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Overview

> Seeking the sSimpl e codes of complex images

> From VISIOn, neurons, to wavelets

» Multiresolution framework of Mallat and Meyer

> Two key equations for Shape Function & Wavelet
> The fundamental theorem of Multiresolution

> 2-channel orthogonal & biorthogonal filter banks

» Application |. Sparse representation and compression
» Application I1. Variational denoising of Besov images

» Some new trends of wavelets theory.
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Behind complexity is simplicity

Examples.
e Theuniversal path to chaosis period doubling.
* (Biology) ACTG encode the complexity of life.

o (Computer) “0” and “1” (or spin up and down for Quantum
Computers) arethedigital “seeds.”

o (Physics) The complexity of the material world is based on
the limited number of basic particles.

o (Fractals) Simple agebraic rules hidden in complex shapes.
Conclusion:

Hidden in a complex phenomenon, isits simple
evolutionary codes or building blocks.
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The complexity of Image signals

| Mmages:

» Large dynamic range of scales.

» Often no good regularity as functions.

» Rich variations in intensity and color.

» Complex shapes and boundaries of “objects.”

» Noisy or blurred (astronomical or medical image).

» “Thelost dimension” --- range is lost but depth is still
crucial for image interpretation.
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Searching for the hidden code of images (1)

o Fractals: by Iterated Function Systems

(Mandelbrot )
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» Pattern formation: via Differential Equations
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Searching for the hidden code of images (1)

Statistical modeling (Geman's Mumford, Zhu, Yuille...):
— Image prior models (edge, regularity,...).
— Image data models (noise, blurring,...).
— Synthetic/generative models.

e Parametric methods, lattice models, Gibbs fields.

« Non-parametric methods & learning viathe
maximum entropy principle.
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A representation, not an interpretation...

* Benoit Mandelbrot (interview on France-Culture):

“The world around us is very complicated. The tools at
our disposal to describe it are very weak.”

e Yves Meyer (1993):

“Wavelets, whether they are ..., will not help usto
explain scientific facts, but they serve to describe the
reality around us, whether or not it is scientific.”

e Thus, to represent asignal, isto find a good way to
describe it, not to explain the underlying physical
process that generates it.
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General Images

Mostly no rigorous multi-scale self-ssmilarity.
Contain both man-made and natural “objects’

Mostly no simple and universal underlying physical
or biological processes that generate the patterns in
a generic image.

Thus, representation tools have to be universal.

Then, how about Fourier spectral representation?
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Fourier was born too early...

Clam: Harmonic waves are bad vision neurons...

Proof.
— A typical Fourier neuronis f =exp(iax).

AVAVAVAVA

— To“see” asimple bright spot d(X) in the visual field,

all such neurons have to fire since

d,f ye 1.
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Efficiency of representation

e Thus harmonic wavesare not so efficient in coding
visual information.

« David Field (Cornéll U, Vision psychologist):

“To discriminate between objects, an effective
transform (representation) encodes each image
using the smallest possible number of neurons,
chosen from alarge pool.”
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Asking our own “headtop” ...

» Psychologists show that visual neurons are spatially
organized, and each behaves like a small sensor
(receptor) that can respond strongly to spatial

changes such as edge contours of objects (Fields, 1990).
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he discovery by Nobel Laureates

Torsten Wiesel and David Hubel
(Nobel Prize in Physiology or Medicine, 1981)
for their major discoveries on the structure and functions of the
visual system and pathways of vision neurons.

Major discovery: simple cells and complex cells
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The Marr’ s edge neuron mode

» Detection of edge contoursisacritical ability of
human vision (Marr, 1982).

e Marr and Hildreth (1980) proposed a model for
human detection of edges at all scales. ThisisMarr’s
Theory of Zero-Crossings.
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Haar’ s average-difference coding

 Marr'sedge detector is to use second derivative to locate
the maxima of the first derivative (which the edge contours
pass through).

e Haar Basis(1909) encodes (modern language :-) the
edges into image representation viathe first derivative

operator (i.e. moving difference):

Xon t Xon+1 d — Xon = Kon+1
2 n 2

(X Ko ) B
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A good representation should respect edges

e Edgeissoimportant afeature in image and vision
analysis.

e A good image representation (or basis) should be
capable of providing the edge information easily.

 Edgeisalocal feature. Local operatorslike
differentiation must be incorporated into the
representation, as in the coding by the Haar basis.

« Waveletsimprove Haar, while respecting the above
principle of edge representation.
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What to expect from agood representation?

 Mathematically rigorous(i.e. aclean and stable
program exists for analysis/synthesis FT & IFT...).

e Having nicedigital formulation and computationally
efficient (FFT, FWT...).

o Capturing the characteristics of the input signals, and
thus many existing processing operators (e.g. image
Indexing, image searching ...) are directly permitted
on such representation.
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Understanding images mathematically

e Let & denotethe collection of “al” images. What is the
mathematical structureof & ? Supposethat f1 S is
captured by acamera. Then@ should be invariant under
— Euclidean motion of the camera:

f(X)® f(Qx+a), QI O(2),al R

— Flashing: n
Wt ® nf(,  mi R

or, more generally, amorphological transform ---
f(x)® h(f(x)), h:R® R,h'>0.
f(x)® f(Ix), I'TR

Let usfodihs—gb zooml ng
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Zooming in 2-D
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What is zooming?
Zooming (aiming) center: a.
Zooming scale: h.

Zoom into the h-neighborhood at a in agiven image |
I, (x)=1(a+hxx), xI W,thevisua fied;

Ia,h(y'—f): 1(y) >§LW(VT"") the aperture.

Zooming is the most fundamental and characteristic
operator for image analysis and visual communication. |t
reflects the multi-scale nature of images and vision.
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The zooming neuron representation
The zooming “neuron”: Y (X).

aiming (a) and zooming-in-or-out (h):

Y an(X) = =y (552).

Generating response (or neuron firing):
Lan = (1Y an) = OV (XY 40 (X)X

The zooming space: (a,h)T R~ R".
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A “good” neuron must be differentiating

e A good neuron should fire strongly to abrupt changes,
and weakly to smooth domains (for purposes like
efficient memory, object recognition, and so on).

 That means, for an uninteresting constant image |=c,
theresponses | , , areall zeros:

lan = <| Y a,h>0 0.
Thisisthe“differentiating” property of the neuron,
just like “d/dx”:
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The continuous wavel et representation

Definition: (Waveletsin broad sense)

A differentiating zooming neuron y (X) issaidtobea
(continuous) wavelet. Representing a given image I(X)
by all the neuronresponses 1, , = (Iy ,,,) IS the
corresponding wavel et representation.

Questions:

— Doesthere exist a“best” wavelet neurony (X) ?
— Does awavelet representation allow perfect reconstruction?
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Synthesizing a wavel et representation

« Goadl: to recover perfectly animage signal | fromits
wavelet representation | (a, h).

o (Continuous) Wavelet synthesis;
(ah) = (y )= (T )= <Fyﬁ<hx), e>

whichisintheformof IFT. Thus J(x,h) = IUyU (hx)
can be perfectly recovered viathea-FT of | (a, h).

Then iJ can be perfectly recovered fromJ via
U . U ¥ U ,
I(x) =@, d.hy (hx) £, Q b (=1

Jackie Shen, Dec’' 03, Sponsored by IMS, Nat'| Univ. Singapore 23



The admissibility condition & differentiation

 The admissibility condition of a continuous wavelet:

¥

SV (P 2<x

« A differentiating zooming neuron satisfies the AC since:

yU(O) = Qy (x)dx =0, and yl‘J (h) = ch + o(h).

 Examples.
— The Marr wavelet (Mexican-hat): second derivative of Gaussian.

— TheShannonwavelet: Y (X) =29nC(2X) - Inc(X).
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The discrete set of zooming neurons

Make alog-linear discretization to the scale parameter h:

J® J=-log,h =0, £1, £2, -

Make a scal e-adaptive discretization of the zooming

centers.
at scale hy =2"':k® a, =kh, =k/2/,

k=0,£1,+2,...

The discrete set of zooming neurons:

Y k() = 5y (F) = 2%y (27 x- k).
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The discrete wavel et representation

e Thewave et coefficients:
diy =(1y )= 2171 (xy (2" x- K)dx.

d, =1, ,, Interms of the continuous WT.

e Questions:

— Doesthe set of all wavelet coefficients still encode the
complete information of each input image | ? Or equivaently,

— Istheset of wavelets {y ;, (X): j, kT Z} abasis?

We don't know. But let's check out some examples...
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Example 1. Haar wavelet

 TheHaar “aperture’ functionis
Y (X)) = Logrer2(X) = Ly peer (X).

1

e Haar'stheorem (1905):
All Haar wavelets y ™, together with the constant function 1,
consist into an orthonormal basis for the Hilbert space of all

square integrable functionson [0, 1].
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Haar wavelets (cont’ d)

 Haar's mother wavelet:

y e (X) = 1ggyc1s2(X) = 1y)npiar (X).

1

* Why orthonormal basis?

— Orthonormality is easy to see.
— Completeness is due to the fact that:

All dyadically piecewise constant functions are densein L2(0,1).
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Haar wavelets (cont’ d)

1 constant + 3 wavelets are enough.

* Three Haar wavelets and the mean (constant) encode all
the information of the piecewise constant approximation
(i.e., 4 darker line segments).
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Example 2: The Shannon wavelets

e The Shannon’s “aperture” function is:

Shannon

y (X) =2d9nc (2x) - 9nc (X).

Z2ainc{Z2x)-=inac]><)
e e W et e e e

e Theorem

Shannon

Iy .« (¥):],kl z} isanorthonormal basisof L:(R).
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Shannon wavelets (cont’ d)

 How to visualize the orthonormal basis ?
Answer: go to the Fourier domain !

y T(x) = 2sinc (2x) - sinc (X).
= Fourier of 2sinc(2x)
— Fourier of sinc(x)

-2pi -pi pi 2pi

« According to Shannon:
— All signals bandlimited to (- p, p) can be represented by sinc(x-n)...
— those bandlimited to (- 2p, p ) U (p, 2p), by Y (X- n).
— those bandlimited to (- 4p, 2p ) U (2p, 4p), by y , , = /2y (2x- n).
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Shannon wavelets (cont’ d)

« According to Shannon:
— All signalsbandlimited to (- P, P) can be represented by sinc(x-n)...
— those bandlimited to (-2p, -p) U (p, 2p), by Y (X- n).
— those bandlimited to (-4p,-2p)U(2p, 4p ), by y ., =2y (2x- n).

— representadbyy , =2y (2x- n)'s.
represented byy (x - n)'s.

— representadbyy | =1/4J2y (x/2- n)'s.

5P 4
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Partition of the time-frequency plane

e Heisenberg' s uncertainty principle requiresthat each TF
(time-frequency) atom must have: Dt>Dx 3 2p.

e Thus, for an optimal localization, the “lifetime’ of an
atom must influence its scale or frequency content.

sinc(4x-k)

frequency
sinc(2x-m)

—

time

General way of construction I
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Multiresolution analysis

Mallat and Meyer (1936):

An (orthogonal) multiresolution of L2(R) isachan of
closed subspaces indexed by all integers:
SRV IRV ERVAN ERVAN R VARRS
subject to the following three conditions:
— (completeness)
imV, =L,(R),  limV, ={0}.

— lesimilari - - n
(scalesmilanity) ¢ i v 0 f(201 V...

— (trandlation seed) Vo has an orthonormal basis consisting of al
Integral translates of a single function f (X) :{f (x- n): nl Z}.
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Equations for designing MRA

* Therefinement (dilation) equation for the “seed” function:

f (X)=2Q hf (2x- n), for astitable set of h,'s

This seed function is called: scaling function, shape fcn...

e Whereisthe wavelet?

Let W, denote the orthogonal complement of V, inV,.
Then W, is also orthogonally spanned by the integer
translates of asingle trandation seedy (X), the wavelet!

vy (X) = Zé g, (2x- n), forasuitable set of g,'s
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Wavel ets representation

Theorem:

y i =2"% (2'x- k): j,kI Z} isanorthonormal basisfor L,.

Wavelets representation of a signal:

\ Ij-lT Vj-l \ \ IOT Vo.
dii T Wi, djp d, 1 W,

l,=d, ,+d, ,+- +d,+ |,.

I~1TV,
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An example of wavelet decomposition

One level wavelet decomposition of a 1-D signal

1.5

The signal f

1 1 1 1 i 1 1
a 50 100 150 200 250 300 350 4040

The coarse scale

velot coafficients d's

” Y

1 1 1 1 1 i 1 1 1
a 20 40 G0 B0 100 120 140 160 180 200
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2-channel filter bank: Analysis bank

* H' isthe lowpass filter and G’ is the highpass filter.
e | 2 isthe downsampling operator: (1346 5)—*(145).

lowpass channel
X - |
highpass channel
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2-channdl filter bank: Synthesis bank

* H isthe lowpass filter and G isthe highpass filter.
e 12 isthe upsampling operator: (14 5)—> (104 05).

lowpass channel

S @ H

highpass channel
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A biorthogonal filter bank

o
S @ H

Biorthogonal (or perfect) filter bank: if y=xfor all inputs x .
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An orthogonal filter bank

X

S (12 )——{ H
d (12) G

Orthogonal filter bank: if it is biorthogonal, and both
analysisfiltersH and G’ are the time reversals of the
synthesisfiltersH & G: H=(1, 2, 3)—H’'=(3, 2, 1).

"y
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The fundamental theorem of MRA

* Anorthogonal Mallat-Meyer MRA corresponds to an
orthogonal filter bank with the synthesis filters:

H =(h,:nl Z), G=(g,:nl Z).

where, the h'sand g’ s are the 2-scale connection
coefficientsin the dialation and wavelet equations:

f(x)=2Q hf(2x-n), y(x)=23 g, (2x- n).

And, the multiresolution wavelet decomposition of f
corresponds to the iteration of the analysis bank with the

f -coefficientsof f astheinput digital data.
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The fundamental theorem (cont’ d)

IjTVj \ Ij-lTVj-l \ \ IOII\Vo.
dil Wi, dj.p d, T W,.

l,=d,  +d, ,+- +d,+ 1|,.

Supposej=2,and |, = Q , C,(K)f ,, (X).

=h >
H—@— oo
C— G’ @ > o

- 6] @
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Besov Images and multiscale control

e At each scaleh, the p-modulus of continuity is

v ,(u,h) = supHu(x+a) u(x)H

|alEh

» Cross-scale control viathe homogeneous Besov norm

N ’ \\\q "
M llss ooy = €0 ( o h))\\%g

« Themeaningof a, p, q: .
— a : smoothness index @ <1, otherwise use high order FD)
— p:intra-scale control index
— (:inter-scale control index
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Wavelets as building blocks of Besov Images

For an image U with wavelets representation

u = é d, Y i« +é. Cou ox P é- js-l,kdi,ky j.k

30,k k

inhomogeneous Besov norm can be simply characterized via wavel ets coeff.

- - q(a+1/2-1/p) q |/d ol ~
Y SR C T M A A B Y

u o

[ in 2-D, replace (1/2-1/p) by 2(1/2-1/p) ]

When p=( (resonance), intra-scale correlation is decoupl ed

p o - p(a+l/2-1 p)‘
B?,(Lp) @. js_lkhj dj,k

‘ Y

u
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Linear compression: scale truncation

A linear compressed reconstruction T has to take the form of
o
T(u=a jg_lkT(d Y oix) Yal éffs\/ﬂ@® 13_1,ktj,k(dj,k)y i K

wheret isaunivariate linear function [ t..(d) =d t..(1) ]

Compression viascaletruncationis: t..(d) =0, if | >J; d, otherwise:
T(u)P u, =E,u=projection of uonV,

Supposethetargetlmageu belongsto B2 (L?)

= |, FEh* A

L2 J>J k
"""" 2
B3 (L?)’

Ju- u,

-2 2
hi™ 1d;, |

j>J .,k

h, =27,

Evaluation: Not so idedl if the image features concentrate on scales finer than J.

Keywords. Be adaptive, or data driven !!!
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Nonlinear compression of imagesin B; (L") &+3 =+

Step |. Order the wavelet coefficients by their significance (magnitude)
d,ii®-1kp={a,a,...} laFla,P ...

Step 11. Only keep the N largest terms, dump the rest, and reconstruct.

u¥ ()= & L a,9.(x), g, =y . if a,=d,.

Evaluation of reconstruction accuracy for imagesin By (L°) §+3=+
N||N| £a. |a | £a. 31k|d Hu Ba(Lp)
N 2 _ O 2 2. p (o] P
Ju- v \L—an>N|an|£IN A lan
N B3 (LP) £EN- ‘ (LP)"

Pro and Con: procedureisdatadriven, but Nisstill not. Remedy: Learning Theory
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Signal and image denoising

Noising process U (clean image) = Uo (noisy image)

U, =UA N335 u, =u+n

Why noise: (@) ubiquitous (thermal fluctuation/noise)
(b) 1/f noise in many areas (fractal, dynamic systems, etc)
(c) very useful (instead of being annoying) in EE/system/signal

Denoising process. Uo > U. Challenge and Approach:

> 1ll-posed inverse problem

» prior knowledge on Uiscrucia (Bayesian Methodology)

» Deterministic priors. Sobolev, BV, Besov...
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Denoising of Besov images

(Chambolle, DeVore, Lee, Lucier, 1998)

Basic assumption: the target image U belongsto B & (L ")

Variational denoising scheme isto solve the optimization problem:

Tikhonov Language:

Bayesian Language:

. 2
min - uo|ls, oy ¥l U]l
» s
[Regularization] [Least Square Fitting]
[Prior Knowledge] | | [Gavssian Noise/DataModel]
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The origin of soft thresholding

Consider for example, the denoising of Besov imagesin B (L*)
The previous variational formulation allows clean wavelet representation

. 9 0 > O _ n~j@-1/2)
mmfajg_l’k(dj,k d;,) +aj3_1,khj|dj,k|, h, =2

dix's

least square fitting Besov prior/regularity

p=0=1 - allows a perfect decoupling: reduction to singleton optimization

N

d=agmin,Ll(d°-d)2+h|d] dI R

L eave you a simple homework assignment d 5

+

X[+ x

d =5, (d°) =sign (d°)(1d°|-s)
S

h
-

X

+

N
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More about soft thresholding

For Besov images, soft thresholding or hard truncation
provides near optimal solutions to the variational cost function.

The above variational approach to thresholding and truncation
belongs to Ron DeVore’s school (Lucier, Jawerth, Lee, Chambolle, etc).

Soft thresholding technique was initially discovered and
proposed by Donoho and Johnstone (1994, 1995), In the context
of statistical estimation theory via wavelets (via oracles,
uniform shrinkage, and near optimal minimax estimation, etc.).

The above variational approach is convenient for this tutorial,
and is directly connected to the two tutorial talks to come by
Professor Tony Chan (in terms of framework and spirit).
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More applications

FBI fingerprints.
JPEG2000.

Image indexing and image search engines (for databank).

|mage modeling (such as MRF on the wavelets domain).

|mage restorations.

Texture analysis and synthesis.

Direct processing tools on the wavelets domain.
Algorithm speeding up based on multi-resolution rep..
Time series analysis.

A lot of others...
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New trends of wavelets

« Random Wavelets Expansion (RWE) by Mumford-
Gidas[2001], to model the scale-invariance of general

Images.
e (Geometric Wavelets:
— D. Donoho’ s school: ridgelets, wedgel ets, beamlets, curvelets.
— Mallat and Pennec [2000]: bandlets.

— T.Chan & H.-M. Zhou [2000], A. Cohen [2002]: integrate
computational PDE techniques such as the ENO scheme into
wavelet transforms, to better capture shocks (discontinuities).
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That isall, folks...
Thank'you for your patience!




