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Human chromosomes come in pairs.



Trisomy of 21 in Downs syndrome



Copy Number Changes at a Smaller Scale



Change in total copy number in cancer



Which chromosome hasgained or lost copies?

We will call the copy number of each of the parental
chromosomes the parent specific copy number.
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Loss of Heterozygosity
A large fraction of LOH events don’t involve change in total
copy number.

Data from 24 pancreatic cancer cell lines, Calhoun et al., Genes,
Chromosomes and Cancer 45:1070



Total versus Allele-specific Copy Numbers

Each individual has two copies of every chromosome, the
maternal copy and the paternal copy.

1. Certain experimental platforms, such as Agilent and
Nimblegen, provides only total copy number estimates,
that is, the sum of the copy numbers of both maternal and
paternal chromosomes.

2. Other platforms, such as genotyping arrays (Illumina
Beadarray, Affymetrix) can provide esimates of the copy
number of each allele at selected polymorphic loci.
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Data from SNP arrays (Illumina, Affymetrix)

Colored points: population control, black triangle: target sample.
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Why do we care about parent-specific copy number?

1. Many loss-of-heterozygosity events do not cause a change
in total copy number.

2. Allele-specific nature of amplification and deletion often
has biological relevance.

3. Making use of information from both alleles can improve
CNV detection accuracy.

4. Teasing apart the parent-specific copy numbers allow us to
quantify the fraction of cells in the sample that contain the
copy number aberration. This makes possible the
quantitative study of tumor clonality.

How should this data be modeled and visualized?
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More on the Clonality of Cancer Samples

Image from: http://science.kennesaw.edu/ mhermes/cisplat/cisplat19.htm



Using information in both alleles can improve power
Illumina outputs SNP-normalized data:

R = (A + B)/[E(A + B)], b = (2/π) arctan(B/A),

Normalized to population controls...



Copy number estimation using SNP chip data
Existing approaches:

1. Segment sequence based on total copy number, then
cluster segments based on allele information
(LaFramboise et al., 2005).

This misses copy neutral loss of heterozygosity events.
2. Use existing segmentation tools to separately segment the

log ratio and some thresholded version of B-frequency
(Staaf et al. (2008), Assié et al. (2008)).
B-frequency is a mixture residing within [0, 1]...

3. Hidden Markov model with hidden states representing
genotypes A, B, AA, AB, BB, AAB, ABB, ... PennCNV,
QuantiSNP.

Cancer samples are often a mixture of sub-populations
with different genotypes.
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Fractional changes
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A helpful observation

For any homogeneous segment, the (A, B)
allele intensities must take on either 2, 3, or 4
clusters. The locations of these clusters depend
on the quantities of the maternal and paternal
chromosome. The cluster membership of any
specific SNP depends on the genotype.



Two-chromosome Markov jump model

1. Model description.
2. Estimation Procedure.
3. Algorithmic details.
4. Results on data.



Parental allele configuration

st Interpretation
AA Both parental chromosomes carry A.
AB Maternal carries A, paternal carries B.
BA Maternal carries B, paternal carries A.
BB Both parental chromosomes carry B.

Parent-specific copy numbers at location t : θt ,1, θt ,2.

Allele specific copy numbers: xt ,1, xt ,2.

st xt ,1 xt ,2
AA θt ,1 + θt ,2 0
AB θt ,1 θt ,2
BA θt ,2 θt ,1
BB 0 θt ,1 + θt ,2
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Model Overview

θt : Markov jump process,
yt = xt + ε, ε ∼ N(0,Σst ).

When somatic changes in copy number occur, st remains fixed.
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Parental copy numbers θt

θt can belong to two states:

Baseline state: θt =
(B

2 , B
2

)
, changed state: θt ∼ N(µ, V ).

At each position, θt can:
1. remain at the same value as θt−1,
2. jump to a changed state (if at baseline), or a new changed

state (if already at changed state),
3. jump to baseline (if at changed state).

This can be modeled with a 3-state Markov model with
transition matrix:

P =

 1− p 1
2p 1

2p
c a b
c b a

 .
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Parental allele configuration st

st can be modeled as:

I i.i.d. multinomial distribution with known parameters

(pAA
t , pBA

t , pAB
t , pBB

t ).

I Markov with transition probabilities between two SNPs
estimated using Haplotype data.

These parameters can be estimated from the appropriate
population controls.



Data transformation

X = (log R + C)b, Y = (log R + C)(1− b), plus some
necessary symmetrization, variance stabilization work well.
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Smoothing equations
If st were known, the posterior distribution of θt given the
complete data sequence is a mixture of normals:

θt |(Y1,n, s1,n) ∼ αtδB +
∑

1≤i≤t≤j≤n

βijtN(µij , Vij).

where αt , βijt , µij , Vij can be explicitly computed via recursion.

Then we can estimate θt by its posterior mean.

E(θt |Y1,n, s1,n) = αtB +
∑

1≤i≤t≤j≤n

βijtµij .

Using BCMIX approximations (Lai et al., 2005), this smoothing
step can be done in O(n) computations, where n is number of
SNPs. This translates to ∼ 15 seconds for 30000 SNPs (4
minutes for 500K chip).
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A Twist on the EM Algorithm

Set s1 to some initial value. Let i = 1.

Repeat:

1. Expectation step: Given si , set θi
t to its posterior mean.

2. Maximization step: Given θi , set si+1 to its maximum a
posteriori value

si+1 = arg max
s∈S

P(s|θi , y). (3.1)

This can be done easily because given θi , yt is a mixture of
Gaussians at each t , and si+1

t is simply the identifier for
each mixture component.

3. If ‖θi+1 − θi‖ < δ, stop and report θi+1, si+1. Otherwise, set
i ← i + 1 and go back to step 1.
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Smoothed data: birds eye view



Segmented data: birds eye view

Segmentation by thresholding: if difference > δ then segment.
Plus other rules for min SNPs, min heterozygosity, etc.



Transform back to Illumina AB Coordinates



End Result: Estimates of Major and Minor Copy
Numbers



Specificity using simulated titration data of Staaf et al.
(2008)



Sensitivity using simulated titration data of Staaf et al.
(2008)



Distribution of types of aberrations across patients

1. 223 Glioblastoma samples studied by the TCGA Research
Network.

2. Stringent cut offs were used to identify CNAs.
3. Percentage of bases in each of the aberration categories:

Event type %
Gain/Gain 3

Gain/Normal 28
Gain/Loss 15

Loss/Normal 51
Loss/Loss 3



Variation of Aberration Profiles Across Patients



Example Regions

Unbalanced gain/loss, followed by fractional gain.
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What’s next?

We can now segment a genome into regions of homogeneous
parent-specific copy number. For each region, this gives
estimates of the relative quantities of the major and minor
chromosome.

This makes possible many new types of analyses:

1. Estimate normal cell contamination?
2. Quantify clonality?
3. Cross-sample analysis to identify allele-specific

gains/losses to distinguish between passenger and driver
mutations.
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