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So maybe a better title is……

Misinformation, …….



The theme

Population genetics theory, with Fisher, Haldane and 
Wright, was mainly a theoretical exercise, aimed at 
validating and describing the Darwinian theory using 
the Mendelian hereditary mechanism. In this it was 
successful. But… there was not much data.

By contrast, we now have data, that is “information”. 
In this talk I discuss the information concept in the 
context of standard evolutionary population genetics 
theory.



What is (Fisher) information?

For a discrete random variable whose possible values have 
respective probabilities p1(θ), p2(θ), …, where θ is an 
(unknown) parameter, the Fisher information about θ provided 
by an observed value of the random variable is

E (d/dθ log p(θ))2

= Σj pj(θ) (d/dθ log pj(θ))2

= ∑j (        )2/ pj(θ)

The “dot” derivative is with respect to θ.
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As an example, in the Poisson (θ) case,

pj(θ) = e – θ θj / j!

Log pj(θ)  = - θ + j log θ - log (j!)

d/dθ (log pj(θ) =   -1 + j/θ.



And so the information about θ provided by the 
observed value of a random variable having the 
Poisson distribution is

∑ j [e-θ θj/j!] [-1 +j/θ]2 = E(j – θ)2/θ2 = 1/θ.

The information about θ provided by n iid observations 
is n/θ. 

The variance of any unbiased estimator of θ is greater 
than or equal to the reciprocal of this, namely θ/n. 
This (Cramer-Rao) bound is attained by the average 
of the n observations.



Simple haploid two-allele one-locus model

Standard deterministic evolutionary model (1920’s):-

We have two alleles, A1 and A2, with fitnesses (1+ sa1)/(1+sa)
and (1+sa2)/(1+sa), where the parental generation frequencies 
are p1 and p2  and a =  p1a1+p2a2 . We can then compute the 
daughter generation frequencies p1´ and p2´ as 

pi' = pi (1+sai)/(1+sa),  (i = 1,2).

The new approach: knowing a1, a2, p1 and p2 , we can compute s.



Note that
Δpj = pj´ - pj = spi(ai – a)/(1+sa),   (j = 1,2).

Thus

Also, σ2 = variance in fitness

So “ deterministic model information” =  variance in fitness.

The variance in fitness can also be written as
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In the analogous continuous-time model, knowing p and s, 

(dot derivative = rate of change with respect to time.)

The new perspective: knowing p and p' , we can say that

Roughly, s δt = δp/[p(1-p)].  

In a continuous-time evolutionary model, time and fitness 
differences are totally confounded. Thus making an inference 
about a time parameter is equivalent to making an inference 
about fitness differentials, and vice versa.
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In the simplest continuous-time model, 

A deterministic  “Fisher-information-like” quantity derived from 
this is “Sum over alleles of the square of the rate of change of 
allele frequency divided by the current frequency”, or

The  variance in fitness is 

s2p1(1-p1)2 + s2p2(1-p2)2 = s2p1p2.

Thus, once again, “variance = information”.
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The stochastic (Wright-Fisher) case
Suppose that in a haploid population of N genes, there are i A1
genes in some parental generation. Assume a Wright-Fisher 
model with the fitnesses above. The probability that these i A1
genes give rise to j genes in the daughter generation is

where ψi = (i/N)(1+sa1)/(1+sa). 

How much (Fisher) information about s do the observed values of i
and j provide?
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Using Fisher information, we get

log pij =  const + j log (1+sa1) + (N–j) log (1+sa2)  - N log (1+sa)

d log pij / ds =  {j –E(j)}{a1/(1+sa1) – a2/(1+sa2)}

Therefore Fisher information =  E [ d log pij / ds ]2
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If we write i/N = p1, (N-i)/N = p2, this is very close to 
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Note the close similarity between the “stochastic”
model information and the deterministic model 
information (=  the deterministic total variance in 
fitness).

Do these results generalize to the k allele haploid 
model?



The case of k alleles
Consider k alleles A1, A2, …, Ak at the locus, with respective fitnesses 
(1 + sai)/(1+sa), i = 1, 2, …, k, where ∑j pj ai= a. Then in the deterministic case,

Δpj = pj(1+saj)/(1+sa)  – pj

=  pj s (aj - a)/(1+sa) .

Thus ∑ j (Δpj)2/pj =   s2 ∑ j pj (aj - a)2/(1+sa)2

This is also the total variance in fitness.  So again, “information” = variance.
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The stochastic case.

Suppose that the frequencies of the k alleles A1, A2, .., Ak in a 
population of N genes are p1, p2, …, pk,  and that one generation 

later there are n1, n2, .., nk genes respectively of these types.

The probability of the values  n1, n2, …., nk is

Here, as before,  a = ∑ pjaj.

The log of this is const + ∑ nj log (1+saj) – N log (1+sa).
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Then the Fisher information about s is

This is “close to” to the deterministic ∑ j (Δpj)2/pj ,

And so also close to the total variance in fitness.

N
sa

p a
sa

a
sa

j j

jj

k

1 1 1

2

1

2

+ +
−

+=
∑[ ]



The diploid case (with k alleles)

Deterministic theory.  The Fisher information 

Σj (     )2 / pj

(or something like it) arises in k-allele deterministic 
diploid evolutionary population genetics theory in at 
least two places – see later.
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The diploid case is much more complicated than 
the haploid case, because a parent passes on a 
gene, not his/her genotype, to a child. This 
introduces a “fault-line” in the Darwinian 
theory. We have to find that component of the 
fitness of any individual which is “contained in 
the genes within the genotype”.



This leads to the concepts of the average effects of 
the genes and of the additive genetic variance

If Pij is the ordered frequency of the genotype AiAj, 
and wij is the fitness of that genotype, and w is the 
mean fitness, we find the average effects of the alleles 
A1, A2, …,Ak by minimizing

∑∑ Pij (wij – w – αi – αj)2

with respect to α1,  α2, …, αk. The additive genetic 
variance σA

2 is the sum of squares so removed. It is 
that component of the total variance in fitness of the 
various genotypes explained by the genes within 
those genotypes. 



The minimizing values of α1,  α2, …, αk  are the average 
effects of A1, A2, … Ak. We write then as a1, a2, …, 
ak.

They can be thought of as the best we can do in 
assigning fitnesses to the various alleles (analogous to 
the fitnesses 1 +sa1, …, 1+ sak in the haploid case). 

What information do we have about these average 
effects when we compare parental and daughter 
generations?



Fisher information result #1. 

In discrete time, with fitnesses depending on the alleles at one 
locus and assuming random mating, and allowing an arbitrary 
number k of alleles A1, A2, …, Ak possible at the gene locus 
of interest, with respective frequencies p1, p2,…, pk, and with 
parental generation mean fitness of 1, 

∑ j (Δ pj )2 / pj =  ½ σA
2.

Here σA
2 is the additive genetic variance in fitness and Δ pj is 

the change in the frequency of allele Aj between parent and 
daughter generation brought about by natural selection. 

Note the changes from the (haploid) total variance in fitness 
to the (diploid) half the additive component of this variance.



We can therefore think of (1/2) σA
2 as the

“information” about the average effects of the 
k alleles available from allelic frequencies in 
successive generations.

(This is not proven yet.) 

This is useful since we can estimate σA
2 from 

data.

Equivalently ….. 



The additive genetic variance and parent/offspring correlations 
between relatives and covariances in fitness.

In very simple models, with k alleles at the locus of interest,

correlation (parent/offspring) = ½ σA
2 / σ2

or equivalently

covariance (parent/offspring) = ½ σA
2.

So in these simple models we can think of the P/O covariance as 
providing information about the average effects.



Does equating P/O covariance with “information” make 
sense?

Yes - A covariance between (say) height and weight 
is a measure of how much information about weight 
there is in a height measurement. In this case the P/O 
covariance is a measure of how much information 
about average effects is obtained by comparing 
parental and daughter allelic frequencies. 

Special case: at a stable (internal) equilibrium, allelic 
frequencies do not change, and σA

2 , the P/O 
covariance and all average effects are zero.  Thus the 
(zero) P/O covariance gives the information that the 
average effects are all zero.



Fisher information result #2. 

We have just seen that the natural selection allelic frequency 
changes (Δ p1,   Δ p2, …., Δ pk) satisfy the equation

∑ j (Δ pj )2 / pj = (½) σA
2

The Kimura optimization principle, for the case of random 
mating, with fitnesses depending on one locus only, states that:-



Let (d p1,   d p2, …., d pk) be an arbitrary vector of  changes of 
allelic frequencies, subject (of course) to the requirement that
∑ j d pj = 0. Then this principle states that, subject to the 

constraint

Σj ( d pj )2/pj = (½) σA
2, 

inspired by the equation satisfied by the natural selection 
changes, the allelic frequency changes which maximize the 
between-generation increase in mean fitness are the natural 
selection values (Δ p1,   Δ p2,  ….,     Δ pk).





That is, thinking of (½) σA
2 as information, then for a

given amount of information about the average 
effects of the alleles that drive allelic frequency 
changes, the natural selection changes maximize the 
increase of mean population fitness.



It is convenient to move to matrix and vector notation to carry 
these ideas to the whole genome. So we define M as a diagonal 
matrix whose typical element is pi, Δ as the vector (Δ p1,   Δ p2, 
…., Δ pk)' and d as the arbitrary vector  (d p1,   d p2, ….,dpk)'. 

Then the above results can be written as

1. Δ' M-1 Δ =  ½σA
2,

2.   The Kimura principle is:  subject to the constraint      

d′ M-1d = (1/2) σA
2, 

for an arbitrary vector of allelic frequency changes d,  the 
frequency changes  that maximize the increase in mean fitness is
the natural selection vector of changes Δ. 

(Remember the quadratic forms Δ' M-1 Δ and d′ M-1 d .)



An unanswered question. Why impose the actual constraint
that Kimura imposed? It has been widely criticized in the 
literature as being “ad hoc”, and with no extrinsic 
justification.

To answer this, and to consider the whole “information”
question much more generally, we (i) remove the assumption 
of random mating, and (ii) consider the entire genome, not 
just one gene locus.

Frequency changes written in Greek (either δ or Δ) in what 
follows are assumed to be those brought about by natural 
selection. δ is a “within-generation” change, Δ is a between-
generation change. Frequency changes written in Roman (i.e. 
d) are arbitrary changes. 



We list all the (approximately) (4 5,000) 30,000 whole-genome 
genotypes as genotypes G1, G2, ……,

with parental generation population frequencies g1, g2, …,
and fitnesses w1, w2, …

These are (again) normalized so that the parental generation 
mean population fitness w ( = Σs gs ws ) is 1. 



By definition of the fitness ws of the (whole genome) genotype 
#  s, the within-generation change of the frequency of this 
genotype, that is the change in frequency between the time of 
conception and the age of reproduction, is 

δ(gs)  =  gs {ws -1}.

By simple summation, the within-generation change in the 
frequency of pku of the allele Aku, allele  k at gene locus  u, is

δ(pku)   =   (1/2) Σs ckus   gs {ws -1},

Where ckus is the number of times (0, 1 or 2) that this allele occurs 
in whole genome genotype # s.



For allelic frequencies, within-generation changes are identical to 
between-generation changes. Thus

2 Δpku = Σs ckus   gs {ws -1},

where  Δpku is to the “between-generation” change in the 
frequency of allele # k at gene locus # u brought about by 
natural selection.



We now have to define the average effects of all the 
(4 5,000)30,000 alleles in the entire genome. This is done 

by a weighted least squares procedure, generalizing 
that for the “two alleles at one single locus” case. 
Specifically,…..



If αku is the average effect of allele u at locus k, then 
the various average effect values  αku (u = 1,2,.., k = 

1,2,..), are found by minimizing
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subject to the constraint                              for all k.

(The inner sum contains αku once, twice or not at all, depending on 
how many times the allele Aku arises in genotype s.)

Why do we impose this constraint? It leads to uniqueness: if we did 
not do it, we could add any constant c to the average effects at one 
locus, and subtract this same constant c from the average effects at 
some other locus, we do not change the sum of squares removed by
the regression. The constraint puts all loci “on an equal footing”. 
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This leads to a set of non-singular equations

M α =  Δ

Where α is a (huge) vector of average effects of all 
alleles at all gene loci,  Δ is a (huge) vector of the 
between-generation natural selection changes in the 
frequencies of these alleles, M is a huge matrix, 
whose form is known and can be written down. It is 
the direct generalization of the one-locus matrix M 
which had the allelic frequencies displayed along its 
main diagonal.



From the equation Mα = Δ, the average effects are given by 

α =     M-1Δ

So that                        α′ = Δ′ M-1.

The sum of squares removed by fitting the average effects αku
is the whole genome additive genetic variance σA

2. It is found 
from standard least squares theory that   

α′Δ =  ½ σA
2

Then we get, eventually, Δ′ M-1Δ = ½σA
2 .



We continue to think of the left-hand side in the equation

Δ′ M-1Δ = ½σA
2

as “information”. (Is it Fisher information? This is not 
yet shown.) Before seeing what this “information” is 
telling us, we have to take up another theme.



Theme 3.   Fisher’s “Fundamental Theorem of Natural Selection”

For convenience we continue to fix the parental 
generation mean fitness mean fitness at the value 1. 
However, we do not fix the daughter generation mean 
fitness at this or any other value. The theorem says:

No matter what form of mating exists (random or 
otherwise), the whole genome PARTIAL increase in 
mean fitness (i.e. the increase due to “genes within 
genotypes”, defined later) is exactly the (whole 
genome) additive genetic variance  σA

2. 



The “partial increase” in mean fitness ΔP (w)

In the one-locus case,  we replace the standard equation 

w = ∑i ∑j Pij wij

by the equally correct

w = ∑i ∑j Pij (w + αi + αj) 

Then     ΔP (w)  =   ∑i ∑j ΔPij (w + αi + αj) 

=   ∑i ∑j ΔPij (αi + αj) 
=  2 ∑i αi ∑j ΔPij
= 2 ∑i αi Δpi
=  σA

2 / w.

(Why do this? Fisher (1930) thought that a concept of the fitness of the 
genotype AiAj that is more useful than the “standard” wij is w + αi + αj.) 



(But Fisher (1941) seemed to describe the Fundamental 
Theorem of natural Selection in a different way. His 
1941 interpretation is captured in a very elegant 
way by Lessard. In Lessard’s interpretation, the 
partial change involves an “allele-based” change in 
genotype frequencies.

ΔP(w) = ∑i∑j(ΔPij)(wij)α = σA
2/w, 

with (wij)α = w + αi + αj.

ΔP(w) = ∑i∑j(ΔPij)α wij= σA
2/w, 

with (ΔPij)α = Pij( αi + αj)/w.



The Fundamental Theorem of Natural Selection can be 
immediately generalized to the whole genome level. So we 
now return to a consideration of the theory at that level.



Recall that, at the entire genome level, 

Δ' M -1 Δ = ½σA
2. 

The “entire genome, no assumption about the mating scheme”
generalization of the Kimura principle is that, of all arbitrary
allelic frequency changes d such that 

d ' M -1 d = ½σA
2,

the changes maximizing the  PARTIAL increase in mean fitness 
are the natural selection changes.

Interpretation in terms of information…….



Of all possible sets of allelic frequency changes that have the 
same information content about the average effects of all 
alleles at all loci in the genome as is provided by the natural 
selection changes, the natural selection changes maximize the 
partial increase in mean population fitness.

There is a continuous time parallel result.



What about the constraint d ' M -1 d = ½σA
2 ?

It is found that maximizing the partial increase in mean fitness
subject to this constraint is equivalent to the least squares 
definition of the average effects, subject to the constraint

For all loci k.   This latter constraint is “natural”. So the constraint is 
“natural”, not arbitrary.

xkuu ku∑ =α 0



In the continuous-time case, 

so that the amount of information about whole genome 
genotype the average effects of all alleles at all loci in the 
genome provided by the rates of change of allelic frequencies is
half the additive genetic variance.

The continuous-time result parallel to the one just given for 
discrete time is:- of all arbitrary allelic frequency changes for 
which

that is, which give the same information about whole genome
average effects as do the changes brought about by natural 
selection, the natural selection changes maximize the partial 
rate of increase of mean fitness.

( / ) & &1 2 2 1σ A d M d= ′ −

( / ) & &1 2 2 1σ A M= −Δ Δ



More about the P/O covariance.

In more realistic cases, for example with epistatic (interactive) 
effects between genes at different loci, the parent-offspring 
(P/O) covariance in fitness is not given by the simple formula  
(1/2)σA

2.

However, the formula (1/2)σA
2 DOES apply to the P/O correlation 

when we replace the actual fitness of each genotype, (as did 
Fisher) by

w + ∑ s ckus α ku,

where the sum is taken over all whole-genome genotypes (s), 
and ckus = 0, 1 or 2, depending on how many times the allele 
Aku arises in genotype s and the αku values are assumed to be 
constants (over time).



A generalization of this applies when we consider any character,
e.g. height, not just fitness: evolution gives us the information, 
as quantified by half the covariance between this character and 
fitness, about the average effects of this character. 
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