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Abstract. It is shown that the kernels for mean value representations of points in Rn

in terms of the integrals over piecewise smooth hypersurfaces are divergence free vector

fields defined by homogeneous functions of degree −(n+1), whose restrictions to the unit

sphere are positive and orthogonal to the first harmonics. By Minkowski problem, such

a function is the reciprocal of the composition of the Gaussian curvature of a compact

strictly convex hypersurface with its inverse Gauss map. For a compact strictly convex

hypersurface, M, we define a dual surface M∗ via its support function. It is shown that

the homogeneous extension of degree −(n+1) of the reciprocal of the composition of the

curvature of M with its inverse Gauss map, as a function on the unit normal sphere, is

equal to a homogeneous function defined by the curvature of M∗.

1. Introduction

Representation of points and functionals on a convex set by its extreme points is an

important problem in mathematics and its applications. Barycentric coordinates, the

Krein-Millman Theorem and Choquet’s Theorem are examples of such a representation.

Particularly useful in approximation, geometric modelling and numerical computation

is the representation of points in a convex polyhedron or in the kernel of a star-shaped

polyhedron in terms of its vertices. More precisely if the vertices are vi, i = 1, 2, . . . , k, and

v is any point in the convex polyhedron or in the kernel of the star-shaped polyhedron

then the problem is to compute coefficients λi ≥ 0 (strictly positive if v is not in the

boundary) with desired properties and satisfy

kX
i=1

λi = 1 and v =
kX

i=1

λivi.

The λi
′s are referred to as coordinates of v with respect to vi, i = 1, . . . , n. For an n-

simplex, which is the convex hull of n + 1 affinely independent set of points that form
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its vertices, the coordinates are unique and they are the barycentric coordinates for the

simplex. For an n-dimensional polyhedron with number of vertices k > n + 1, the coordi-

nates λi
′s are not unique. There are many extensions of barycentric coordinates to convex

polygon and polyhedron, for instance, E. Wachpress ([18], 1975), R. Sibson ([16], 1981)

for the construction of finite element approximation and scattered data interpolation and

C. Loop and T. DeRose ([13], 1989), S. Lodha ([12], 1993), J.Warren ([19], 1996 and [20],

2002), J. Warren, Scheafer, Hirani and Desbrun ([21], 2007) for geometric modelling and

computer graphics.

Recently, in conjunction with the construction of one-one transformations and parame-

trizations of meshes in R3, Floater [2] has found an explicit formula for the representation

of points that lie in the kernel of star-shaped polygons in R2 in terms of the vertices of the

polygon. Because of its simplicity and usefulness in computer graphics and its potential

applications in functional approximation and interpolation, the idea has been quickly ex-

tended to star-shaped polyhedrons in R3 (see [4], [5], [8], [9], [10]). Floater’s original idea

was motivated by the mean value property of harmonic functions, i.e. if φ is harmonic in

a region Ω ⊂ R2, then for any circle C(v, r) ⊂ Ω with centre at v and radius r,

φ(v) =
1

2πr

Z
C

φ dC. (1.1)

He observed that a class of real-valued piecewise linear functions defined on a trian-

gular mesh in R2, which he calls convex combination functions, share discretely some

properties of harmonic functions [2]. Forcing the mean value property (1.1) on the con-

vex combination functions produces the new coordinates, which he calls the mean value

coordinates. The problem of computing these coordinates then reduces to integrating

elementary trigonometric functions over the unit circle or the unit sphere (see [2], [4],

[10]).

However, the mean value coordinates are more naturally associated with conserva-

tive vector fields on R2 and divergence free vector fields on R3. This relationship was

established in [11], thereby providing a mathematical foundation and puts mean value

coordinates in a mathematical framework for further development. In particular, a class

of conservative vector fields F are constructed that provide the representations

v =

R
C x F (x− v) ·NdCR
C F (x− v) ·NdC

(1.2)

for any piecewise smooth closed curve C ⊂ R2 and for any point v ∈ R2, and a class of

divergence free vector fields F are constructed such that

v =

R
S x F (x− v) ·NdSR
S F (x− v) ·NdS

(1.3)
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for any piecewise smooth closed surface S ⊂ R3 and v ∈ R3. Here and hereafter, dS

denotes the standard surface area element of a surface S and N is its unit outward normal.

All surfaces are assumed to be closed and piecewise smooth, unless otherwise stated. We

also use “dot ” for inner product. We shall refer to representations of the form (1.2),

(1.3) as mean value representations and say that the vector field F provides mean value

representations. The special case, F (x) = x/||x||n+1, n = 2, 3, produces Floater’s mean

value coordinates. Even in this special case the coordinates derived are for very general

configurations of points on the curves and surfaces [11]. We emphasize that the surfaces

for the mean value representations need not be convex nor star-shaped nor even simply

connected and the representations hold for any piecewise smooth hypersurface and for any

point in Rn. However, the vector fields that produce Floater’s mean value coordinates do

not appear to inherit any intrinsic property of the curves or surfaces in their mean value

representations. To address this problem, Warren et al [21] have recently introduced a

vector field defined in terms of the curvature of the boundary of a given compact convex

region for the representation of points in the region in terms of integrals over its boundary.

Our object is to continue the investigation of the divergence free vector fields introduced

in [11] for mean value representations and their relations with the curvatures of compact

strictly convex hypersurfaces in Rn. The divergence free vector fields are closely related

to homogeneous functions. A function h : Rn \ {0} → R is a homogeneous function of

degree m, if

h(tx) = tmh(x), for all t > 0 and x ∈ Rn \ {0}. (1.4)

In Section 2, it is shown that for a continuously differentiable vector field F = (F1, . . . , Fn)

that vanishes at infinity, xjF (x), j = 1, . . . , n, are divergence free if and only if F (x) =

h(x)x for some homogeneous function h of degree −(n + 1). It is then shown that a

homogeneous function h of degree −(n + 1) whose restriction to Sn−1 is non-vanishing

and orthogonal to the first harmonics, i.e.Z
Sn−1

xjh(x) x ·NdSn−1 = 0, j = 1, . . . , n, (1.5)

defines a vector field that provides mean value representations. However, functions on the

unit sphere that are nonvanishing and orthogonal to the first harmonics are curvatures,

as functions on the unit normal sphere, of compact strictly convex hypersurfaces via the

Minkowski problem (see [1], [15]). Section 3 develops the relationship between mean

value representations and curvatures of compact strictly convex hypersurfaces and shows

that homogeneous extensions of degree −(n + 1) of their curvatures, as functions on

the unit normal sphere, provide a large class of homogeneous functions for mean value
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representations. In this context the vector fields, F (x) = x/||x||n+1, x ∈ Rn \ {0},
that produce Floater’s mean value coordinates for n = 2, 3 are defined by homogeneous

extensions of the curvature of the unit (n− 1)-dimensional sphere. In Section 4 we show

that the homogeneous extension of degree −(n + 1) of the reciprocal of the composition

of the curvature of a compact strictly convex hypersurface M with its inverse Gauss map,

as a function on the unit normal sphere, is equal to a homogeneous function defined by

the curvature of a dual surface M∗. In particular, the mean value representations by the

corresponding vector field over M∗ coincides with the continuous barycentric coordinates

in [21].

2. Homogeneous vector fields and mean value representations

Let S be a compact piecewise smooth hypersurface in Rn and assume that it is oriented

with its normal in the direction away from the bounded region. The object is to find a

vector field F = [F1, . . . Fn]T in Rn that satisfiesZ
S

x F (x) ·NdS = 0 and
Z

S
F (x) ·NdS 6= 0, (2.1)

for any S. Equation (2.1) would then giveZ
S
(x− v) F (x− v) ·NdS = 0,

for any v ∈ Rn, so that the following mean value representation holds:

v =

R
S x F (x− v) ·NdSR
S F (x− v) ·NdS

.

2.1. Divergence free vector fields and homogeneous functions. For a vector field

G = (G1, . . . , Gn) that is continuously differentiable on a region Ω with piecewise smooth

boundary S, the generalized Stoke’s theorem or Divergence theorem says thatZ
S

G ·NdS =
Z
Ω

div(G)dx1 · · · dxn,

where div(G) :=
Pn

i=1 ∂iGi. It follows that the first integral in (2.1), which is a vector

integral, vanishes if div(xjF (x)) = 0 on Ω for j = 1, . . . , n. Therefore, we want to find

vector fields F for which xjF (x), j = 1, . . . , n, are divergence free on “most” of Rn. Such

vector fields are related to homogeneous functions. A homogeneous function h of degree

m, which is defined by (1.4), i.e. h(tx) = tmh(x) for t > 0 and x ∈ Rn \ {0}, is uniquely

determined by its values on the unit (n− 1)-dimensional sphere Sn−1. If h is continuously

differentiable, taking the derivatives of the expressions in (1.4) with respect to t and then

setting t = 1 gives the Euler’s formula:

x · 5h(x) = mh(x), x ∈ Rn \ {0}, (2.2)
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where 5 := (∂1, . . . , ∂n) is the gradient operator. Further, ∂jh, j = 1, . . . , n, are homoge-

neous functions of degree m− 1.

Theorem 2.1. For a continuously differentiable vector field F = (F1, . . . , Fn) that van-

ishes at infinity, xjF (x), j = 1, . . . , n, are divergence free on Rn \ {0} if and only if

F (x) = h(x)x for some homogeneous function h of degree −(n + 1).

Proof. For a homogeneous function g : Rn \ {0} → R of degree m,

div(g(x)x) = x · 5g(x) + g(x)div(x) = (m + n)g(x), (2.3)

by (2.2), so that g(x)x is divergence free if and only if g is homogeneous of degree −n.

Suppose F (x) = h(x)x, x ∈ Rn \ {0}, for some homogeneous function h of degree

−(n + 1). Since xjh(x), j = 1, . . . , n, is homogeneous of degree −n, xjF (x) = xjh(x)x,

j = 1, . . . , n, are divergence free on Rn \ {0}.
Conversely, suppose div(xjF (x)) = 0, j = 1, . . . , n. Then

Fj(x) + xj

nX
i=1

∂Fi(x)

∂xi

= div(xjF(x)) = 0, j = 1, . . . , n ,

which implies that
Fj(x)

xj

= −
nX

i=1

∂Fi(x)

∂xi

, j = 1, . . . , n (2.4)

and hence for each j = 1, . . . , n,

Fi(x) =
xi

xj

Fj(x), i = 1, . . . , n. (2.5)

Differentiating (2.5) with respect to xi and substituting the resulting derivatives back into

(2.4) shows that all Fj, j = 1, . . . , n, are solutions of the differential equation

x · 5U(x) = −nU(x). (2.6)

The general solution of the corresponding homogeneous equation is an arbitrary homo-

geneous function of degree 0 and the general solution of (2.6) that vanishes at infinity

is an arbitrary homogeneous function of degree −n. It then follows from the relations in

(2.4), that Fj(x) = xjh(x), j = 1, . . . , n, and hence F (x) = h(x)x, x ∈ Rn \ {0} for some

homogeneous function h of degree −(n + 1). ♠

2.2. Homogeneous functions of degree 1. Homogeneous functions of degree 1 have

interesting properties and appear naturally in conjunction with the study of compact

strictly convex hypersurfaces. We shall first establish some formulas that will provide a

crucial relationship between the curvature of a compact strictly convex hypersurface and

that of its dual introduced in Section 3.
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Proposition 2.2. Let h be a homogeneous function of degree 1, which has continuous

derivatives up to second order, Aij ≡ Ah
ij be the cofactor of ∂i∂jh in the Hessian matrix

H ≡ Hh := (∂i∂jh) of h and Adj(H) = (Aij)
T be the adjoint of H. Then for all i =

1, . . . , n,

Aii(x)

x2
i

= Φ(x), xi 6= 0, (2.7)

for some homogeneous function Φ of degree −(n + 1).

If g is a differentiable homogeneous function of degree m and g(x) 6= 0 for x 6= 0, then

(5g)T Adj(H)(5g) = m2g2 Φ . (2.8)

Proof. Since h is a homogeneous function of degree 1, ∂ih, i = 1, . . . , n, are homogeneous

of degree 0. By (2.2)
nX

i=1

xi
∂2h(x)

∂xi∂xj

= 0, j = 1, . . . , n . (2.9)

Since the linear system (2.9) has nontrivial solutions, det (∂i∂jh) = 0 and for j = 1, . . . , n,

Aij

xi

=
Ajj

xj

, i = 1, . . . , n . (2.10)

Therefore, for any j = 1, . . . , n,

Aij

xixj

=
Ajj

x2
j

, i = 1, . . . , n

and because of symmetry, this gives, in particular,

Aii

x2
i

=
Ajj

x2
j

, i = 1, . . . , n .

Since Aii is a determinant of order n − 1, whose entries are homogeneous functions of

degree −1, it is a homogeneous function of degree −(n−1). Hence Aii/x
2
i is homogeneous

of degree −(n + 1), and we have (2.7).

To prove (2.8), we note that

nX
i=1

xi
∂g(x)

∂xi

= mg(x), x ∈ Rn \ {0} . (2.11)

Consider the linear system formed by (2.11) and any of the n − 1 equations in (2.9). If

g(x) 6= 0 for x 6= 0, such a system is nonsingular for all x 6= 0. Then for any k = 1, . . . , n,

xi =
mg(x) Aik(x)

det(Hk(x))
, i = 1, . . . , n, (2.12)

where Hk is the matrix of coefficients of the linear system and is derived from the Hessian

of h by replacing the kth row by (∂1g, . . . , ∂ng).
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Equation (2.12) gives

det(Hk(x)) = mg(x)
Aik(x)

xi

= mg(x)
Akk(x)

xk

, k = 1, . . . , n,

by (2.10). Expanding the determinant in the last equation and multiplying by ∂g(x)
∂xk

gives

∂g(x)

∂xk

nX
j=1

Akj(x)
∂g(x)

∂xj

= mg(x)
Akk(x)

x2
k

xk
∂g(x)

∂xk

= mg(x) Φ(x) xk
∂g(x)

∂xk

, k = 1, . . . , n .

Summing these equations and using Euler’s formula (2.2) leads to

nX
k=1

nX
j=1

∂g(x)

∂xk

Akj(x)
∂g(x)

∂xj

= mg(x) Φ(x)
nX

k=1

xk
∂g(x)

∂xk

= m2g(x)2 Φ(x) ,

which establishes (2.8). ♠

2.3. Mean value representations in Rn. Let h be a homogeneous function of degree

−(n + 1) and define

F (x) := h(x)x . (2.13)

By Proposition 2.1, xjF (x) = xjh(x)x, j = 1, . . . , n, are divergence free on any region not

containing the origin. Therefore their integrals over the boundary of any n-dimensional

region not containing the origin are zero. Hence
R
S xF (x) ·NdS = 0, for any S that does

not enclose the origin. We also require their integrals over any (n−1)-dimensional surface

that encloses the origin to be zero. Since xjF (x) = xjh(x)x are divergence free, it suffices

to integrate over the unit (n − 1)-dimensional sphere, Sn−1 and to require (1.5) to hold,

i.e. Z
Sn−1

xjh(x) x ·NdSn−1 = 0, j = 1, . . . , n.

The following generalized spherical polar coordinates provide a useful description of

(1.5) as well as a parametrization for the unit sphere and compact strictly convex hyper-

faces:

xj := cos θj−1

n−1Y
i=j

sin θi, ρ > 0, 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π, i = 2, . . . , n− 1,(2.14)

for j = 1, . . . , n− 1,

where cos θ0 := 1, as a convention. The functions xj(θ), j = 1, . . . , n, will be referred

to as the first order harmonics of the (n − 1)-dimensional spherical harmonics. The
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tangent vectors, ∂x
∂θj

, j = 1, . . . , n− 1, provide an orthogonal frame and their Grammian,�
∂x
∂θi
· ∂x

∂θj

�n−1

i,j=1
is a diagonal matrix with diagonal entries, ∂x

∂θj
· ∂x

∂θj
=
Qn−1

i=j+1 sin2 θi, j =

1, . . . , n− 1, so that Ì
det

�
∂x

∂θi

· ∂x

∂θj

�
=

n−2Y
k=1

sink θk+1.

The condition (1.5) is equivalent toZ
Dθ

xj(θ)h(x(θ))
n−2Y
k=1

sink θk+1dθ1 · · · θn−1 = 0, j = 1, . . . , n. (2.15)

We shall refer to condition (2.15) by saying that h|Sn−1 is orthogonal to the first harmonics.

Theorem 2.3. If h : Rn → R is a homogeneous function of degree −(n + 1) whose

restriction to Sn−1 is non-vanishing and orthogonal to the first harmonics, then the vector

field h(x)x provides mean value represemtations, i.e. for any closed (n− 1)-dimensional

piecewise smooth surface S ⊂ Rn and any v ∈ Rn,

v =

R
S xh(x− v) (x− v) ·NdSR
S h(x− v) (x− v) ·NdS

. (2.16)

Proof. We have shown that for any (n− 1)-dimensional surface S ⊂ Rn and 0 6∈ S,Z
S

xh(x) x ·NdS = 0. (2.17)

To show that Z
S

h(x) x ·NdS 6= 0 , (2.18)

we apply Divergence theorem and consider two cases: (i) 0 not in the region Ω enclosed

by S, (ii) 0 ∈ Ω. In the first case,Z
S

h(x) x · ndS =
Z
Ω

div(h(x)x)dx1 · · · dxn

= −
Z
Ω

h(x)dx1 · · · dxn 6= 0,

by (2.3) since h is homogeneous of degree −(n + 1). For the second case, taking a ball

BR with centre at the origin and arbitrary large radius R that contains Ω, and applying

Divergence theorem on BR \ Ω giveZ
∂BR

h(x) x ·Nd(∂BR)−
Z

S
h(x) x ·NdS = −

Z
BR\Ω

h(x)dx1 · · · dxn. (2.19)

Since h(x) is homogeneous of degree −(n+1), the first integral on the left of (2.19) tends

to 0 as R →∞. Taking the limit in (2.19) givesZ
S

h(x) x ·NdS =
Z
Rn\Ω

h(x)dx1 · · · dxn 6= 0.
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Since (2.17) and (2.18) hold for integrals over any (n− 1)-dimensional surface, it follows

that for any S and v ∈ Rn \ S,Z
S
(x− v)h(x− v) (x− v) ·NdS = 0

and Z
S

h(x− v) (x− v) ·NdS 6= 0,

which gives the representation (2.16).

Equation (2.16) also holds if v ∈ S. This follows by taking a ball Bδ with centre at v

and arbitrary small radius δ. Then (2.16) holds for the boundary of Ωδ := Ω \ Bδ for all

δ > 0. where Ω is the region with boundary S. Hence, it holds in the limit as δ → 0. ♠

Remark 1. Floater’s mean value coordinates ([2], [4]) are derived from mean value rep-

resentations by the homogeneous vector fields, F (x) = h(x)x, where h(x) = 1/||x||n+1,

n = 2, 3. In [11], the mean value coordinates are constructed from their mean value rep-

resentations for this particular case for n = 2, 3, in terms of very general configurations

of points that lie on the piecewise smooth boundary of any compact n-dimensional region.

The construction in [11] can be extended to any dimension.

Theorem 2.3 shows that the condition for the vector fields xjF (x), j = 1, . . . , n, be di-

vergence free produces strong results that the mean value representation (2.16) holds for

any (n− 1)-dimensional surface S ⊂ Rn and any v ∈ Rn, which provides a useful tool for

the analysis and construction of barycentric type coordinates for a very general configura-

tions of points. On the other hand the divergence free condition is a strong requirement.

In spite of this, the homogeneous function h in Theorem 2.3 provides important flexibility

for the construction of divergence free vector fields with geometric properties. Theorem

2.3 says that a homogeneous function h of degree −(n+1) defines a vector field that pro-

vides mean value representations if its restriction to the unit sphere Sn−1 is non-vanishing

and orthogonal to the first harmonics. On the other hand, a positive function on the

unit sphere is the curvature of a compact strictly convex hypersurface, unique up to

a translation, if and only if its reciprocal is orthogonal to the first harmonics. There-

fore, the homogeneous extension of degree −(n + 1) of the curvature of a given compact

strictly convex hypersurface defines a divergence free vector field that provides mean value

reprsentations. The following section gives a detailed account of this relationship.
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3. Mean value representations associated with curvatures of compact

strictly convex hypersurfaces

This section studies the relation between mean value representations and curvatures of

compact strictly convex hypersurfaces. We first develop some preliminaries.

3.1. Preliminaries on curvatures of compact strictly convex hypersurfaces. For

a compact strictly convex hypersurface M in Rn, the Gauss map G : M → Sn−1 takes a

point y ∈ M to a point x =: G(y) ∈ Sn−1, whose position vector is the unit normal to M

at y. Because M is strictly convex, its Gauss map is a diffeomorphism of M onto Sn−1.

The inverse G−1 : Sn−1 → M provides a parametrization of M on the unit sphere. The

function h : Sn−1 → R defined by

h(x) =
nX

i=1

xiyi, x ∈ Sn−1 , (3.1)

where y = G−1(x), is called the support function of M. The value h(x) is the distance

from the origin to the tangent plane at the point y ∈ M where the normal is x. The

support function h can also be considered as a function on M, in which case it will be

denoted by hM to avoid confusion. We shall first consider h as a function on Sn−1, so

that is can be extended to a homogeneous function of degree 1 on Rn \ {0} by defining

h(x) := ||x||h(x/||x||). In this extension the coordinates yi = yi(x), i = 1, . . . , n, of points

y = G−1(x) of M are naturally extended to homogeneous functions on Rn \ {0} of degree

0. The support function h is uniquely determined by M. Since

h(x) = sup
y∈M

 
nX

i=1

xiyi

!
,

it follows that h is convex. Indeed h is strictly convex on any hyperplane xi = −1,

i = 1, . . . , n (see [1]). All quantities associated with M can be described in terms of its

support function. The following lemma summarizes some known results, which are useful

formulas for theoretical development as well as for computations (see [1], [14]).

Lemma 3.1. Let h be the support function of a compact strictly convex hypersurface M,

x = G(y), y ∈ M, be the Gauss map of M onto Sn−1, where y = G−1(x) is extended to a

homogeneous function of degree 0 on Rn and Aij, i, j = 1 . . . , n, be the cofactor of ∂i∂jh

in the Hessian matrix H = (∂i∂jh)n
i,j=1 , of h.

1. The coordinate functions of points y ∈ M are given by

yi =
∂h

∂xi

, i = 1, . . . , n. (3.2)
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2. The curvature K of M and the cofactors of the Hessian of h as functions on the

unit sphere Sn−1 satisfy the relation:

nX
i=1

Aii(x) =
1

K ◦G−1(x)
, x ∈ Sn−1 (3.3)

and as homogeneous functions they satisfy

nX
i=1

Aii(x) =
1

||x||n−1K ◦G−1(x)
, x ∈ Rn \ {0} . (3.4)

3. For i = 1, . . . , n,

Aii(x)

x2
i

=
1

||x||n+1 K ◦G−1(x)
, x ∈ Rn, xi 6= 0 . (3.5)

4. If Sn−1 is parametrized by the polar coordinates x = x(θ) defined by (2.14), then

det

�
∂2h(x(θ))

∂θi∂θj

+ h(x(θ))δij

�n−1

i,j=1

=
1

K ◦G−1(x(θ))
, (3.6)

for θ1 ∈ [0, 2π), θj ∈ [0, π], j = 2, . . . , n− 1.

We remark that equation (3.2) follows from the definition h(x) =
Pn

i=1 xiyi in (3.1),

Euler’s formula h(x) =
Pn

i=1 xi
∂h(x)
∂xi

and the fact that x is orthogonal to the vectors ∂y(x)
∂xj

,

j = 1, . . . , n, which lie on the tangent plane to M at y(x). Equation (3.5) follows from

Lemma 2.2 and (3.4). The relation (3.6) is obtained by computing the Hessian of h in

polar coordinates and using Euler’s formula for the homogeneous function h and (3.3) in

polar form.

It is important to note that the curvature function K ◦G−1(x), x ∈ Rn \ {0}, in (3.4)

and (3.5), which is a homogeneous extension of the curvature of M as a function on the

unit sphere, is a homogeneous function of degree 0.

Finally we state a formula for the Gaussian curvature of a compact strictly convex

hypersurface M defined implicitly by g(x) = 1 where g is a homogeneous function on Rn

of degree 1 with continuous partial derivatives up to second order. Let Hg be the Hessian

of g, and Adj(Hg) be the adjoint of Hg. Define Kg : Rn \ {0} → R by

Kg :=
gn−1 (5g)T Adj(Hg)(5g)

|| 5 g||n+1
. (3.7)

The function Kg is a homogeneous function of degree 0, since g is homogeneous of degree

1, 5g and ∂i∂jg are homogeneous of degree 0 and −1 respectively and the entries of

Adj(Hg) are homogeneous functions of degree −n + 1. For y ∈ M, the value Kg(y) is the

curvature of M at y. The factor gn−1 has been introduced in (3.7) to ensure that Kg is

a zero degree homogeneous extension of the curvature K as a function defined on M for

consistency with formulas based on support functions. The formula (3.7) can be derived
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from Proposition 2.2 and Lemma 3.1 or directly from the Weingarten map (see [17]). A

more general result without the restriction that g be homogeneous can be found in [7].

3.2. Homogeneous extension for functions defined on compact convex hyper-

surfaces. A function defined on the unit sphere can be easily extended to a homogeneous

function on Rn \ {0}. Since a compact strictly convex hypersurface M is homeomorphic

to the unit sphere, any function defined on M can also be extended to Rn \ {0}. Here, we

shall construct a method for such an extension. To do this we introduce a homogeneous

function that provides an implicit equation for the hypersurface as well as homogeneous

extensions of functions defined on the hypersurface. We shall assume that the origin is in

the convex set enclosed by M. For each y ∈ Rn \{0}, let m(y) be the point of intersection

of the ray {λy : λ > 0} with M and define

φ(y) :=
||y||

||m(y)|| , y ∈ Rn \ {0} . (3.8)

Lemma 3.2. The function φ is a positive homogeneous function of degree 1 and for y 6= 0,

m(y) = y/φ(y). Further, M has an implicit representation given by φ(y) = 1.

Proof. Since m(ty) = m(y), t > 0,

φ(ty) =
||ty||

||m(ty)|| =
t ||y||
||m(y)|| = tφ(y).

Since m(y) lies on the ray {λy : λ > 0}, m(y) = λy for some λ > 0. By (3.8), λ = 1/φ(y).

Since m(y) = y/φ(y), it follows that y ∈ M if and only if φ(y) = 1. ♠

Example: The ray {λy : λ > 0} intersects the ellipse
Pn

i=1(yi/ai)
2 = 1 when

1 =
nX

i=1

(λyi/ai)
2 = λ2

nX
i=1

(yi/ai)
2 ,

so that φ(y) = 1/λ =
ÈPn

i=1(yi/ai)2. In particular, for the unit sphere, φ(y) = ||y||.

Since φ is homogeneous of degree 1, any function f defined on M can be extended to

a homogeneous function of degree m, for any m, by defining

f(y) := φ(y)mf

�
y

φ(y)

�
, y ∈ Rn \ {0}.

Since M is defined implicitly by φ(y) = 1, and φ is homogeneous of degree 1 the function

K : Rn \ {0} → R defined as in (3.7) for φ, i.e.

K :=
φn−1 (5φ)T Adj(Hφ)(5φ)

|| 5 φ||n+1
, (3.9)

is the curvature function of M.
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3.3. Minkowski problem and mean value representations. The following theorem

is commonly known as the Minkowski problem (see [1], [14] and [15]):

Theorem 3.3 (Minkowski problem). Given f > 0 on Sn−1, there exists a unique (up to

translation) compact strictly convex hypersurface M in Rn such that f ◦G is the Gaussian

curvature on M if and only if 1/f is orthogonal to the first harmonics on Sn−1.

Theorem 3.3 establishes a one-one correspondence between positive functions on Sn−1

whose reciprocals are orthogonal to the first harmonics and the curvatures of compact

strictly convex hypersurfaces in Rn. In other words, K is the curvature of a compact

strictly convex hypersurface M if and only if K ◦G−1 is a positive function on Sn−1 and

1/K ◦ G−1 is orthogonal to the first harmonics. The following is a corollary of Theorem

2.3 and Theorem 3.3.

Corollary 3.4. Let K and G be the curvature and Gauss map, respectively, of a compact

strictly convex hypersurface M in Rn. Then the homogeneous extension 1/{||x||n+1K ◦
G−1(x)} of 1/K ◦G−1 of degree −(n+1) defines the vector field, x/{||x||n+1K ◦G−1(x)},
that provides mean value representations.

In the next section we show that 1/{||x||n+1K ◦ G−1(x)} can be expressed in terms

of the curvature of the surface defined implicitly by h(x) = 1, where h is the support

function of the hypersurface M. We shall denote this surface by M∗ and show that M∗

and M have a dual relationship, which is crucial in our construction.

4. Dual surfaces and mean value representations

4.1. Support duals of compact strictly convex hypersurfaces. Let M be a compact

strictly convex hypersurface in Rn described by the implicit equation φ(y) = 1, y ∈
Rn \ {0}, where φ is the homogeneous function of degree 1 defined by (3.8). Its Gauss

map is given by G = 5φ/|| 5 φ||. Let h be the support function of M, which is the first

degree homogeneous extension of the support function defined on the unit sphere. Recall

that h(x) = x · y, where y = G−1(x), and hM(y) = x · y, where x = G(y). Therefore,

hM(y) = y · x =
y · 5φ(y)

|| 5 φ(y)|| =
φ(y)

|| 5 φ(y)|| . (4.1)

On the other hand equation (3.2), i.e. y = 5h(x), shows that the position vector y of

a point of M is normal to the level set surfaces h(x) = C. In particular y/||y|| is a unit

normal to the hypersurface defined by h(x) = 1, which we denote by M∗. Since h is convex

and strictly convex on the planes xi = −1, i = 1, . . . , n, and h(x) →∞ with ||x||, M∗ is a

compact strictly convex hypersurface in Rn. Its Gauss map is given by G∗ = 5h/|| 5 h||.



14 S. L. LEE

Let φ∗ be the homogeneous function of degree 1 defined by M∗ in the same way as

φ is defined by M. Since both φ∗ and h are homogeneous of degree 1 and φ∗(x) = 1 if

and only if h(x) = 1, they must be equal. So the function h plays dual roles: as the

support function for M as well as defining an implicit equation for M∗. We shall call M∗

the support dual of M. Let h∗ be the support function of M∗ given by

h∗(y) =
nX

i=1

yixi, y = G∗(x) ∈ Sn−1

and extended homogeneously to Rn \ {0} by h∗(y) = ||y||h∗(y/||y||). Since x = 5h∗(y), it

follows that x is normal to the level surfaces h∗(y) = C. In particular, any vector x ∈ M∗,

i.e. that satisfies h(x) = 1 is normal to the surface defined by h∗(y) = 1. But x is the

normal to M which is defined implicitly by φ(y) = 1. Hence h∗ = φ. We summarize the

results of the above discussion as

Lemma 4.1. Let M be a compact strictly convex hypersurface in Rn defined by φ(y) = 1,

where φ is the homogeneous function defined by (3.8), h(x) = x · y be the degree one

homogeneous support function of M, where x = G(y) is the unit normal to M at y ∈ M,

M∗ be the surface defined by h(x) = 1 and h∗ be the corresponding support function for

M∗.

1. If φ∗ is defined by M∗ in the same way as φ is defined by M as in (3.8), then

h∗ = φ and h = φ∗ . (4.2)

2. Vectors x ∈ M∗ are normal to M and y ∈ M are normal to M∗ .

3. The support functions hM and h∗M satisfy

hM =
h∗

|| 5 h∗|| and h∗M∗ =
h

|| 5 h|| . (4.3)

Remark 2. The surfaces M and M∗ can be expressed by

M = {y ∈ Rn : h∗(y) = 1} and M∗ = {x ∈ Rn : h(x) = 1},

where h is the support function of M and h∗ is the support function of M∗.

4.2. Homogeneous extensions of curvatures of hypersurfaces and curvatures of

their support duals. Let K and K∗ be the curvature functions of M and M∗ respec-

tively. Equation (2.8) in Proposition 2.2 gives a useful connection between K and K∗,

for if the h in (2.8) is the support function of M (respectively M∗) then the function Φ

in (2.8) is the curvature function K of M (respectively K∗ of M∗). The following lemma

follows from Proposition 2.2 and Lemma 3.1 .
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Lemma 4.2. Let G, h and K be the Gauss map, support function and curvature, respec-

tively, of M. Then for any homogeneous function g of degree m,

(5g(x))T Adj(H(x))(5g(x)) =
m2g(x)2

||x||n+1 K ◦G−1(x)
, x ∈ Rn \ {0} . (4.4)

Proof. If h is the support function of M, (2.7) and (3.5) give

Φ(x) =
Aii(x)

x2
i

=
1

||x||n+1 K ◦G−1(x)
, x ∈ Rn, xi 6= 0 .

Then (4.4) follows from (2.8). ♠

Theorem 4.3. For a compact strictly convex hypersurface M, let G, h K be as in Lemma

4.2. Let M∗ be the support dual of M and G∗, h∗ and K∗ be the corresponding Gauss

map, support function and curvature, respectively. Then

K(y)

hM(y)n+1
=

1

||y||n+1 K∗ ◦ (G∗)−1(y)
, y ∈ Rn \ {0} (4.5)

and
K∗(x)

h∗M∗(x)n+1
=

1

||x||n+1 K ◦G−1(x)
, x ∈ Rn \ {0} . (4.6)

Proof. By (4.4)

(5h∗(y))T Adj(H∗(y))(5h∗(y)) =
h∗(y)2

||y||n+1 K∗ ◦ (G∗)−1(y)
, y ∈ Rn \ {0} , (4.7)

where H∗ is the Hessian of h∗. Since h∗(y) = 1 is the implicit equation of M, (3.7) gives

K(y) =
(h∗(y))n−1 (5h∗(y))T Adj(H∗(y))5 h∗(y)

|| 5 h∗(y)||n+1
. (4.8)

Then by (4.3), (4.8) and (4.7),

K(y)

hM(y)n+1
=

K(y)|| 5 h∗(y)||n+1

h∗(y)n+1

=
(5h∗(y))T Adj(H∗(y))(5h∗(y))

h∗(y)2

=
1

||y||n+1 K∗ ◦ (G∗)−1(y)
,

which establishes (4.5). The relation (4.6) follows by duality. ♠

Corollary 4.4. If K and hM are the curvature and support function, respectively, of a

compact strictly convex hypersurface M in Rn, then K(x)x/(hM(x))n+1 provides mean

value representations, i.e. for any closed piecewise smooth hypersurface S ⊂ Rn and

v ∈ Rn,

v =
Z

S
x

K(x− v)

hM(x− v)n+1
(x− v) ·NdS

ÂZ
S

K(x− v)

hM(x− v)n+1
(x− v) ·NdS .
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In particular,

v =
Z

M
x

K(x− v)

hM(x− v)n
dM

ÂZ
M

K(x− v)

hM(x− v)n
dM .

4.3. Examples. We illustrate the above results with two simple examples.

1. If M is the unit sphere in Rn, its curvature K = 1 on M, G is the identity map and the

corresponding homogeneous vector field x/||x||n+1 provides the mean value representations

v =
Z

S
x

1

||x− v||n+1
(x− v) ·NdS

ÂZ
S

1

||x− v||n+1
(x− v) ·NdS

that produces Floater’s mean value coordinates in two and three dimensions [11].

2. Consider the ellipsoid M,
Pn

i=1 y2
i /a

2
i = 1. Its Gauss map, G : M → Sn−1, is the

transformation x = G(y), where

xi =
yi/a

2
i

(
Pn

i=1 y2
i /a

4
i )

1/2
, i = 1, . . . , n . (4.9)

The inverse transform y = G−1(x) is

yi =
a2

i xi

(
Pn

i=1 a2
i x

2
i )

1/2
, i = 1, . . . , n . (4.10)

Equations (4.9) and (4.10) define G and G−1 on Rn \ {0} as homogeneous functions of

degree 0. The support function of M,

h(x) =
nX

i=1

xiyi =

 
nX

i=1

a2
i x

2
i

!1/2

, x ∈ Rn \ {0} ,

by (4.10). Similarly, by (4.9),

hM(y) =

Pn
i=1 y2

i /a
2
i

(
Pn

i=1 y2
i /a

4
i )

1/2
, y ∈ Rn \ {0} .

The curvature function of M is

K(y) =
1Qn

i=1 a2
i (
Pn

i=1 y2
i /a

4
i )

(n+1)/2
, y ∈ M ,

As a homogeneous function of degree 0,

K(y) =
1Qn

i=1 a2
i

¨Pn
i=1 y2

i /a
2
iPn

i=1 y2
i /a

4
i

«(n+1)/2

, y ∈ Rn \ {0} . (4.11)

By (4.10) and (4.11)

K ◦G−1(x) =
(
Pn

i=1 a2
i x

2
i )

(n+1)/2Qn
i=1 a2

i ||x||n+1
, x ∈ Rn \ {0} . (4.12)

The homogeneous extension of 1/K ◦G−1 of degree −(n + 1),

1

||x||n+1 K ◦G−1(x)
=

Qn
i=1 a2

i

(
Pn

i=1 a2
i x

2
i )

(n+1)/2
, (4.13)
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defines the vector field F (x) := (
Qn

i=1 a2
i ) x/ (

Pn
i=1 a2

i x
2
i )

(n+1)/2
that provides mean value

representations.

The support dual M∗ of M is the ellipsoid
Pn

i=1 a2
i x

2
i = 1. Its Gauss map y = G∗(x),

y ∈ Sn−1, is the transformation

yi =
a2

i xi

(
Pn

i=1 a4
i x

2
i )

1/2
, i = 1, . . . , n .

The inverse x = (G∗)−1(y) is given by

xi =
yi

a2
i (
Pn

i=1 y2
i /a

2
i )

1/2
, i = 1, . . . , n .

A similar consideration as above for M gives the following expressions for the support

function of M∗ :

h∗(y) =

 
nX

i=1

y2
i /a

2
i

!1/2

, y ∈ Rn \ {0}

and

h∗M∗(x) =

Pn
i=1 a2

i x
2
i

(
Pn

i=1 a4
i x

2
i )

1/2
, x ∈ Rn \ {0} .

Also the curvature of M∗,

K∗(x) =

Qn
i=1 a2

i

(
Pn

i=1 a4
i x

2
i )

(n+1)/2
, x ∈ M .

As a homogeneous function of degree 0,

K∗(x) =
nY

i=1

a2
i

¨Pn
i=1 a2

i x
2
iPn

i=1 a4
i x

2
i

«(n+1)/2

, x ∈ Rn \ {0}

and

K∗ ◦ (G∗)−1(y) =

Qn
i=1 a2

i (
Pn

i=1 y2
i /a

2
i )

(n+1)/2

||y||n+1
, y ∈ Rn \ {0} .

Note that h∗(y) = 1 is the implicit equation of M and

K∗(x)

h∗M∗(x)n+1
=

Qn
i=1 a2

i

(
Pn

i=1 a2
i x

2
i )

(n+1)/2
=

1

||x||n+1 K ◦G−1(x)

by (4.13) and

K(y)

hM(y)n+1
=

1Qn
i=1 a2

i (
Pn

i=1 y2
i /a

2
i )

(n+1)/2
=

1

||y||n+1 K∗ ◦ (G∗)−1(y)

by duality .
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4.4. Discrete representations and generalized barycentric coordinates. Since

mean value representations hold for any piecewise smooth hypersurface in Rn, they hold

for any (n−1)-dimensional polyhedron, from which discrete representations and the corre-

sponding generalized barycentric coordinates for points v ∈ Rn can be derived. Floater’s

coordinates for very general configurations of points have been constructed in [11] from

vector fields defined by the curvature of the unit sphere. Here we give another illustration

of the construction of barycentric type coordinates from the mean value representations by

vector fields defined by the curvature of the ellipse M : x2/a2+y2/b2 = 1, r := (x, y) ∈ R2.

For notational convenience and consistency with many applications, here we use coordi-

nate functions (x, y) for points and vectors in R2 and boldface letters to denote vectors.

Further, it is also convenient to consider conservative fields, instead of divergence free

ones.

The support function hM and curvature K of M are

hM(x, y) =
b2x2 + a2y2

(b4x2 + a4y2)1/2
, (x, y) ∈ R2 \ (0, 0)

and

K(x, y) =
ab(b2x2 + a2y2)3/2

(b4x2 + a4y2)3/2
, (x, y) ∈ R2 \ (0, 0) ,

respectively. Hence,

K(x, y)

hM(x, y)3
=

ab

(b2x2 + a2y2)3/2
.

Instead of considering the divergence free vector fields xK(x, y) (x, y)/hM(x, y)3 and

yK(x, y) (x, y)/hM(x, y)3, we consider the conservative fields

x F(x, y) :=
x K(x, y) (−y, x)

hM(x, y)3
=

ab(−xy, x2)

(b2x2 + a2y2)3/2
,

y F(x, y) :=
y K(x, y) (−y, x)

hM(x, y)3
=

ab(−y2, xy)

(b2x2 + a2y2)3/2

and the corresponding line integrals. The potential functions of xF(x, y) and yF(x, y) are

φ1(x, y) :=
ay

b(b2x + a2y2)1/2
=

ay

b||r̃|| ,

φ2(x, y) :=
−bx

a(b2x + a2y2)1/2
=
−bx

a||r̃|| ,

respectively, where ||r̃|| := (x2/a2 + y2/b2)1/2.

Let C be a piecewise smooth closed curve in R2. In particular, C may be the ellipse M.

Let vj = (xj, yj), j = 0, 1, . . . , n − 1, be points on C arranged in the positive direction,
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ṽj := (xj/a, yj/b) and let Cj, j = 0, . . . , n− 1, be the arc of C from vj to vj+1. Then

(0, 0) =
Z

C
r F(r) · dr

=
n−1X
j=0

Z
Cj

r F(r) · dr

=
n−1X
j=0

�Z
Cj

x F(r) · dr,
Z

Cj

y F(r) · dr
�

=
n−1X
j=0

(φ1(vj+1)− φ1(vj), φ2(vj+1)− φ2(vj))

=
n−1X
j=0

(yj+1/b
2 ,−xj+1/a

2)

||ṽj+1|| − (yj/b
2 ,−xj/a

2)

||ṽj|| . (4.14)

A straightforward computation gives

(yj+1/b
2 ,−xj+1/a

2)

||ṽj+1|| − (yj/b
2 ,−xj/a

2)

||ṽj|| = pjvj + qjvj+1 , (4.15)

where

pj =
||ṽj+1|| (1− cos αj)

ab ||ṽj × ṽj+1|| =
tan(αj/2)

ab ||ṽj|| , (4.16)

qj =
||ṽj|| (1− cos αj)

ab ||ṽj × ṽj+1|| =
tan(αj/2)

ab ||ṽj+1|| (4.17)

and αj is the angle at 0, of magnitude < π, of the oriented triangle [0,vj,vj+1] taking a

positive value if and only if the orientation of the triangle induced by the direction from

vj to vj+1 is anticlockwise.

Equations (4.14), (4.15), (4.16) (4.17) give

(0, 0) =
n−1X
j=0

tan(αj/2)

ab ||ṽj|| vj +
tan(αj/2)

ab ||ṽj+1|| vj+1

=
n−1X
j=0

tan(αj−1/2) + tan(αj/2)

ab ||ṽj|| vj

and for any v ∈ R2,

n−1X
j=0

tan(αj−1/2) + tan(αj/2)

ab ||ṽj − ṽ|| (vj − v) = 0 ,

so that

v =
n−1X
j=0

λj vj, where λj :=
wjPn−1

i=0 wi

and

wj :=
tan(αj−1/2) + tan(αj/2)

ab ||ṽj − ṽ|| , j = 1, . . . , n− 1 .

Here, αj is the angle at v of the oriented triangle [v,vj,vj+1].
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