Mendelian inheritance
 - ⇒ Cystic Fibrosis, Huntington's Disease
- Success in mapping complex and quantitative traits has been slower, despite the increase knowledge of the human genome
 - ⇒ Most genetic variants identified to date explain only a very small portion of the trait variance

Mapping Quantitative Traits: Then

Linkage analysis

- ⇒ Relatives who have similar traits should have higher than expected levels of sharing of genetic material near the genes that influence those traits
 - At a locus unrelated to the trait, amount of shared genetic material between relatives is determined (randomly) as a function of family relationship and is independent of trait
 - At a locus that affects the trait, expect greater sharing among people who have similar trait values and less sharing among people with dissimilar trait values
 - Because the sharing is driven by historical recombination events, the effects of increased sharing at the trait locus will also be seen at nearby loci

Mapping Quantitative Traits: Now

Association analysis

 \Rightarrow Genetic variant is tested for association with phenotype

- For example, for a SNP with two alleles, A and T, there are three possible genotype groups: AA, AT and TT
- In unrelated individuals, analysis of variance may be used to determine if mean trait levels differ between genotype groups
- Mixed effect model in related individuals

\Rightarrow Requires genotypes at the true (but unknown) QTL

 Association may also be detected at a "proxy", which is a variant correlated (i.e. in linkage disequilibrium (LD)) with the true quantitative trait locus

General Framework

- Two approaches (linkage and association), same goal: Mapping quantitative traits
- Linkage and association analysis have been treated separately
 - ⇒ Association analysis has been done mainly in unrelated samples
 - ⇒ Linkage analysis requires collection of families
- In the next few slides, a unified framework for both linkage and association analysis is presented

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 ⇒ Results from the Framingham Heart Study

Methods for Mapping Quantitative Traits: Basic Model

 $E[Y_i] = \eta_i(\beta) = \beta_z z_i + \beta_Q Q_i + \beta_G G_i + \beta_E E_i$

- Y_i = phenotype of interest
 - \Rightarrow Could be multivariate or longitudinal
 - \Rightarrow *i* refers to an individual, which is part of a pedigree
 - ⇒ When all pedigrees are of size 1, this corresponds to an unrelated sample
- $z_i = (\text{non-genetic})$ covariates
- $Q_i = QTL$ covariates (trait loci)
- *G_i* = latent genetic factor (polygenic)
- E_i = Environmental & other non-genetic factors

Basic Model: Assumptions

Same model for linkage and association, but different assumptions!

 $E[Y_i] = \eta_i(\beta) = \beta_z z_i + \beta_Q Q_i + \beta_G G_i + \beta_E E_i$

- Common assumptions
 - $\Rightarrow Q_i$ (true quantitative loci) are never observable
 - ⇒ Location of trait loci are unknown
- Association: Observe U_i a proxy for Q_i
- Linkage: Observe segregation of Q_i in pedigrees
 ⇒ Called "inheritance vectors"

Linkage and Association Testing

Common assumption: phenotypes are normally distributed

- Phenotypes are rarely normally distributed
 ⇒ E.g. Blood pressure has a non-symmetric distribution
- Departure from normality may cause spurious evidence for linkage
- One solution: robust score statistics

⇒ Test statistic is derived based on log likelihood conditional on observed phenotypes

Log Likelihood Function

- Let $\theta_i = \eta_i(\beta)$
- Log likelihood of one observation:

$$\ell_i(\beta) = -\frac{(Y_i - \theta_i)^2}{2\phi} \propto \frac{(Y_i - \theta_i^2/2)}{\phi}$$

• Log likelihood of all observations (conditional on covariates, both observed and unobserved)

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{N} \frac{\left(Y_i \theta_i - \theta_i^2 / 2\right)}{\phi}$$

assuming phenotypic measurements are conditionally independent, given the covariates.

Log Likelihood Function

- Phenotype (Y) and covariate z are observable
- *Q* is not observable
- In association, covariate *U*, a proxy for *Q*, is observable
- In linkage, υ_t, the inheritance vectors indicating the segregation of Q within a pedigree, are observable

 $\Rightarrow Q_i$ is a function of v_t and g_t (the founders genotypes)

- G and E are unobserved latent variables
- Inference is based on marginal and conditional likelihoods of the observable covariates

Log Likelihood Function: Association

 When Y and U are observed, marginal log-likelihood of β (omitting dependence of fixed covariate z):

 $\ell(\beta; Y, U) = \log E[e^{\ell(\beta)} | Y, U]$

• Conditional log-likelihood of the genetic covariate, given the phenotypes (and other unobserved covariates):

 $\ell(\beta; U | Y) = \log E[e^{\ell(\beta)} | Y, U] - \log E[e^{\ell(\beta)} | Y]$

Note: Inference is based on likelihoods conditional on observed phenotype (Y) so that derived test statistics are robust to departure from normality assumption

Log Likelihood Function: Linkage

- In linkage, U in unobserved, but one observed v_t , the segregation of Q/U within the pedigree.
- Conditional likelihood

 $\ell(\beta; \nu_t | Y) = \log E[e^{\ell(\beta)} | Y, \nu_t] - \log E[e^{\ell(\beta)} | Y]$

- Expectation over unobserved variables
- First expectation also over random distribution of founders genotypes (g_t)

Efficient Score Statistic: Association

- Obtained by taking first derivative of log likelihood with respect to β_U , evaluated at $\beta_U=0$
- For normal log likelihood function:

 $\dot{\ell}(\beta_0; U \mid Y) = (Y - \beta_z) \sum^{-1} (U - E(U))$

 $\beta_0 = (\beta_z, \beta_U = 0, \beta_G, \beta_E)$ $\sum = \sigma_G^2 \Phi + \sigma_D^2 \Delta + \sigma_e^2 I = (\sigma^2 I \text{ in unrelated samples})$

 $\Phi =$ Kinship coefficient matrix

 $\Delta =$ Matrix of probabilities of pairs sharing 2 alleles IBD Φ and Δ are known and depend on pedigree structure

• Association score statistic is a weighted sum of the genotype counts 21

Efficient Score Statistic: Linkage

- First derivative of log likelihood for linkage with respect to β_U , evaluated at $\beta_U=0$ is 0
 - \Rightarrow Take second derivative (also evaluated at $\beta_U=0$)
- For normal log likelihood function:

$$\ddot{\ell}(\beta_{0}; v_{t} | Y) = tr \Big[\sum^{-1} (Y - \beta_{z})(Y - \beta_{z})' \sum^{-1} - \sum^{-1} \Big] \Big[(\hat{\Phi} - \Phi) \sigma_{A:U}^{2} + (\hat{\Delta} - \Delta) \sigma_{D:U}^{2} \Big] \\ \hat{\Phi} = \text{Observed pairwise identity-by-descent (IBD) proportion} \\ \hat{\Delta} = \text{Indicator that pairs share 2 alleles IBD} \\ \Phi = \text{Kinship coefficient (Expected IBD)} \\ \Delta = \text{Probability that pair shares 2 alleles IBD}$$

• Linkage score statistic is a weighted sum of the centered IBD probabilities

Efficient Score Statistic: Linkage

- Why need to take the second derivation?
- Likelihood of v_t contains no information about effect of β_U on phenotype
- Likelihood of v_t has information about effect of β_U^2 on the covariance of phenotypes
- Because the likelihood is parametrized in terms of β_U^2 , first derivative vanishes and second derivative must be used
- Same statistic obtained if one reparametrized the likelihood in terms of β_U^2 and takes first derivative

Variance of Efficient Scores

- To construct a test statistic robust to departure from normality assumption, compute variance conditional on the observed phenotype *Y*
- U correlated within family: $E_0(UU') = \Phi \sigma_{A:U}^2 + \Delta \sigma_{D:U}^2$
- Covariance matrix depends on "coding" used for U
- Typical coding for U:
 - ⇒ Additive (U=0,1 or 2 depending on number of minor alleles)
 - For additive coding, $\sigma_{D:U} = 0$
 - \Rightarrow Dominant (U = 0 if no minor alleles, 1 otherwise)
 - \Rightarrow Recessive (U = 1 if two minor alleles, 0 otherwise)

Variance of Efficient Score: Association

• Association statistic robust to departure from normality assumption: compute the variance conditional on the observed phenotype *Y*

$$V\left[\left(Y-\beta_{z}\right)'\Sigma^{-1}\left(U-E(U)\right)|Y\right] = \left(Y-\beta_{z}\right)'\Sigma^{-1}\Phi\Sigma^{-1}\left(Y-\beta_{z}\right)\sigma_{A:U}^{2} + \left(Y-\beta_{z}\right)'\Sigma^{-1}\Delta\Sigma^{-1}\left(Y-\beta_{z}\right)\sigma_{D:U}^{2}$$

- Conditional on observed phenotype Y
- Depends on relationship between individuals
- For unrelated individuals, Φ and Δ are identity matrices

Variance of Efficient Score: Linkage

• Variance of efficient score for linkage:

 $V \left| \ddot{\ell}(\beta_0; \nu_t \mid Y) \right| =$ $(\hat{w}' \sum_{\hat{\sigma}\hat{\sigma}} \hat{w}) \sigma_{A:U}^4 + 2 (\hat{w}' \sum_{\hat{\sigma}\hat{\Lambda}} \hat{w}) \sigma_{A:U}^2 \sigma_{D:U}^2 + (\hat{w}' \sum_{\hat{\Lambda}\hat{\Lambda}} \hat{w}) \sigma_{D:U}^4$ $\hat{W} =$ vec of the matrix W $W = \sum^{-1} (Y - \beta_z) (Y - \beta_z) \sum^{-1} + \sigma_z^{-2} I - \sum^{-1}$ $\overline{\Sigma_{\hat{\Phi}\hat{\Phi}}} = \overline{Cov_0(vec(\hat{\Phi}))} \qquad \Sigma_{\hat{\Phi}\hat{\Lambda}} = \overline{Cov_0(vec(\hat{\Phi}), vec(\hat{\Delta}))}$ $\Sigma_{\hat{\lambda}\hat{\lambda}} = Cov_0(vec(\hat{\Delta}))$

Variance of Efficient Score: Linkage

- When data from nuclear families, $\sum_{\hat{\Phi}\hat{\Phi}}$ and $\sum_{\hat{\Delta}\hat{\Delta}}$ reduce to identity matrix
 - \Rightarrow IBD counts between siblings are independent
- In extended pedigree, pairwise IBD counts may be correlated
 - ⇒ IBD count between individual and grand-maternal grandmother is negatively correlated with IBD count between individuals and grand-maternal grandfather
- In practice, one may substitute the empirical covariance $(\hat{V}_{ij} \phi_{ij})(\hat{V}_{kl} \phi_{kl})$ for the IBD count covariance between pairs *ij* and *kl*

Robust Score Statistics: Association

• To test for association between proxy *U* and phenotype *Y*, use Z statistic:

$$Z_{a} = \frac{\dot{\ell}(\beta_{0}; U \mid Y)}{\sqrt{V[\dot{\ell}(\beta_{0}; U \mid Y) \mid Y]}}$$
$$= \frac{(Y - \beta_{z})' \sum^{-1} (U - E(U))}{\sqrt{(Y - \beta_{z})' \sum^{-1} \Phi \sum^{-1} (Y - \beta_{z}) \sigma_{A:U}^{2}} + (Y - \beta_{z})' \sum^{-1} \Delta \sum^{-1} (Y - \beta_{z}) \sigma_{D:U}^{2}}$$

• Similar statistic (Z_l) can be formed to test for linkage

Robust Score Statistics

- Conditional on observed phenotype Y, linkage and association score statistics are uncorrelated
 - ⇒ Square of association statistic has chi-square distribution with 1 (additive) or 2 (general model) degrees of freedom
 - \Rightarrow Square of linkage statistic is a 50-50 mixture of chisquare distribution with 0 and 1 degrees of freedom
 - One sided statistic because negative Z gives evidence against linkage

Robust Score Statistics

- Combining these two statistics may improve power to detect genetic variants influencing trait of interest
- Optimal combination will take variance of both statistics into consideration
- Naïve way: sum of square of the score statistics

⇒ Resulting statistic has a mixture of chi-square distribution

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 ⇒ Results from the Framingham Heart Study

FHS: Phenotypes of Interest

- Type 2 diabetes and related quantitative traits
 - ⇒ Fasting plasma glucose level in non-diabetics
 - High level of fasting glucose is indicative of Type-2 diabetes
- Cardiovascular disease and related quantitative traits
 - ⇒ C-reactive protein (CRP) plasma level, a biomarker of inflammation

Fasting Blood Glucose

Plasma CRP levels

Generalized Linear Model

- Framework is general and not restricted to normal distribution
- May use generalized linear model likelihood, which includes the normal distribution
- Log likelihood becomes: $\ell(\beta) = \sum_{i=1}^{N} [Y_i \theta_i \psi(\theta_i)]/\phi$
 - $\Rightarrow \phi$ is a scale parameter
 - $\Rightarrow \psi$ is the cumulant generating function
 - $\Rightarrow \theta_i(\beta) = h(\eta_i(\beta))$
 - $\Rightarrow \eta_i(\beta) = \beta_z z_i + \beta_Q Q_i + \beta_G G_i + \beta_E E_i$

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 ⇒ Results from the Framingham Heart Study

Power Approximation

- Can get explicit formulas for the non-centrality parameter (NCP) for both linkage and association score statistics
 - \Rightarrow NCP = Expected value of test statistic
 - \Rightarrow NCP may be used to approximate study power
- Common framework allows power comparisons
 - ⇒ Linkage versus association (or joint statistic)
 - \Rightarrow Different study designs
 - ⇒ Effect of LD and model misspecification

Noncentrality Parameter

• Approximation for non-centrality parameter for association statistic (ignoring dominance effect, for simplicity):

$$E[Z_a \mid Y] \approx \frac{(Y - \beta_z) \sum^{-1} \Phi \sum^{-1} (Y - \beta_z) \sigma_{A:U,\beta_Q}^2}{\sqrt{(Y - \beta_z) \sum^{-1} \Phi \sum^{-1} (Y - \beta_z) \sigma_{A:U}^2}}$$

- $\sigma^2_{A:U,\beta_o}$ is the additive covariance between $Q\beta_o$ and U

 - $\Rightarrow Q \text{ may be a matrix, but } Q\beta_Q \text{ is a vector} \\\Rightarrow \text{ If U is a perfect proxy for } Q, \quad \sigma^2_{A:U,\beta_Q} = \beta_Q \sigma^2_{A:U}$
 - \Rightarrow Power of association test depends on correlation between U (proxy) and Q (trait loci)
- Equivalent approximation available for the linkage statistic

Association Analysis in Family Samples

Advantages

- ⇒ Able to perform additional quality control (inheritance checking)
- ⇒ Estimate heritability of trait
- ⇒ Able to perform family based association tests
- ⇒ Able to perform joint linkage and association tests
- Disadvantages
 - ⇒ Need to account for familial correlation
 - Lose information/power by selecting a single individual per family

Power of Additive Association test: Effect of study design

	Subset included in analysis		
Study Design	All family members	Only unrelateds	Equivalent # of unrelateds
3 sibs + 2 parents	95.2%	28.5%	98.9%
2 sibs + 2 parents	85.1%	28.5%	92.9%
3 sibs (no parents)	59.9%	2.3%	70.4%
2 sibs (no parents)	24.6%	2.3%	28.5%

Additive QTL explaining 1% of variance of trait with 30% heritability; N family = 1200; Genome wide significance set at 5 x 10⁻⁸

Power of Additive Association test: Effect of study design

	Subset included in analysis		
Study Design	All family members	Only unrelateds	Equivalent # of unrelateds
3 sibs + 2 parents	64.2%	7.3%	80.9%
2 sibs + 2 parents	44.1%	7.3%	58.1%
3 sibs (no parents)	21.4%	0.4%	29.0%
2 sibs (no parents)	5.9%	0.4%	7.3%

Recessive QTL explaining 2% of variance , MAF=20%. N family = 1200; Genome wide significance set at 5 x 10⁻⁸

Outline

- Motivating dataset: Framingham Heart Study
- Quantitative trait mapping in family samples
- Common framework for linkage and association analysis
 - ⇒ Application to the Framingham Heart Study
- Association analysis: value of family samples
- Linkage analysis: extensions to basic model
 ⇒ Results from the Framingham Heart Study

Extension to Basic Model: Gene x Covariate Interaction

 $E[Y_i] = \eta_i(\beta) = \beta_z z_i + \beta_x x_i + \beta_U U_i + \beta_I x_i U_i + \beta_G G_i + \beta_E E_i$

- Y_i = phenotype of interest
- $z_i = ($ non-genetic) covariates
- *U_i* = proxy for QTL covariates
- x_i = covariate for which we want to test for interaction with genetic component (Q_i)
- *G_i* = latent genetic factor (polygenic)
- E_i = Environmental & other non-genetic factors

Efficient Linkage Score Statistic for Gene x Covariate Interaction

• First derivative of log likelihood for linkage with respect to β_U and β_I , evaluated at $\beta_U = \beta_I = 0$ is 0

 \Rightarrow Take second derivative (also evaluated at $\beta_U = \beta_I = 0$)

• For normal log likelihood function:

 $\ddot{\ell}(\beta_0; v_t | Y) \propto [tr(WA_{\pi}), tr(WB_{x,\pi}), tr(WC_{x,\pi})]$

 $W = \sum_{x}^{-1} (Y - \beta_z) (Y - \beta_z) \sum_{x}^{-1} \sum_{x}^{$

 $A_{\pi} = \hat{\Phi} - \Phi$ = Centered observed pairwise IBD proportions

 $B_{x,\pi}$ is formed by multiplying each entry of A_{π} by $x_i + x_j$

 $C_{x,\pi}$ is formed by multiplying each entry of A_{π} by $\mathbf{x_i} \times \mathbf{x_j}$

Extension to Basic Model: Gene x Covariate Interaction

- Score statistic has three components
- Some constraints apply to the three components of the efficient score statistic
 - ⇒ First and third components must be non-negative
 - \Rightarrow Second component constrained by the first and third

FHS: Phenotypes of Interest

- Type 2 diabetes and related quantitative traits
 - \Rightarrow Fasting insulin in non-diabetics
 - ⇒ Evidence for association with APOE gene located on chromosome 19
 - ⇒ One published report suggesting association is modified by body mass index (BMI)

Fasting Insulin

Fasting Insulin: Chromosome 19

Fasting Insulin: Chromosome 19

Fasting Insulin with gene x BMI interaction: Offspring generation only

Fasting Insulin with gene x BMI interaction: Offspring and Generation 3

Extension to Basic Model Multivariate Phenotypes

- May be of interest to jointly analyze phenotypes that may be under similar genetic control
 - ⇒ Lipoprotein-associated phospholipase A₂ (LpPla2) plasma level mass and activity, biomarkers of inflammation
- Bivariate score statistic for linkage has 3 components
 - ⇒ Similar to linkage statistic for gene x covariate interaction
- Similar constraints apply to the three components of the efficient score statistic
 - ⇒ First and third component must be non-negative
 - \Rightarrow Second component constrained by the first and third

LpPla2: Log Scale

ACTIVITY

LpPla2: Log Scale

Concluding Remarks

- Several advantages to conducting association analysis in family samples
 - ⇒ Power reduction from relatedness is modest and depends on heritability of trait
 - \Rightarrow Better quality control
 - ⇒ Can obtain estimate of heritability of trait
- General framework allows comparison of different study designs
 - ⇒ Family versus unrelated individuals (association)
 - ⇒ Nuclear families versus extended pedigrees (association & linkage)

Concluding Remarks

- General framework can be easily extended
 - \Rightarrow Survival phenotypes
 - ⇒ Gene x covariate interaction
 - \Rightarrow Multivariate phenotypes
- Methods combining linkage and association may offer increased power over either approaches alone
 - ⇒ Loss of power is small in region of no linkage
 - ⇒ Future research needed to determine how/when/if it is advisable to combine linkage and association statistics

Acknowledgement/Collaborators

Stanford University

David Siegmund

The Hebrew University of Jerusalem Benjamin Yakir

Boston University/Framingham Heart StudyJames B. MeigsEmelia BenjaminJosé FlorezRenate SchnabelAlisa ManningChen Lu