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1. Tournament screening cum EBIC
procedure for GWAS

e GWAS and small-n-large-p problem

In genome-wide association studies, there are
three characteristics:

1. The number of features (SNPs, genes, etc.)
to consider is huge.

2. The sample size is relatively small.
3. The causal features are sparse.

GWAS is a typical feature selection problem
with small-n-large-p and sparse causal features.



e Drawbacks of single-locus approaches

The control of family-wise type I error is irrel-
evant.

The family of hypotheses in traditional multi-
ple tests is equivalent to a SINGLE overall hy-
pothesis. It makes sense to control the family-
wise type 1 error.

In GWAS, the hypotheses in multiple tests are
independent, the control of family-wise type I
erTor 1S un-necessary.

The Bonferroni adjusted critical value is prob-
lematic. It turns the advantage of large-p into
a disadvantage — the larger the p, the harder
a causal feature can be detected.

[t is prone to have more false discoveries be-
cause of the high spurious correlation in a small-
n-large-p sample.



¢ TS cum lower dimensional EBIC pro-
cedure

Dimension reduction is a natural way to pro-
ceed with small-n-large-p problems.

Three components of the T'S cum lower dimen-
sional EBIC procedure:

1. The tournament screening procedure which
screens out obvious non-significant features.

2. A lower dimensional approach to search can-
didate models.

3. The EBIC as the criterion for model selec-
tion.



e Three desired properties:

1. The sure-screening property, i.e., causal fea-
tures must be retained by the screening pro-
cedure with probability 1 asymptotically.

The tournament screening has the sure-screening
property, see Chen and Chen (2009a).

2. The low-dimensional search must pass the
model consisting of the exact causal fea-
tures.

This can be satisfied if a penalized likeli-
hood method has the oracle property and
the method is used to form nested models.

3. The model selection criterion must be con-
sistent.

The consistency property is satisfied by EBIC.,
see Chen and Chen (2008, 2009b).



2. The EBIC and its consistency

e Traditional model selection criteria fail
in small-n-large-p problems

The criteria AIC, BIC, CV, etc. tend to select
too many superfluous features due to the phe-
nomena of high spurious correlation when the
number of features is huge.

— AIC, CV select models by minimizing pre-
diction error, they do not discriminate causal
and non-causal features, they don’t care how
many features are selected.

— BIC favors models with more features when
dimensionality of feature space is huge.



e Extended Bayes information criteria

(EBIC)

The Bayesian paradigm

The prior on models: p(s).
The prior on parameters: m7{3(s)}.

The marginal density of the data Y given the
priors 1s:

m(Y|s) = / Y B(s)}e{B(s)}dB(s)

The posterior probability of a model s:
m(Y |s)p(s
psly) = T
>_ses P(s)m(Y|s)

The Bayesian paradigm is to choose the model
with the largest posterior probability. It en-
tails the minimization of

AN

—2In L(B(s)) + v(s)Inn — 2Inp(s).
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BIC and its drawbak:

AN

BIC(s) = —2In L(B(s)) + v(s) Inn.

[t takes p(s) as a constant free of s.

This prior favors models with more features as
illustrated below:

Partition the model space as
__ P ,
S=U j:()SJ’

§;: the set of models which contain exactly j
features.

Note that
Pior(S;) o (p)
J
Thus Pior(S9) = P 1>P101‘(Sl)7




Definition of EBIC:

For s € Sj,

EBIC,(s) = —2In Ly,(B(s ))
+2In[7(S;)]7,

7(S;): number of models in S,

EBIC is equivalent to take

p(s) oc 7(S;)7 7, for s€S;.
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e The consistency theorem:

Under proper conditions, for p = O(n”), and

fy>1—i

2K
P{min{EBIC,(s) : v(s) = j} > EBIC,(s)} — 1
for 7 = 1,2,..., K(> v(sp)), asn — 00,
where s( is the model consisting of exactly the

causal features, s is any other model and v(s)
denotes the number of features in model s.

e Condition for Gaussian model:

lim min{(logn) A, (s) : s # 59, v(s) < Ky} = o0,

n—aoo

where
An(s) = Il = Xu(s){ X (5) X ()} " X ()] |-
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e Condition for GLM with canonical link:
Let
041,
H = — .
where [, is the log likelihood function.

— There exist ¢y > 0, co > 0 such that for all
sufficiently large n,

¢ < Amin(n_lHn(:BO(S))) < )‘maX(n_lHn(:BO(S))) < ¢y,

for all s such that v(s) < K.

— For any € > 0, there exists 0 > 0 such that,
when n is sufficiently large,

(1 = €)H,(By(s)) < Ha(B(s)) < (1 + €)Hu(By(s))
for all s and B3(s) such that v(s) < K and
18(s) — Bo(s)]| < 0.

— Denote by x;; the jth component of ;.

CC2

iJ _ —1
1?]&3}{}? 2%}% { S x2.02} = o((logn)™").

=111
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3. Adaptive EBIC procedure

e Issues on the choice of ~

Two measures are of primary concern for fea-
ture selection:

FDR — false discovery rate,
PDR — positive discovery rate.

The implication of the consistency of EBIC:
if the screening procedure has a sure screen-
ing property and the penalized likelihood has
a oracle property, then FDR and PDR of the
feature selection approach will converge to 0
and 1 respectively as sample size goes to infin-
ity, while « is in the convergence range.

For finite sample size, different values of gamma
result in different FDR and PDR.

A choice of 7y is in order.
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e A procedure for assessing FDR

1. For a given value of v, apply the T'S cum EBIC procedure to
select features and estimate effects and their variances.

2. Generate a number m* according to a Poisson random variable
with mean being the number of features selected in step 1.

3. Sample m* pseudo-causal features from the original feature set.

4. Assign evenly the estimated effects to the m* pseudo causal
features as the expected effects. Generate the pseudo-effects
according to normal distributions with means and variances as
the estimated effects and variances.

5. Generate the pseudo-responses using the assumed model and
the generated pseudo-causal features and pseudo-effects.

6. Apply the selection procedure with the same « value to the gen-
erated data. Compare the resultant features with the pseudo-
causal features to compute FDR.

7. Repeat steps 2-6 for a large number of times. Take the average
of the simulated FDR as the estimate of the true FDR.
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e F'inal feature selection based on esti-
mated FDR.

Usually there are only a few different models
which can be selected by EBIC with different
v values, each model corresponding to a range
of v values.

The upper bound of each such range can be
taken as a measure of the relative significance
of the features contained in the corresponding
model.

The FDR with the upper bound for each model

is evaluated by the procedure in the previous
slide.

Eventually, the final model is selected by a
consideration of the FDR and the number of
selected features.
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4. Numerical studies

e Simulation studies

Simulation settings: feature variables are
generated in batches of 50, each batch is gen-
erated as a multivariate normal vector with
mean zero, varinace 1 and correlation p‘i_j |
The response variable is generated as a nor-
mal variable by a linear predictor and a er-
ror term. The effects of the linear predic-
tor are generated for each replication as 3 =
(—1)" * (@ 4+ abs(rnorm(pm))) where u is a
Bernoulli vector with probability of success
0.4, a = 5 xlog(n)/+/n, pm is the number
of causal effects. The standard deviation of
the error term is determined such that a cer-
tain heritability is achieved. Simulation size is

500.
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Simulation 1: Number of causal features =
8, total number of features = 1000, sample size

= 200.

0

0

0.75

FDR FDR

FDR FDR

5.0 0.90
0.75
1.00

0.134 0.159
0.074 0.080
0.040 0.041

0.215 0.245
0.173 0.178
0.146 0.132

8.0 0.50
0.75
1.00

0.176 0.212
0.069 0.097
0.024 0.088

0.274 0.272
0.206 0.168
0.151 0.144
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Simulation 2: Number of causal features =
18, total number of features = 1500, sample

size = 400.

0

0

0.75

FDR FDR

FDR FDR

1.0 0.50
0.75
1.00

0.022 0.029
0.008 0.009
0.004 0.004

0.091 0.103
0.090 0.098
0.089 0.096

2.9 0.90
0.75
1.00

0.024 0.032
0.009 0.012
0.005 0.006

0.131 0.160
0.127 0.148
0.124 0.142

18



e An real example
Data description:

The quantitative trait: A measure on the mRNA
expression level of the EBNA-3A gene in the
lymphoblastoid cell lines (LCLs) transformed
from B lymphocytes extracted from blood sam-
ples of individuals.

Sample: 233 individuals from 16 pedigrees.

Candidate features: Genotypes at 2155 SNPs
spread over 23 chromosomes.

A data-clean procedure retains 1414 SNPs.
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The results:

y No. of SNP FDR
0.00 - 0.03 20 —
0.04 - 0.26 18 —

0.27 - 0.44 9 —
0.45 - 0.50 8 0.4386
0.01 - 1.22 2 0.0735
1.23 - 1.49 | 0.0079
1.50 - 0 —

Indices of selected SNP:
42, 291, 349, 685, 790, 835**, 923,1231"

** appears in all three models.
* appears in two models.

Others only appear in one model.
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