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Procedures are given, using sib pairs, for estimating linkage between a known
m-allele locus and a hypothesized two-allele locus that governs a quantitative
trait. Random mating and linkage equilibrium are assumed. Also given are
parametric and nonparametric methods for detecting linkage when the trait
in question is governed by several two-allele loci, provided there is no epistasis.

INTRODUCTION

It is not an easy matter in man to demonstrate unequivocally that a genetic
component is involved in the determination of a behavioral trait. Twin
studies can provide a certain amount of evidence, but since the methods of
analysis are based upon assumptions that cannot be verified, such studies
are often liable to overestimate the genetic component (Haseman and Elston,
1970). Classical segregation analysis can be tried for qualitative traits but
cannot be used for quantitative traits. One method of demonstrating the
existence of genetic control for a quantitative trait would be to determine
a linkage relationship between that trait and a marker locus (i.e., a genetically
defined polymorphic system), for it is difficult to see how environmental
influences can simulate the effects of genetic linkage. In view of the increasing
number of marker loci that are becoming available in man, this technique
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will undoubtedly become of greater usefulness in human behavior-genetic
studies. It may well ‘be a useful technique for animal studies also, but the
particular method we consider here is proposed specifically for studies in
man, in which it is not possible to set up matings according to an experi-
mental plan.

So far as the quantitative trait is concerned, we restrict our attention to
data gathered on sib pairs. This eliminates the large biases, due to secular or
age effects, that could occur if an attempt were made to utilize data on two
or more generations simultaneously. The problem of detecting linkage
between a quantitative trait and a marker locus from sib pair data was first
considered by Penrose (1938). In the present paper, however, we allow for the
incorporation of data on the sibs’ parents with regard to the marker locus,
for the phenotypic classification of an individual with respect to a marker
locus does not usually depend upon the date or age at which it is determined.
In addition, we consider the problem of estimating the recombination fraction
between a major gene for the trait in question and the marker locus; we
allow for muitiple allelism at the marker locus but, in view of the numerical

difficulties that would be involved in practice, not at the trait locus.

Letting x,; and x,; be the observed trait values for the first and second
sibs, respectively, in the jth sib pair, we assume the general model

Xy = ﬂ+g1j+elj}

Xg;=p+gy;+e; (1)

where u is the overall mean and g; and e, are the genetic and environmental
effects, respectively. However, it will be convenient, to begin with, to assume
that only one locus determines g;; the generalization to the case where many
loci are involved will be shown later to be a simple step if there is no epistasis.
Suppose that just two alleles are involved, B and b, with gene frequencies
p and g, respectively. Then we can define the genotypic values

gy = a for a BB individual
- = dfor a Bb individual 2
—a for a bb individual

The genetic variance at this locus, 62, is composed of an additive component,
02, and a dominance component, o3, and it is well known (see, for instance,
Li, 1955) that under random mating these are given by

o3 =2pg[a—d(p—q)F 3

0% = 4p*q*d® 4

We shall let ¢, = e,;~e,, and for convenience denote E(¢?) by o2 Thus o?

is a function of the environmental variance, the environmental covariance

and
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between sibs, and any order effect. Random mating will be assumed through-
out.

In Section 1, we derive the expectation of the squared sib pair differences
and show how this expectation, conditional on the proportion of genes the
sibs have identical by descent (i.b.d.) at the trait locus, is a function of ¢,
o2, and o3. It follows as a direct consequence of this result that a simple
regression procedure could be used to estimate o if this proportion were
known for each sib pair. In Section 2, a procedure is given for estimating,
for each sib pair, the proportion of genes i.b.d. at the marker locus. Then, in
Section 3, it is shown that if this estimate replaces the proportion of genes
ib.d. at the trait locus in the regression procedure of Section I, linkage can

‘be detected. In Section 4, nonparametric methods for detecting linkage,

based on the same general principle, are discussed. Finally, in Section 5,
a maximum likelihood procedure is derived that under certain conditions
permits estimation of both the genetic effect of a major trait locus and the
recombination fraction between it and a marker locus.

One assumption that will be made is that of linkage equilibrium. The
consequences of linkage disequilibrium will of course depend upon the cause
of that disequilibrium, whether it is selection, assortative mating, or simply
that equilibrium has not yet been reached. These possibilities will be investi-
gated at a future date, with a view to obtaining the appropriate analysis in
each case.

1. CONDITIONAL EXPECTATION OF THE SQUARED
PAIR DIFFERENCES

Let ¥; = (xy;—x2 j)z be the squared pair difference for sib pair j. Then,
for fixed e, ¥; can take on one of seven values depending upon the genotypes
of the first and second sibs. These values, obtained from (1) and (2), are shown

Table I. Conditional Distribution of ¥,

Conditional probability

Sib pair Y, w,=0 my=4 wy=1
BB-BB p* p3 p*
bb-bb e ¢ ¢ pt
Bb-Bb 4p’q*>  pq 2pq
BB-Bb (a~d+tep? 2p%q p’q 0
Bb-BB- (~a+d+e)* 20  pYg 0
Bb-bb (a+d+ep)? 2pg® pg? 0
bb-Bb (—a—d+ep)* 2pg° ¢ 0
BB-bb QQa+ej)? pq? 0 0
bb-BB (—2a+ep? piq? 0 0

stepie bt -4 ~
437{355%{?/\//% e¢  C.C H
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in the second column of Table 1. For example, for the sib pair BB-Bb we
have from (1) and (2)

Xy =p+atey, Xoy=p+dte,;
and hence
Yy=(a+e,~d—e;;)’ =(a—d+e,)?

In order to obtain the expectation of Y; conditional on the proportion
of genes i.b.d., we need to know the distribution of Y; conditional on this
proportion. Any particular sib pair must have zero, one, or two genes
i.b.d. at the trait locus, and so the proportion of genes i.b.d. must be 0,
1, or 1. Let the proportion be n; for the jth sib pair. Then the conditional
distribution of the sib pairs given n; is shown in Table I.

When n; = 0, the sibs are “unrelated” at the trait locus, and so the
distribution of sib pairs is simply the same as the well-known distribution
- of matings in a random mating population. When n; = 1, both sibs have the
same genotype, and in that case the probability of the sib pair is simply the
probability in the population of one of them. To obtain the distribution for
n; = %, we argue as follows: It is obvious that the pair BB-bb is impossible
if the sibs are to have one gene i.b.d. The probability of the pair BB-BB,
given one gene i.b.d., is simply the probability of three B genes occurring
together, or p*. For the case BB-Bb, the B gene in the second sib must be
i.b.d. with a B gene in the first sib, and so the desired probability is simply
that of BB and b, or pg. In the sib pair Bb-Bb, either B is the gene i.b.d.,
in which case the sib pair has probability pg?, or b is, in which case the
probability is p?; adding these two probabilities, we obtain pg. All the other
probabilities are obtained analogously.

We can now use Table I to calculate the expected value of Y, conditional
on n;. We have ’

E(Yj|n; = 1) = E{3[p*+q*+2pq]} = E(?) = o? 5)

E(Yjjn;=%) = E{ef-[p3+q3+pq]+[(a—-d+ej)2+(—a+d+ej)2]pzq
+[(a+d+e)’ +(—a—d+e)*]pg?)

oo+ (a®+d*)[2p’q+2pg*] +4ad[ pg* — pq]
af+2pq[a2+d2—2ad(p—q)]

= 0+2pgla—(p—q)d]* +2pgd*[1—(p—q)*]

= 03+02+2pqd*[4pq] using (3)

=0l+0l+20%  using (4) (6)

]

I

and similarly it can be shown that
E(Yj|n; = 0) = 02 +20%+ 203 (7)

It is clear from (5)(7) that if there is no dominance {d = 0, or equival-
ently o3 = 0), we can write
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E(Yj|r)) = (02 +20%)~20%n,, m,= 04,1 ®

This can be written in the form
E(Y)|r)) = a+fn; ®

where « = 624207 and f = —202. Thus if m; were known and we fitted
the simple linear regression model (9), then —4B would be an unbiased
estimator of o2, where § is the usual least squares estimator of f. This same
result will hold asymptotically even when dominance is present. It is shown
in Appendix I that in this more general case

E(Yj]nj) = (o2 + ZUﬁ)— nj{2o§ +2n,(n, —ny)o?/[4ngn, + nony+nyn, 1} (10)

where n; (i = 0, 1, 2) is the number of sib pairs in the sample that have
the proportion i/2 genes i.b.d. at the trait gene locus. As the sample size
increases, n, and n, tend to equality, and so the term in o2 vanishes asymp-
totically.

2. ESTIMATING r; FOR A MARKER LOCUS

Let f;; be the probability that the Jjth sib pair should have i gehes i.b.d.
at a marker locus, conditional on 1,,, the information available on the sib
pair and parental phenotypes at the marker locus. Then the estimator we
shall use for ;, the proportion of genes i.b.d. at the marker locus, is

= fi+% : (11)

As defined by (11), #; i3 the Bayes estimate of 7; when a squared error
loss function is used. It also has the property of having maximum possible
correlation with n;, when 7; is considered as a random variable taking on
values 0, 4, and 1. For a proof of both of these results, see Haseman (1970).

When sib and parental genotypes are both known, #; can easily be
calculated for every conceivable mating and sib pair. For the general multi-
allele system, there are seven mating types, and similarly seven sib pair types.
We are here using the term mating type, and analogously the term sib pair
type, in the same broad sense as does Kempthorne (1957). Thus 4,4 1 XxA.4,
and 4,4, x 4,4, are two genotypically different matings of the same mating
type, since they both involve identical homozygotes. All the possibilities,
together with their probabilities and the appropriate values of #,, are given
in Table II, in which it is assumed that the gene frequency of the allele A4,
is p;. Each number in parentheses in Table II is.the number of genotypically
different sib pairs of the indicated type that could result from the indicated
mating. For example, a type IV mating may produce a type V sib pair that
Is either Ad;~4;4; or A,A,~A,4,. These are both equally likely type V
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Table II. %, When Both Parental and Sib Genotypes Are Known

Mating type Sib pair type Probability fio S Si2 7y
I: AIA(XAIA( I: A,Ar—AxAl Pl‘ % i’ * &
IO: Aid X A4, V: AiA-A.4, 2pip 1 3 1 %
II: A[A{XA(AJ I: AlA[—A(Al pISPJ 0 } ‘&‘ &
: HI: 4iA-A A4, 2pcp, 1 ¥ 0 1
. Vi AA~A4.4; pipy 0 3 3 3
IV A4, x 4,4, V: @ Pipipx 0 b3 b3 3
VI: A4 -4,4; 2p*ppy b3 3 0 1
V: Aid; x A4, 1: ) P4 0 0 1 1
TR o 1 o 3
: pipy
V: A[AJ—AiAJ PIZPJI i 0 i &
VI: Aid;x 4,14, Hi: A;A&-)A‘A, p,ip,pk/Z 8 (1) (1) ;
: PipyPx
Sadge gum g8
: PP Pk
VI: AiA-A4,4, Pippx 1 0 0 0
Vi A[A/*AJA; 2
VI: A[Ak—AJA, Dy PiPx 0 1 0 i
VII: A[AJXA;A[ \'A (4) p,pjpkp,/Z 0 0 1 1
vir @ Pip;pep 0 1 0 %
VIL: 2) Pip;pxpr 1 0 0 0

sib pairs, with identical £;; values. Table II also gives the probability of each
combination of mating and sib pair type; these probabilities are easily
verifiable.

When some of the genotypes are unknown, the calculation of ;1 becomes
more difficult. An algorithm that can be used for this purpose will now be
given. The procedure is very general and can be used when no information is
available as to the parental genotypes, or when there is dominance (i.e., we
know phenotypes but not the genotypes).

Let P,, and P,, denote the phenosets (Cotterman, 1969) for the two
parents; i.e., Py, is the set of all genotypes that could give rise to the pheno-
type of one parent, and P,, is the analogous set for the other parent. If
there is no information as to the parental phenotypes, then the phenosets
will consist of all possible genotypes. Let P, denote the set consisting of all
possible ordered pairs of genotypes resulting when an element of Py, is
paired with an element of P,,. Thus, if there are N, genotypes in Py, and
N, genotypes in P,,, then there are N,N, elements in P,. Similarly, let
P,,and P,, denote the phenosets for the two sibs and P, the set of all possible
ordered pairs of genotypes from P,, and P,,. Let v and w be elements of
P, and Py, respectively. Then »
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Fi=3 ZP{vandwandﬂj=—§}/i 3 ZP{vandwand n,=g},

veP, wePy h = 0 yePp wePy N

i=012 (12)

The numerator of this expression is the joint probability of observing I,
and that n; should equal i/2; the denominator is the sum of the three such
joint probabilities for / = 0, 1, and 2.

Each term in the summations in (12) can be obtained from Table II,
since it is the product of one of the probabilities in the third column and one
of the corresponding f};. It is necessary only to specify the genotypes that
belong to Py, P,,, P, and P, or equivalently the pairs of genotypes that
belong to P, and P,. The elements of P, are the possible matings that could
result in the observed sib pair; the elements of P are the sib pair genotypes
that the observed sib pair could assume. The calculation can easily be pro-
grammed in general for a computer. The special case of no dominance and
no parental information, which permits an easy algebraic solution, is given

in Table III.

3. DERIVING THE EXPECTED VALUE OF THE
REGRESSION COEFFICIENT

In Section 1, we showed that if the proportion of genes i.b.d. at the trait
locus, ;, is known for each sib pair, then the simple linear regression model
given by (9) will result in — B/2 being an unbiased estimate of o2 when
02 = 0. This estimate is also asymptotically unbiased even when dominance
is present. In the last section, we have derived an estimate, #;, of the pro-
portion of genes i.b.d. at a marker locus. In this section, we investigate how
the regression analysis of Section 1 is affected if we substitute our estimate
#; for m; in the regression equation. We shall show that for the special case
of a two-allele marker locus, no dominance, and complete parental infor-
mation,

E(Y)|f) = o+ B | (13)

where . .
B = —21-20)0, - (14

and c is the recombination fraction between the trait and marker loci.

We now distinguish between the proportion of genes 1.b.d. at the trait and
marker loci for sib pair j, denoting these proportions #;, and =, respectively;
and we denote by #,,, the estimate of n;, given by (11). We assume linkage
equilibrium between the marker and trait loci, so that for fixed 7;,, Y; and
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Table IV. Joint Distribution of 7, and 7,

T im
0 % 1 Total
Tye .
0 Wi/4 Y(1-¥)/2 (1-P)*/4 1
P w1 -¥)/2 (1-2¥+2%%)/2 W(1~-%)/2 3
1 (1-P)2/4 Y(l-¥)/2 . Wi/4 Py
Total PO ¥ 1 1

#;, are independent, and also for fixed =, n;, and #;, are independént.
1t follows that

E(Y)|ftm) = ;E{leﬂﬁ}P{”ﬁ’ﬁjm}

=Y Y EY;|m ) P{R | i} P {0 | 7} o (15)
%jt Wjm

where the summations are over the three values that n;, and 7;, can assume.
E( Yj]n:}-,) is given by (5~(7). The joint distribution of =;, and 7;, is
derived in Appendix II and is given in Table IV, in which ¥ = ¢* % (1—c)%.
The joint distribution of =;,, and #;,, for the special case of a two-allele
marker gene, no dominance, and complete parental information can be
derived easily from Table II. For example, we see from Table Il that #;,, = 0
if and only if there is an 4ax Aa mating and an 4A4-aa sib pair, an event
with probability p?q?/2. Naturally, n;, = 0 for this sib pair. If the sibs had
been AA-AA or aa-aa (each with probability p?q?/4), then #;, = n;, = 1.
Similarly, the remaining matings and resulting sib pairs can be examined,

and the joint probability is found to be as given in Table V.

Table V. Joint Distribution of 7, and 7, for a Two-Allele Marker Locus with No
Dominance and Complete Parental Information

Tym
0 % 1. Total

Rym

0 ipiq? 0 0 ip’q*

i p*q+pq? p*q+pq’ 0 2p?q+pqg)

3 Hp*+4piqr+q*)  Hp*+6pgi+g?)  1p*+4pq*+q*)  (p*+5p’q7 +4%)

i 0 pq+pq’ pq+pq’ 2pq+pg*)

1 O 0 %quz %[72(]2
Total 1 } 1 -T

i N R Ko e e e e
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From Tables IV and v and from (5)~(7) and (15), we have

E(Yj|#m=0}) = 62[(1 - W)2(1) 4 w(1 — ¥)(0) + ¥2(0)]
+[oZ+a22w(1 - Y1)+ ~2¥ +2¥2)(0) + 2¥(1 —¥)(0)]
+loi+202][ W3 (1) + V(1 -¥)(0)+(1- ¥)%(0)]
= 0LHoy[2¥ 2w 42w o oL +2%a? (16)
Also,

EYyl#jm=1) = a2l )i+ ~¥)+¥3(0)]
+ot+ ol 2%(1 - W) )+ (1 — 2w 4 2921+ 2¥(1 - w)0]

+loe+202][¥2(4) + Y1 ~¥)+(1- ¥)*(0)]
= 0i+(}+‘1’)a§ (17)

Similarly, it can be shown that

E(ijlﬁjm = %) = 0'§+G'§ (18)
E(Yﬂ,ﬁjm =3)= U§+(§—‘f’)0§ (19)
E(thlﬁjm = 1) = G’§+2(1 —‘P)o‘j (20)

Thus, from (16)-(20), we see that
E(Y|ft ) = [o? +2%62]+2(1 - 2¥)al 7,
=[eZ+201 -—20+2c2)0'92]—2(1 —-2(:)2%2 Rim @2n
This result is shown by Haseman (1970) to hold also in the case of a

regression analysis described in Section I can be used with ;m Treplacing

Finally, Suppose that there are X trait loci, each linked to the marker
locus; then (14) will hold for each trait locus separately, and if the trait loc;
are mutually unlinked and there is no epistasis

E) = -2 f.‘ (1=2¢)%q} (22)
=1

equality is exact if there is no dominance.)
An even stronger result holds if linkage equilibrium among the trait
loci is assumed. At linkage equilibrium, the genetic effects at two loci are
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we have
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independent, which implies that (22) will hold at equilibrium even if the
traits are linked, as long as the effects at the different loci are additive
(i.e., there is no epistasis). Thus a significantly large || indicates that there
is a linkage relationship between the marker locus and one or more trait
loci.

4. DETECTING LINKAGE BY NONPARAMETRIC METHODS

If there is a major trait gene located near a marker, then there should be a
definite (inverse) association between the sib pair difference ] X=X, jf and
7;, the proportion of genes i.b.d. at the marker locus. On the other hand,
if there is no major trait gene near the marker, then ]x,-j——xzjf and =; should
be independent. Hence standard rank correlation procedures, such as
Kendall’s 7 and Spearman’s p, can be used as a test of such linkage. In the
analysis, n; is replaced by its estimate #;, as defined by (11).

First, #; and ]x,j—xzjl are separately ranked in order of magnitude,
tied scores being assigned the average of the tied ranks. The rank correlations
are then calculated by the standard formulas given, for example, by Siegel
(1956) and Kendall (1955). Tables of critical values are available (e.g.,
Siegel, 1956), and a simﬁCMQegaii@ correlation implies that there is
ejtbgwglaﬁlelylarg&gﬁgg‘ti\c‘eﬁfggt ata n@ﬂ@rate distance from the marker
or that there is a smaller genetic effect close to the marker.

This test procedure is easy to apply, requiring only the calculation of
#; and the sib pair differences. Furthermore, it requires no distributional
assumptions for the trait of interest. The primary disadvantage is that,
being a nonparametric test with 7; estimated by #;, it is likely to require

relatively large samples in order to_detect anything but fairly close linkage.

5. MAXIMUM LIKELIHOOD ESTIMATION OF LINKAGE

One disadvantage of the methods discussed above is that 62 is confounded
with the recombination fraction ¢, and hence although linkage can be
detected it can not be estimated. In this section, we show how maximum
likelihood (ML) techniques can be used to overcome this difficulty.

We assume that there is a two-allele trait locus, with genetic effects

- given by (2), located at a linkage distance ¢ from a multiallele marker locus.

We denote by n;,, and ;. the proportion of genes i.b.d. at marker and
trait loci, respectively, for sib pair j. We assume linkage equilibrium for trait
and marker loci and also that sib pair differences are normally distributed:
More precisely, we assume that, for each value of T X 15— X,; is distributed
as a mixture of up to seven normal distributions. From the values of Y;

given in Table I, we see immediately that if Ele;) = 0 the means of these

SNIRN TS
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seven distributions are 0, a—d, a+d, —a-+d, —a—d, 2a, and —2a, depend-
ing upon the sib pair genotypes. We shall assume E{e;) = 0, i.e., that the
data have been corrected for any sib order effect, and so the variance of each
distribution is o2

Without loss of generality, we can reduce the number of distributions
from seven to four by considering only the absolute pair differences; for
example, no distinction is made between a BB—-Bb and a Bb—BB sib pair.
This is reasonable, since the order of the sibs’ scores is unimportant if we
correct for age. Thus henceforth we consider only the absolute differences
Dy = |xi;=xy.

The distribution of D;, conditional on the sib pair genotypes at the
trait locus, is simply twice the conditional distribution of x;;—x,; but
limited to the range x,;—x,;>0. Thus we can write it as

f1 = f(D,|sibs'BB-BBj bb-bb, or Bb-Bb) = (1/0,)(2/n)* exp(—D}/207),
1 g —— D;>0 (23)

=0, otherwise

_ fo = f(D,|sibs BB~Bb or Bb-BB) = (1/a,)(2/n)*exp[ — (D;~ a +d)*/207],

D;20 (24)
=0, otherwise
f» = f(D |sibs Bb-bb or bb-Bb) = (1/0,)(2/m)* exp[ - (D;—a —d)*/207],
D;>0 (25)
=0, otherwise
fa = f(D,|sibs BB-bb or bb-BB) = (1/o,)(2/m)t exp[ —(D;— 2a)?/202],
D;>0 ' (26)

=0, otherwise

If we knew the sib pair genotypes at locus B for all sib pairs, the like-
lihood function could be easily constructed. Instead, we have information
on the sib pair phenotypes at the marker locus and possibly, in addition,
the phenotypes of one or both parents at this locus. We now show how
this information at the marker locus, I,,, can be used to obtain the likelihood
function for an observed sib pair.

The likelihood function for sib pair j may be written

L = f(D}|I,) = (D;and 1Y/P{I,.}
= Zf(Djand1m|njr)P{njr}/P{1m} = Zf(Dj|ﬂj:)P{1m|“j:}P{Tfjr}/P{]m}

Rjt Rje

(because of linkage equilibrium)

-~
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= Zf(DjInj,) [Z P{I,,and nj,ln/,,,}P{nj,,,}/P{I,,,}]

Rjr Tim

= Z Zf(Dj‘njl)P(Imlnjm)P(njr!njm)P(njm)/P(Im)

Xje Rfm

(because of linkage equilibrium)
Z Zf(DjInjt)P(njtlnjm)P(njmllm)
Rje Bym

2

Zo kiof(Dj'njt = W2P{r; = hi2n;, = k[2)Pr(n,, = kf2|1,) (27)

b=

Il

Apart from a factor of 2 or 4, P{n;, = hj2|n;, = k/2} is given in
Table 1V, and P{n;, = k/2[1,,,} can be obtained from Tables II or III
in simple cases, or found numerically in more complex situations by the
use of (12).

We now ﬁndf(Dj]nj, = h/2). Note that D;, conditional on 7, is distri-
buted as a mixture of the four distributions given by (23)-(26), i.e., letting

my,; = P(D; has density function fi|n; = h/2)

(h=0,1,2and i = 1,2,3,4)
we have ‘
fD,lmj = hi2) = m, f, M fotmfs+mufy, h=0,1,2  (28)

The coefficients m,; can be calculated from Table I and are given in Table
VI. Thus '

moy = Pr(sibs BB~BB, bb-bb, or Bb~Bb|n;, = 0) = p*+q* + 4p2y>
Mo, = Pr(sibs BB-Bbor Bb—-BB|r,, = 0) = 4p’q, etc.

Thus f(Djfnj, = h/2) can be obtained using (23)-(26), (28), and Table
VI, and hence all elements in the likelihood (27) can be calculated. There are
five parameters in the likelihood function: c, P, 0% a, and d. (If the gene
frequencies at the marker locus are unknown, they too can be appropriately
estimated.) After ML estimates of these five parameters have been obtained,
the estimated additive and dominance variance can be calculated by sub-
stituting the parameter estimates for the true values in (3) and (4).

Table V1. Values of the Coefficient m,,

l.
\ ] 2 3 4

pr+4pigt4q* 41)234 4pq>  2pg*

0
-1 1—=2pq ¢ 2pq? 0
2 1 0 0 0
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Because of the complexity of the likelihood function, computer methods
must be used in order to find the ML estimates. Note, however, that little
information is needed beyond that already supplied for the computer
calculation of #;,. The only additional information required in order to
evaluate the likelihood function (27) are Tables IV and VI and the density
functions (23)-(26). In fact, note that these additional quantities, P(nj,[nj,,,)
and f(D; l 7;,), do not in any way depend upon what is observed at the marker
focus and hence are constant for all sib pairs. Thus the only probabilities
in the likelihood function that vary from sib pair to sib pair are those given
by (12). Once the likelihood has been programmed, various methods are
available for calculating the ML estimates; the simplest is to search the
likelihood surface directly, as explained elsewhere (Kaplan and Elston, 1972).

Finally, it might be noted that if we make the simplifying assumption
that ¢2 = 0, then the number of distributions involved is reduced from four
to three, and the number of parameters to be estimated is reduced from five
to four. The ML procedure described above can be modified accordingly
to permit estimation of ¢, p, ¢2, and a.

APPENDIX A

Consider the simple linear regression model (9) in which we regress the
squared pair differences ¥; on n;, which is assumed to be known. Suppose
that of the # sib pairs used in the analysis, n; (i = 0, 1, 2) have /2 of their
genes i.b.d. at the trait locus. Then in matrix notation we can write

E(y)=Ay

where y is a column vector whose n elements are Y;; A is a nXx 2 matrix
whose first n, rows are (1,1), whose next n; rows are (1,3), and whose last
ne rows are (1,0); and v is a column vector whose two elements are « and f.
It is well known (e.g., Graybill, 1961) that 4, the least squares estimator of
vy, can be obtained by solving the system of equations
A’'Ay=Aly
so that
A’AE(9) = E(A'y)

In this particular case, we have

A'A=

Limkage Between C

\

Thus to find E(f
nE@)+(n
{(n2+n1/2
Eliminating E(4)
E(B){(ny+n

which reduces to
~[EB)/4][4n,n,

= (o2

E() = -z

or
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Let ¢ be the rec
between these twe

Suppose that
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E®)=E m

E(A'y) <n03+<n1 +2n0)a2+2(n, +no)a§> _

17

(n, +1,/2)07+(n,/2)02 + 1,52
< nel+(n, +2n0)a} +n,5? >
(3 41/2)0; +(n,/2)02 +(n,/2)0?
Thus to find E(f), we solve
nE@)+(ny+n,/2)E(P) = nel+(n, +2n4)0} +n o2
{("2+"1/2)E(3)+("z+"1/4)E(,B) = ("z+"x/2)03+("1/2)(05+03)
Eliminating E(&), we see that
E(B){("z+”1/2)2*("2+"1/4)"} = a;[(n, +2n0)(ny +n,/2)~n nj2]

+oi{ni(ny+n,/2)—n,nf2)
which reduces to

- [E(B)/4][4"2”0 tnngtning] =

= (05/2)[4nan0+n,my 4 nyny ]+ = nino/2+nny/2]a?
or

EB) = “2‘7: ~2n,(n,— "0)03/(4"2”0‘*‘"1”2 +nyng)

APPENDIX B

Consider a general mating that at two loci A and B is
LI}
A8, " A.B,

Let ¢ be the recombination fraction (assumed the same for both sexes)
between these two loci. Then the gametic frequencies are

Parent | Parent [[
Gamete frequency Gamete frequency
4,8, (I=c)2 AsBy  (1=¢)f2
A28, (1-¢)/2 A48, (I-¢)2
A, B, ¢/2 AsB, cf2
A, B, c/2 ALB, /2

Suppose that two sibs result from the above mating and we wish to
find P{n,, = %, = 1} in these sibs, where Tim and n;, are the proportions
of genes these sibs have i.b.d. at the 4 and Bloci, respectively. This probability
can be found by summing the squares of all 6 zygote frequencies formed
when a gamete frequency from parent I is multiplied by a gamete frequency

from parent 1. For example, one way that Tim = 7;, = | is for both sibs

R ety S b T
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to be 4,B,/A4;B;, and this probability is [(1 —¢)/2]2[(1 —¢)/2]* = (1—c)*/16.
The remaining 15 probabilities are calculated similarly, and so
Pl{n, =mn;, =1} = 4(c*/16)+8[*(1 —)*/16]+4[(1—c)*/16]
= [c*+2c3(1—)* +(1—c)*)/4
=[c?+(1—c)?]%/4 = ¥¥/4
where -
Y =c*+(1-c)?
By symmetry we have
P{n;,=n,=0}= P{n;, =n, =1} = ¥4
which can also be established by summing the appropriate cross-product
frequencies.
We now find P{n;, = 1 and n;, = 0}. Note that n;,, = 1 and r;, = 0
if, for example, the first sib is 4,B,/4,B,, the second 4,B,/A;B,. The
probability of this sib pair is
[(1=)/2][(1 ~ e)/2](c/2lc/2) =X (1 — ) /16
There are 15 other sib pairs that could result in 7;,, = 1 and n;, = 0, and all
15 have the same probability ¢*(1—c)?/16. Hence
P{n;, =1and r;, =0} = 16[c*(1—c)*/16]
= c*(1—¢)?
= (1-9)*/4 .
By symmetry we have gté b2
Pr(n;, =0and n;, = 1) = Pr(n;,, = 1 and m;, = 0) = (1~ P) /4
Since we know that the marginal distribution of 7, (and n;,) is given by
1/4 if ®p,=0
1/4 if m,=1

the remaining probabilities in the joint distribution of r;, and n;, can be
obtained by subtraction. For example,

P{n;, = land n; = 1/2} = P{n;, = 1} — P{n;, =1 and n;, = 0}
~P{n;, =1and n; = 1}
=1-W4—(1-¥)%/4 = }(1 -P2—14+2¥ - P?)
=Y¥Y1-9)2
The other probabilities in Table IV can be obtained likewise.
/ . . .
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