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Population subdivision with respect to multiple alleles

By C.C. 11

Graduate School of Public Health, University of Pittsburgh,
Pittsburgh, Penna, 15213

In view of the current interest in studying human isolated populations and the fact that many
human gene markers have multiple alleles, the writer thought that it would be helpful to have
the problem of population subdivision discussed in more detail and hence stimulate further
investigation. Although the problem under consideration seems at first sight purely genetical,
an appropriate change of a few technical terms will render the problem identical with those of
epidemiologists and sociologists studying the association of certain traits or diseases in specific
(homogeneous) groups and in the combined (heterogeneous) group. It may be said that these
problems are ‘isomorphic’. Thus, an investigation in one area has similarimplications in the others.
We shall illustrate these ideas very briefly for the case of two alleles before introducing multiple

alleles,

TWO ALLELES
Suppose there are K mendelian isolates, in each of which random mating is practiced. Let
2; and ¢; be frequencies of the alleles 4 and a in the ith isolate; p, +g, = 1. These isolates in
general are not of the same size; let w, be the relative size of the ith isolate so that Sw,=1,0=1,
2,..., K. If we view the K isolates as a whole (i.e. the total population), the frequency of

allele 4 will be '
p=p=2Zpuw, 1)

the summation being taken over the isolates ¢ = 1,2,..., K throughout the paper. Note that we
shall write simply p (without a bar or subscript) for the average frequency 7. The genotype
frequencies of 44, Aa, aa in each isolate are p3, 2p;9;,4%, respectively. In the total population the
genotype frequencies, being the sum of the separate ones, may be written as follows:

4 a

4 Ipjw,=pi+ot Ipqu,=pg-of p

a Zpiqiw; = pg—0t Tgiw; = gi+0? q} @
p q 1

where o is the variance of the gene frequency among the isolates (subgroups of the total popula-
tion). Formula (2) is known as Wahlund’s principle (1928; see Wright, 1931, p. 128; Li, 1955,
Pp. 298). Since there are only two alleles, the variance (02) of the frequency of allele 4 is the same
a8 that (03) of the allele a, and further, the covariance (o,) is also of the same magnitude but
negative in sign. Hence, in formula (2), there is only one parameter o2 = 0f = 0§ = ~0y,.

The important feature of Wahlund’s formula is that when the total of the random matin g
subgroups is viewed in terms of the average gene frequencies, the homozygotes have been in-
creased in frequency at the expense of the heterozygotes over those expected on random mating.
The effect of pooling these random mating subgroups with different ;'8 is identical with that of
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inbreeding in the total population. Using the inbreeding coefficient F, defined as the correlation
coefficient between the uniting gametes (Wright, 1922, 1943) we obtain the equivalence

due to subdivision, o2 = Fp(l—p), due to inbreeding. (3)

If we have no knowledge of the individual isolates and merely observe the total pooled popula-
tion, there is no way to tell whether there is heterogeneity or inbreeding.

The analogy between the genetic situation (2) and that of epidemiological studies of the associa-
tion of diseases is at once apparent by regarding 4 as a symbol for the presence of arthritis (say)
and a for the absence of that ailment. Let the two rows represent the conditions of the wives and
the two columns represent the conditions of their husbands. The average gene frequency p then
becomes the general prevalence of arthritis in the total population. The various ‘isolates’ may
be identified with the different age groups of the couples. Suppose that there is no association
between husband and wife in acquiring arthritis in any age group (= random mating in each iso-
late). The pooling of the various age groups with different p’s will create association between
husband and wife with respect to arthritis; which is equivalent to inducing correlation between
uniting gametes in the total population. The following numerical illustration should help to unify
the problems in genetics and epidemiology.

Isolate I (young) Isolate II (old) Pooled total population
. A R lSamm A - [ A B
4 a Total A a Total A a Total
A o'o1 009 10 049 021 o070 o025 o135 o'40 (4)
a 0'09 o-81 0'go o'21 009 030 o135 0'45 o-6o
Total o-10 090 100 070 0'30 1'00 0’40 o'6o 1'00
Correlation = o Correlation = o Correlation = o0'373

Here we have 0% = Fp(l—p) = 0-25—0-16 = 0-09. The tables above may be read either as
epidemiological data or as genetical data, depending upon the meanings attached to the symbols.
Further discussions of the common problem in genetics and epidemiology may be found in Li
(1961, Chapters 6 and 10).

One important simplifying feature for two alleles (or 2 x 2 contingency tables) is that there is
no problem in assigning a scale to the alleles (or conditions) 4 and a. We always obtain the same
correlation coefficient no matter what numerical values are given to 4 and a. In general, however,
- this is not true for tables larger than 2 x 2. And this is the difficulty with multiple alleles, as we
shall see,

INBREEDING COEFFICIENT, INDEPENDENT OF SCALE -

In this section we introduce multiple alleles with inbreeding but not subdivision. Although the
methodology and procedures adopted in the following will remain the same for any number of
alleles, we shall use only three alleles for brevity and concreteness. Also, in order to avoid double
subscripts, we let p, ¢, r be the frequencies of the alleles 4,, 4,, A, respectively; p+q+7 = L.
If theinbreeding system in the population is such that the correlation between the uniting gametes
is F, then the genotype frequencies will be as follows:

4, A, A,
Ay P2+ Fp(1 —p) - pg—Frq pr—Fpr P
Ay pg - Fpq 2+ Fg(1 —q) gr—Fqr q (5)
A, pr— Fpr qr— Fgr T2+ Fr(1—r) 7

r q r I
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In order to be able to calculate a correlation coefficient from any two-way table, we must have
numerical values assigned to the marginal variables. In the situation shown in (), it is legitimate
to speak of correlation between uniting gametes, because no matter what numerical values be
arbitrarily assigned to the alleles 4,, 4,, 44, the correlation coefficient for the distribution (5)
“will turn out to be F. In other words, the value of the correlation coefficient of distribution (5)
is invariant of scale. The reader may satisfy himself that this is so by giving 4,, 4,, 4, any arbi-
trary numbers, say, ¥;, ¥;, ¥,, or simply, 0, 1, Y, as correlation is independent of origin and unit.
A simpler way of seeing the invariant property of the correlation coefficient is to split the fre-
“quencies (5) into two components: one of complete random mating and one of complete homozy-

gosis, .
Component size (1 — F') Component size F
S A ™ 4 A R
Al AB -A'S Al AZ AS
4 P* »g Pr P P o ' (6)
A, P9 q gr q ° q q
4s r qr r? r o o 7 7
P g r 1 P q 7 1

These component tables are independent of scale. With any set of arbitrary values assigned to

44, 4,, A, the correlation coefficient of the first component is always zero and that of the second

component is always unity. Since these two component tables have the same marginal distribu-

tions, they may be combined to yield an average correlation (Li and Sacks, 1954, p. 355); which is
(1-F)(0)y+F(1)=F.

In conclusion, we may legitimately speak of correlation between uniting gametes to describe

the effect of inbreeding regardless of multiple alleles.

SUBDIVISION WITH RESPECT TO MULTIPLE ALLELES

Let p,, q;,7; be the frequencies of alleles A;, 4,, A, in the ith isolate of relative size w;. Under

random mating each isolate has the genotype frequencies p? 4, 4, 2p;q; 4, 4,, etc. In the total
population the genotype frequencies will be as follows:

A, 4, A,
4, P+ of Pg+ 01y pr+oys p
A, Pg+ o1, gt + o3 gr+ 0 q {(7)
v b2 AT qr+ 0y 40} r

p q r 1

where 0% = Zp?w, — p*is the variance of 4, frequency among the isolates, and o, = Zp,q,w, — pg
is the covariance of the frequencies of 4, and 4,, etc. These variances and covariances are related
on account of the restriction p; + ¢, + 7, = 1. For instance, the variance of 4, frequency is equal to
the variance of the (4,+ 4;) combined frequency, as p; = 1 —(g;+7;);
0} = 0%g4p = 0§+ 0§+ 207

Thus, all covariances may be expressed in terms of the variances:

201y = 0§ —0}— 0}, 20y =o0}-0f-0}, 2044 =0}-0}-0o} (8)
and for each row of (7), the variance and covariances add up to zero.

03+ 015+ 013 =0, Op+0i+0y,3=0, 0y3+03+05=0. ' (9)
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Given the joint distribution (7), our present problem is how to construct an index to
measure the overall degree of association between the uniting gametes. Now, we can no longer
aggign arbitrarily any numerical values to the alleles, because the correlation coefficient varies
with scale. If we regard 4,, 4,, A; as symbols for three qualitative classes of a trait, it becomes
clear that we can only speak of association instead of coefficient of correlation.

Since F has been defined as the correlation between uniting gametes, we shall adopt & different
symbol, to denote the degree of association for the two-way distribution (7). Analogous to F in
(3), we may define quantities ¢y, ¢y, @4, such that

ol =¢10(1-p), 0f=0q(1-q), 0F=ggr(l-7). (10)
As an overall measurement for the degree of association between uniting gametes as caused by
subdivision of a population, Yasuda (1968) uses the following index
of L o8 o8

1—p+1—q 1—7¢"

P(L1) = PP+ og+Pyr = (11)
Although Yasuda (1968) retains the symbol F, it is to be emphasized that the value of ¢(11) does
not have the meaning or property of a correlation coefficient.

Before we consider some other indices, it would be well at this stage to examine a numerical
example (Table 1) to clarify the meaning of the various symbols as well as to facilitate comparison
with other results later on. Most of the calculations in Table 1 are self-evident, and only a few
explanatory remarks are necessary. In the last column of the upper portion of Table 1,

b1 = oi/p(1—p) = 0-02/0:24 = 0-0833, eto.,
according to (10). The lower portion of Table 1 shows the genotype frequencies of the five random
isolates, the last one (lower right) being the average of the preceding five. Thus, the frequency of
4,4, in the total population is (0:04+0:09+0-16+0-25+0-36)/5 = 0-18. This ‘summary’
table corresponds to joint distribution (7). Again, the frequency of 4,4, in the total population
is p*+0%=0-16+0:02 = 0-18. It is the association between the uniting gametes shown in this
table that we wish to measure. Yasuda’s proposal yields
$(11) = 0-0833 (0-40) -+ 0-25 (0-40) -+ 0-25 (0-20) = 0-1833,

Thisis an average of the individual ¢’s defined by (10), and now we shall compare it with some other
measurements of association. '

OTHER MEASUREMENTS OF ASSOCIATION

When there is true inbreeding in a population as shown in (5), Li & Horvitz (1953) have pro-
posed a number of methods for estimating the inbreeding coefficient . Since we wish to have a
single index to measure the association between uniting gametes in a subdivided population,
the same measures may be adopted. The simplest one is based on the total proportion of heterozy-
gotes in the entire population. Let H, be the total proportion of heterozygotes in a random
mating population and H, be that in the subdivided population (7). Then an overall measurement
of association may be taken as

H,—H, o2+ 0l+o%
P = "h, = g rpren
_ 911 =p) +$aq(l —g) + Bor(1 1) (12
p(1—=p)+9(1—g)+7(l—7)
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It is seen that this is also a weighted average of the individual ¢’s. From the total population in
our numerical example (lower right of Table 1) this measurement yields

0-64—0-52 012

B(12) = == = 2 = 011875,

Another simple measure, opposite in a sense to the one indicated above, is based on the various
homozygote frequencies. Let x;; be the frequency of homozygote 4, 4,, etec., in an inbreeding
population. Li (19563) noted that

gJil-{-ﬂ‘*_f_?c-?i* =14+2F,
r q T

In the case of a subdivided population, we have, by substituting (7) and (10) in the expression
above and replacing F by ¢, -

$(13) = 31+ o+ P3) ~ (P12 + $29 + Ps7)]
= 3P (1—p) + P5(1— ) + ¢a(1 —7)] (13)
which is another weighted mean of the individual ¢’s. Applied to our numerical example it gives

$(13) = $[0-5833 — 0-1833] = 0-2000.

Table 1. Gene frequencies and their variances among five random mating isolates
of equal size (w; = }).

Geno Isolates
froauenc — N Total variance of @
vq y (1) (2) (3) (4) (5) population gene freq. (F' analogue)

o Ay 0y 020 030 040 0'50 o060 P = 040 0% = o002 ¢, = 00833
4, gy 070 o-6o o 040 030 g = 0'40 0% = o006 Py = 0'2500
A, 7 010 ©  ©'I0 o'bo o'10 o'10 7= 020 0% = 004 s = 02500

Total 1 1 1 I 1 I 012 0'5833
Genotype frequencies of random mating isolates and the total population

(1) 4, 4, A4 (2) Ay A A, (3) 4, A, As,

4, oo4 0'I4 002 0'20 0'09 018 003 030 016 o 024 0'40

A4, o114 0'49 ooy 070 018 036 0'0b o6o o o o o

A; ooz ooy o-or 010 o003 o0b o'o1 010 o024 o 036 o-6o

(4) (5) Total

4, o255 o020 0'03 0'50 036 o018 o0b o-6o 018 014 ©0-08 0'40
A4,  oz20 016 0'04 0'40 o018 o'09 003 030 o' I4 0'22 004 0°40
As ooy 0'04 o o1 0°10 o006 o003 o'o1 010 c-08 004 0-08 020

We may also adopt a ‘least square’ procedure by regarding the frequencies in the subdivided
population (7) as the ‘observed’ values and the frequencies in (5) as the ‘expected’ values (7
replaced by ¢). Then the sum of squares of ‘deviations’ is

@ =[p(1-p) (¢~ )P+ (201 + 26pgTP + ...,

where 207, = ¢37(1 —7) — ¢ p(1 — p) — $oq(1 —¢) by (8) and (10). Setting dQ/dp = 0 and solving,

we obtain
Cipy+Co s+ Cob
14 = 171 272 2738
$(14) C+C+0, 7

(14)
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(1 -p) [3p(1 - p)—2¢r],
9(1—q)[3¢(1 —q) — 2pr],
{1 —7)[3r(1—r)—2pql,
C +Cy+ 03 = 6(p%g% + p%r2 + ¢%r?) + 2pgr.

Il

where
02

[

In our numerical example, C; = C, = 0:1344, C; = 0-0258, and

0:0512
$(14) = 5557, = 0'1739.

Finally, the unweighted mean of the ¢’s may also serve as an overall index for the degree of

association.
P(18) = 31+ P+ ¢3). (15)

It equals 0-5833/3 = 0:1944 in our example. Note that index ¢(13) is a type of combination of
indices ¢(11) and ¢(15). It is not entirely without justification to use the unweighted mean.
When the three alleles are regarded as two alleles, 4, and (4,+ 4,), the ‘inbreeding coefficient’
in the total population would be ¢,. Similarly, for the cases A, vs. (4,+4y) and 44 vs.
(4, + 4,), the inbreeding coefficients would be ¢, and ¢,, respectively. If these three pooling
systems are equally important with respect to the total population, then the simple
average (15) would be a good measure of the over-all association.

DISCUSSION

The main point of this communication is that when a population is subdivided into a number
of random mating isolates with respect to multiple alleles, each allele frequency has its own
variance among the isolates and there is no unique index or coefficient to meagure the degree of
agsociation between the uniting gametes as caused by the subdivision of the population. The
basic difficulty is the lack of a numerical scale that is applicable to the alleles, Without a quantita-
tive scale, no correlation coefficient between the uniting gametes can be calculated. Consequently,
a number of simple indices or coefficients have been mentioned. This situation is analogous to
the ordinary two-way table with qualitative classifications, for which there is also no unique
and universally agreed upon measurs of association.

In the example shown in Table 1, the first three indices of association are

$(11) = 0-1833, $(12) = 0-1875, H(13) = 0-2000.

This is not to be interpreted as meaning ¢(11) < ¢(12) < ¢(13) in general. Their magnitudes
depend on how the alleles are distributed among the isclates. Nor is the covariance of the fre-
quencies of two alleles necessarily negative. In our numerical example (Table 1),

Oy = —002, 03=0, g5 =-—004,
& covariance could well be positive, as shown in the following isolates.

Isolates

fre((izgzcy - A N - Total
opulation Variance Covariance
) (1) (2) (3) (4) (5)  pop Iy
A, Py 0’10 0'20 030 0'40 0'50 P =0'30 o1 = o020 Oy = +0'010
A, Q¢ o010 o135 020 025 030 g = 0°20 03 = o-005 013 = —0'030

As 7y o'8o 063 o'50 035 0°20 7 = 0'50 ol = o045 Oy == — 0015
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The corresponding indices of agsociation in the total population are:
B(11) = 0-1248, (12) = 0-1129, ¢(13) = 0-0908.

It is seen that ¢(11) > ¢(12) > ¢(13) in this example. At the present stage, the writer has no
particular preference for any one of the measurements proposed in this communication. It is
hoped that further investigation will enable us to choose from the existing ones or to construct
new indices that would reflect the nature and degree of the association accurately.

Nei (1965) investigated a slightly different problem. He assumed inbreeding for multiple
alleles in each subpopulation with a single inbreeding coefficient f®for all alleles in the 7th isolate.
This is correct for true inbreeding. Under ‘ Discussion’, however, he noted: ‘ Another factor which
complicates the situation is the fact that f® is not necessarily the same for all genotypes under
non-random differentiation. In other words, the value of f® for 4;4; may not be the same as
that for 4, 4, or 4;4,." This is the problem discussed in the present communication.

Likewise, Jain & Workman (1967) have also considered multiple alleles with inbreeding and
selection and use F' exclusively as the inbreeding coefficient or the fixation index and do not dis-
cuss the difference between inbreeding and subdivision for multiple alleles. Hence it is thought
better to introduce a different symbol ¢ for subdivision to be distinguished from the inbreeding

coefficient #',

SUMMARY

With multiple alleles, the situation for population subdivision is no longer identical with that
of inbreeding. In the latter case, all heterozygote frequencies are decreased to the same extent.
In the former, a heterozygote frequency may be decreased or increased, or remains the same as
that of a random mating population without subdivision, as the covariance of the frequencies of
the Alleles 4; and A, may be negative, positive, or zero. Also, no correlation coefficient can be
caleulated for the case of population subdivision, as no natural numerical values can be assigned
to the alleles 4;. Several simple indices have been proposed to serve as an overall measurement
of the degree of association between the uniting gametes and illustrated by numerical examples.
The isomorphism of this problem with that of association for qualitative traits has been pointed
out.
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