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Summary 
We present a novel approach to nonstationary seismic 
deconvolution using the Gabor transform.  This nonstationary 
transform represents a signal as a superposition of sinusoids 
that are localized by time-shifted windows.  The resulting 
time-frequency decomposition is a suite of local Fourier 
transforms that facilitates nonstationary spectral analysis or 
filtering.  In a result that generalizes the seismic convolutional 
model, we show that the Gabor transform of a nonstationary 
seismic signal is the product of source signature, Q filter, and 
reflectivity effects.  We use this spectral factorization theorem 
as a basis for a new deconvolution algorithm in the Gabor 
domain.  We estimate the Gabor spectrum of the underlying 
reflectivity directly from the Gabor spectrum of an attenuated 
seismic signal.  Tests on synthetic and real data show that our 
method works well and combines the effects of source-
signature inversion and a data-driven inverse Q filter.  In 
comparison with a stationary Wiener deconvolution, our 
Gabor deconvolution is similar within the Wiener design gate 
and superior elsewhere. 
 
Introduction 
In 1946, Dennis Gabor, the inventor of the hologram, 
proposed the expansion of a wave in terms of Gaussian wave 
packets (e.g. a sine wave multiplied by a Gaussian function).  
Multiplying a signal by a specific Gaussian window and 
Fourier transforming gives a local Fourier spectrum.  Clearly 
such a spectrum is not unique since the width of the Gaussian 
is arbitrary; but nevertheless, it is extremely useful.  If this 
process is iterated for a suite of window positions, the result is 
a time-frequency decomposition called a Gabor transform.  
Furthermore, for any reasonable choice of window (e.g., a 
Gaussian or any continuous function on a finite, closed 
interval), the inverse transform is possible, and a nonstationary 
filter can be achieved by modifying the decomposition before 
reconstruction. 
 
We present the theory of the continuous Gabor transform and 
a discrete Gabor transform based on a partition of unity.  The 
modern theory of the discrete Gabor transform is usually 
attributed to Bastiaans (1980).  A complete overview is found 
in Feichtinger and Strohmer (1998).  We apply the continuous 
Gabor transform to a mathematical model of a nonstationary 
seismogram to show that the Gabor spectrum factors into 
wavelet, Q filter, and reflectivity components.  This result was 
postulated previously by Scheopp and Margrave (1998).  We 
use this spectral factorization theorem to develop a Gabor 
deconvolution algorithm that is a direct extension of standard 
(e.g. Wiener) methods to the nonstationary case.  The resulting 
minimum-phase deconvolution technique simultaneously 
accomplishes the tasks of source waveform inversion and 
(apparent) inverse Q filtering. 
 
 

The Gabor transform 
Following Mertins (1999), we define the continuous Gabor 
transform of a signal s(t) as 

   (1) ( ) ( ) ( ) 2, if t
gV s f s t g t e dt

∞
−

−∞

= −∫ πτ τ

where ( )g t is the Gabor analysis window and τ  is the location 
of the window center.  Although we use ( )g t  as a Gaussian 
function, the theory works well for quite general windows.  
The signal is recovered with the inverse Gabor transform 

 ( ) ( ) ( ) 2, if t
gs t V s f t e df

∞ ∞

−∞ −∞

= −∫ ∫ π dτ γ τ τ  (2) 

where ( )tγ  is the Gabor synthesis window.  The analysis and 
synthesis windows must satisfy the condition 

 ( ) ( ) 1g t t dtγ
∞

−∞

=∫ . (3) 

Given equation (1) and the condition (3), the derivation of 
equation (2) is straightforward and can be found in Mertins 
(1999). 
 
Though the discrete Gabor transform can be formulated for 
very general time-frequency lattices (e.g. Feichtinger and 
Strohmer 1998), we choose a simpler approach because the 
more general approach can be computationally slow.  Unlike 
the discrete Fourier transform that expands a signal into an 
orthonormal basis, the discrete Gabor transform expands into a 
more general construct called a frame.  By choosing windows 
that form a partition of unity, a simple Gabor frame, called a 
tight frame, can be implemented (Grochenig, 2001, p118). 
Furthermore, most of the calculations can be done with an 
FFT so that numerical efficiency is fairly good.  Let  be a 
set of windows satisfying the property 

( )w t

 ( ) ( ) 1k
k k

w t k w t
∈ ∈

− ∆ ≡ =∑ ∑τ  (4) 

and let ( ) ( ) p
k kg t w t= t w t=γ

k

 and k k  with .  Then 
we define the forward discrete Gabor transform as 

( ) ( )q 1p q+ =

 ( ) ( ) ( ) ( ) ( ) ( );k k ks f F s f s t s t g t= ⋅ ≡⎡ ⎤⎣ ⎦  (5). 
where F is the (discrete) Fourier transform.  We use the “hat” 
notation for the Fourier transform.  Here notation shows the 
Gabor transform of ( )s t  is the Fourier transform of the Gabor 
slice ( )ks t .  (For simplicity, we use a continuous notation for 
signal, window, and Fourier transform and a discrete index for 
window position.  For fully discrete formulae, the normal 
notation for discrete signals is easily employed.)  The signal is 
recovered by the inverse discrete Gabor transform given by 
 ( ) ( ) ( ) ( )1

k k
k

s t t F s−

∈

⎡ ⎤= ⎣ ⎦∑ γ t⋅ . (6) 

Substitution of equation (5) into (6) shows that the signal is 
recovered exactly due to the property of equation (4) and 

1p q+ = . 
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In this work we take  and  and choose the set 
 to be Gaussian windows such that 

1p = 0q =
{ ( )}kw t
  (7) ( ) 1k

k
w t

∈
≈∑

where 

 ( ) [ ]2t k T
kw t e

T
− − ∆∆

= ττ
π

 (8) 

with T  being the Gaussian (half) width.  This approximate 
partition of unity differs from 1 by an error term, dominated 
by 2exp( [ / ] )T− ∆π τ , that can be made arbitrarily small by 
increasing the ratio /T τ∆ .  For example, the maximum error 
is -150 decibels for / 1.T 5τ∆ =  and is negligible for most 
practical purposes.  
 
Gabor factorization of a nonstationary trace model 
We now present a trace model that includes the source 
signature and the nonstationary effects of dissipation as 
predicted by the constant-Q model though it does not 
explicitly model multiples or stratigraphic filtering.  The effect 
of constant Q can be modeled as 

 ( ) ( ) ( ) [ ]2, if t
Q Qs t f r e π τ d dfα τ τ τ

∞ ∞
−

−∞ −∞

= ∫ ∫  (9) 

where ( )r τ  is the reflectivity sequence and the constant-Q 
transfer function is 
 ( ) ( )/, /f Q iH f Q

Q f e π τ π τα τ − +=  (10) 
where H  denotes the Hilbert transform over f  at constant 
τ .  Equation (9) can be understood as a nonstationary 
convolution in the sense defined by Margrave (1998). 
 
As defined by equation (9), sQ models dissipation for an 
impulsive source.  We apply a more general source signature 
with a stationary convolution and write our final nonstationary 
trace model as 

 ( ) ( ) ( ) ( ) 2ˆ ˆ , if
Qs f w f f r e dπ τα τ τ

∞
−

−∞

= ∫ τ  (11) 

where  and ŵ ŝ  are the Fourier transforms of the source 
signature and the nonstationary seismic trace respectively.  
Equation (11) is a replacement for the familiar stationary 
convolution model. 
 
We have derived an asymptotic result for the continuous 
Gabor transform of ( )s t , whose Fourier transform is given by 
equation (11), as 
  (12) ( ) ( ) ( ) ( )ˆ, ,g Q gV s f w f f V r f≈τ α τ ,τ

where the  sign means that this is the leading term in an 
asymptotic series.  (Space does not permit us to include our 
derivation here but we will provide the details upon request.) 
In words, the continuous Gabor transform of our nonstationary 
trace is approximately equal to the product of the Fourier 
transform of the source signature, the constant Q transfer 
function, and the continuous Gabor transform of the 
reflectivity.  Since, for fixed 

≈

τ , the Gabor transform is just a 
Fourier transform, this is a temporally local convolutional 
model.  It is a reasonable expectation that a similar relation 
holds for the discrete Gabor transform. 
  

Figure 1 shows the magnitude of the Gabor transform of a 
synthetic attenuated signal (the bottom signal of Figure 6).  
The input signal was computed with equation (11) using a 
minimum-phase source signature with a dominant frequency 
of 20 Hz and a Q of 25.  The Gabor analysis window used 

0.1T =  s and 0.01τ∆ =  s.  In Figure 2 is the Gabor magnitude 
spectrum of the random reflectivity series used to generate the 
synthetic signal.  When the reflectivity spectrum of Figure 4 is 
multiplied by the constant-Q attenuation surface, ( ),Q fα τ , 
and by ( )ŵ f  the result is a very close approximation to the 
spectrum shown in Figure 2. 
 
A Gabor deconvolution algorithm 
Our method of deconvolution estimates the Gabor transform 
of the reflectivity from the Gabor transform of a nonstationary 
seismic trace.  From equation (12), we divide the Gabor 
spectrum of the seismic trace by estimates of the source 
waveform and the Q transfer function.  As with stationary 
deconvolution, this is a nonunique spectral factorization 
problem requiring assumptions about the three spectral 
components.  We assume that ( ),g  is a rapidly varying 
function in both variables (Figure 2) while 

V r fτ
( )ŵ f  is assumed 

to be independent of τ  while smoothly varying in f , and 
( ),Q fα τ  is an exponential decay surface in both variables. 

 
The simplest Gabor deconvolution algorithm estimates 

( ) ( )ˆ ,Qw f fα τ  by convolving ( ),g  with a smoother 
such as a 2D boxcar or other compact function.  Often this is a 
good estimate though results are dependent upon the 
dimensions of the smoother.  However, the smoothing 
approach gives a biased estimate of 

V s fτ

( ) ( )ˆ ,Qw f fα τ .  For 
example, if ( ),gV r fτ  is unity so that ( ),g  is already 
equal to 

V s fτ
( ) ( )ˆ ,Qw f fα τ , then the smoother will alter the 

function and we obtain the wrong answer. 
 
Other spectral factorization methods are possible.  Grossman 
et al. (2002) model a measured Gabor spectrum by least 
squares using equation (12) and obtain estimates of Q and 

( )ŵ f .  Iliescu and Margrave (2002) compare 2D boxcar 
smoothing to smoothing along curves of constantfτ = .  If 

( ), fσ τ  is a smooth approximation to ( ),g  that 
estimates 

V s fτ
( ) ( )ˆ ,Qw f fα τ , then its minimum-phase function is 

 ( ) ( )ln ,
,

f
f df

f f

∞

−∞

′
′=

′−∫
σ τ

ϕ τ  (13) 

where we assume that ( ), fσ τ  has been designed to have no 
zeros.  Equation (13) is a Hilbert transform over frequency at 
constant time.  Given ( ), fσ τ  and the phase from equation 
(13), we calculate ( ), fσ τ  and estimate the Gabor spectrum of 
the reflectivity as 

 ( ) ( )
( )

,
,

,
g

g est

V s f
V r f

f
=

τ
τ

σ τ
. (14) 

 
Examples 
Figure 3 shows a smoothed version of Figure 1 that estimates 

( ) ( )ˆ ,Qw f fα τ .  Smoothing in f  was accomplished by a 
Burg spectral estimate (Claerbout, 1976) corresponding to the 
Fourier estimate in Figure 2.  Smoothing in τ  was done by 
convolution with a boxcar of length 0.1 seconds.  Dividing the 
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spectrum of Figure 1 by that of Figure 3 and applying a 
stationary filter to reject frequencies above 125 Hz gives the 
estimate of the Gabor spectrum of the reflectivity shown in 
Figure 4.  Comparison with Figure 2 shows that the estimate is 
quite good.  Figure 5 shows the Gabor spectrum of the 
attenuated signal after AGC and Wiener deconvolution.  The 
Wiener design gate was from 0.35 to 0.65 seconds.  This 
shows the familiar behavior that the Wiener operator over 
whitens data at earlier times. 
 
Figure 6 summarizes results in the time domain.  The Gabor 
deconvolution matches the bandlimited reflectivity very well 
and has a much whiter and more stationary appearance than 
the AGC+Wiener result.  The Fourier amplitude spectra of 
these traces are shown in Figure 7.  There is a good correlation 
between the Gabor result and bandlimited reflectivity spectra 
while the Weiner result is less similar. 
 
Figures 8 and 9 compare Gabor deconvolution with 
conventional Wiener deconvolution on a real seismic shot 
record.  The Wiener design gate was from 1.0 to 1.6 seconds 
and within this zone the results are superficially similar.  
However, a detailed inspection shows phase and amplitude 
differences and a different response to ground roll.  Also 
apparent is that the Wiener result is dramatically inferior to 
Gabor above the design gate. 
 
Conclusions 
We have described the Gabor transform in both continuous 
and discrete forms.  Using a simplified nonstationary trace 
model, we derived a spectral factorization in the Gabor 
domain, the basis for our deconvolution procedure.  Our 
Gabor deconvolution estimates the propagating wavelet 
spectrum by smoothing the magnitude of the Gabor spectrum 
of the seismic trace.  Phase is calculated by a minimum-phase 
assumption.  Reflectivity is estimated by dividing the Gabor 
spectrum of the seismic trace by an estimate of the 
propagating wavelet.  Our examples show that this new 
technique usually gives better results than Wiener 
deconvolution. 
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Figure 1.  The Gabor (magnitude) spectrum of the attenuated 
signal of Figure 6.  Darker shading indicates greater values. 

 
Figure 2.  The Gabor (magnitude) spectrum of the reflectivity 
used to make the attenuated signal of Figure 1. 

 
Figure 3.  The smoothed Gabor (Burg) spectrum 
corresponding to Figure 1. 
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Figure 4.  The result of dividing the Gabor spectrum in Figure 
1 by that in Figure 3.  This is the estimate of the Gabor 
spectrum of the reflectivity. Compare with Figure 2.  A 
stationary highcut filter has been applied to reject frequencies 
above 125 Hz. 
 

 
Figure 5.  The Gabor spectrum of the result of performing 
AGC followed by Wiener deconvolution of the attenuated 
signal of Figure 6.  This is the Gabor spectrum of the trace 
(after AGC+Wiener) shown in Figure 6. 
 

 
Figure 6.  The attenuated signal  is shown (bottom) compared 
with a conventional AGC→Wiener deconvolution (second) 
and a Gabor/Burg deconvolution (third) and finally a 
bandlimited reflectivity (top).  The reflectivity and the Gabor 
deconvolution have been bandlimited to less than 125 Hz. 
 
 

 
Figure 7.  The Fourier spectra (entire trace) of the signals in 
Figure 6. 
 
 

 
Figure 8.  A seismic shot record processed with Gabor 
deconvolution 
 

 
Figure 9.  The same seismic shot record as Figure 8 processed 
with exponential gain and Wiener deconvolution. 
 


