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Overview

Ø Seeking the simplesimple codes of complex images

Ø From vision, neurons, vision, neurons, to wavelets

ØØMultiresolutionMultiresolution framework of Mallat and Meyer

Ø Two key equations for Shape Function & WaveletShape Function & Wavelet
Ø The fundamental theorem of MultiresolutionMultiresolution
Ø 2-channel orthogonal & biorthogonal filter banksfilter banks
ØApplication I. Sparse representation and compression

ØApplication II. Variational denoising of Besov images

Ø Some new trends of wavelets theory.
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Behind complexity is simplicity

Examples:
• The universal path to chaos is period doubling. 
• (Biology) ACTG encode the complexity of life.
• (Computer) “0” and “1” (or spin up and down for Quantum 

Computers)  are the digital “seeds.”
• (Physics) The complexity of the material world is based on 

the limited number of basic particles. 
• (Fractals) Simple algebraic rules hidden in complex shapes.
Conclusion:

Hidden in a complex phenomenon, is its simple 
evolutionary codes or building blocks.
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The complexity of image signals

Images:

Ø Large dynamic range of scales.
Ø Often no good regularity as functions.
Ø Rich variations in intensity and color.
Ø Complex shapes and boundaries of “objects.”
Ø Noisy or blurred (astronomical or medical image).
Ø “The lost dimension” --- range is lost but depth is still 

crucial for image interpretation. 
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( Turing )( Turing )

• Fractals: by Iterated Function Systems.

• Pattern formation: via Differential Equations.

Searching for the hidden code of images (I)

( ( Mandelbrot Mandelbrot ))
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Searching for the hidden code of images (II)

Statistical modeling (Statistical modeling (Geman’sGeman’s, , MumfordMumford, Zhu, , Zhu, YuilleYuille…)…):

– Image prior models (edge, regularity,...).
– Image data models (noise, blurring,...).
– Synthetic/generative models.

• Parametric methods, lattice models, Gibbs fields.

• Non-parametric methods & learning via the 
maximum entropy principle.
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A representation, not an interpretation...

• Benoit Mandelbrot (interview on France-Culture):        
“The world around us is very complicated. The tools at 
our disposal to describe it are very weak.”

• Yves Meyer (1993):

“Wavelets, whether they are …, will not help us to 
explain scientific facts, but they serve to describe the 
reality around us, whether or not it is scientific.”

• Thus, to represent a signal, is to find a good way to 
describe it, not to explain the underlying physical 
process that generates it.
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General images

• Mostly no rigorous multi-scale self-similarity.

• Contain both man-made and natural “objects”

• Mostly no simple and universal underlying physical 
or biological processes that generate the patterns in 
a generic image.  

• Thus, representation tools have to be universal.

• Then, how about Fourier spectral representation?
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Fourier was born too early…

Claim: Harmonic waves are bad vision neurons…
Proof.

– A typical Fourier neuron is

– To “see”  a simple bright spot in the visual field,

all such neurons have to fire since

).exp(iax=φ

)(xδ

.1, ≡φδ
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Efficiency of  representation

• Thus harmonic waves are not so efficient in coding 
visual information.

• David Field (Cornell U, Vision psychologist):

“To discriminate between objects, an effective 
transform (representation) encodes each image 
using the smallest possible number of neurons, 
chosen from a large pool.”
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Asking our own “headtop”…

• Psychologists show that visual  neurons are spatially
organized, and each behaves like a small sensor 
(receptor) that can respond strongly to spatial 
changes such as edge contours of objects (Fields, 1990).
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Ø Torsten Wiesel and David Hubel 
(Nobel Prize in Physiology or Medicine, 1981)
for their major discoveries on the structure and functions of the 
visual system and pathways of vision neurons.

Ø Major discovery: simple cells and complex cells 

The discovery by Nobel Laureates
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The Marr’s edge neuron model
• Detection of edge contours is a critical ability of 

human vision (Marr, 1982).

• Marr and Hildreth (1980) proposed a model for 
human detection of edges at all scales. This is Marr’s 
Theory of Zero-Crossings:
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Haar’s average-difference coding

• Marr’s edge detector is  to use second derivative to locate
the maxima of the first derivative (which the edge contours 
pass through).

• Haar Basis (1909)  encodes (modern language :-) the 
edges into image representation via the first derivative 
operator (i.e. moving difference):
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A good representation should respect edges 

• Edge is so important a feature in image and vision 
analysis.

• A good image representation (or basis) should be 
capable of providing the edge information easily.

• Edge is a local feature. Local operators like 
differentiation must be incorporated into the 
representation, as in the coding by the Haar basis.

• Wavelets improve Haar, while respecting the above 
principle of edge representation.   
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What to expect from  a good representation? 

• Mathematically rigorous (i.e. a clean and stable 
program exists for analysis/synthesis. FT & IFT…).

• Having  nice digital formulation and computationally 
efficient (FFT, FWT… ).

• Capturing the characteristics of the input signals, and 
thus many existing processing operators (e.g. image 
indexing, image searching …) are directly permitted 
on such representation.
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Understanding images mathematically

• Let      denote the collection of “all” images. What is the 
mathematical structure of      ? Suppose that           is      
captured by a camera. Then     should be invariant under
– Euclidean motion of the camera:  

– Flashing:

or, more generally, a morphological transform ---

– Zooming:

∑
∑ Σ∈f

.),2(),()( 2RaOQaQxfxf ∈∈+→

,),()( +∈→ Rxfxf µµ

.0',:)),(()( >→→ hRRhxfhxf
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Let us focus on zooming Let us focus on zooming 
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Zooming in 2-D 
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What is zooming?

• Zooming (aiming) center:  a.

• Zooming scale:  h.

• Zoom into the h-neighborhood at a in a given image I:

• Zooming is the most fundamental and characteristic 
operator for image analysis and visual communication.  It 
reflects the multi-scale nature of images and vision.  
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The zooming neuron representation

• The zooming “neuron”:

• aiming (a) and zooming-in-or-out (h):

• Generating response (or neuron firing):

• The zooming space: 
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A “good” neuron must be differentiating

• A good neuron should fire strongly to abrupt changes, 
and weakly to smooth domains (for purposes like 
efficient memory, object recognition, and so on).

• That means, for an uninteresting constant image I=c, 
the responses         are all zeros: 

This is the “differentiating” property of the neuron, 
just like “d/dx”: 

.0)(∫ =
R
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The continuous wavelet representation

DefinitionDefinition: (Wavelets in broad sense) 
A differentiating zooming neuron              is said to be a 
(continuous) wavelet. Representing a given image I(x) 
by all the neuron responses                          is  the 
corresponding wavelet representation.

Questions:Questions:
– Does there exist a “best” wavelet neuron             ?
– Does a wavelet representation allow perfect reconstruction?

)( xψ

haha II ,, ,ψ=

)( xψ
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Synthesizing a  wavelet representation

•• Goal:Goal: to recover perfectly an image signal  I from its 
wavelet representation

• (Continuous) Wavelet synthesis:

which is in the form of IFT.  Thus                              
can be perfectly recovered via the a-FT of 

Then      can be perfectly recovered from J via
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The admissibility condition & differentiation 

• The admissibility condition of a continuous wavelet:

• A differentiating zooming neuron satisfies the AC since:

• Examples:
– The Marr wavelet (Mexican-hat): second derivative of Gaussian.

– The Shannon wavelet: 
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The discrete set of zooming neurons

• Make a log-linear discretization to the scale parameter h:

• Make a scale-adaptive discretization of the zooming 
centers:

• The discrete set of zooming neurons:
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The discrete wavelet representation

• The wavelet coefficients:

•• Questions:Questions:
– Does the set of all wavelet coefficients still encode the 

complete information of each input image I ? Or equivalently,

– Is the set of wavelets a basis?
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Example 1: Haar wavelet

• The Haar “aperture” function is 

• Haar’s theorem (1905):
All Haar wavelets , together with the constant function 1,    
consist into an orthonormal basis for the Hilbert space of all
square integrable functions on [0, 1]. 

).(1)(1)( 12/12/10
harr xxx xx <≤<≤ −=ψ

1

-1

11/2
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, kjψ
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Haar wavelets (cont’d)

• Haar’s mother wavelet: 

• Why orthonormal basis?
– Orthonormality is easy to see.
– Completeness is due to the fact that:

All All dyadicallydyadically piecewise constant functions are dense in piecewise constant functions are dense in LL22(0,1).(0,1).

).(1)(1)( 12/12/10
Harr xxx xx <≤<≤ −=ψ

1

-1
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Haar wavelets (cont’d)

• Three Haar wavelets and the mean (constant) encode all 
the information of the piecewise constant approximation 
(i.e., 4 darker line segments).

I(x)

1 constant + 3 wavelets are enough.
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Example 2: The Shannon wavelets

• The Shannon’s “aperture” function is:

•• TheoremTheorem:

is an orthonormal basis of  L2(R).},:)({
Shannon

Zkjxj,k ∈ψ

).( sinc )2( sinc 2)(
Shannon

xxx −=ψ
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Shannon wavelets (cont’d)
• How to visualize the orthonormal basis ?

AnswerAnswer: go to the Fourier domain !

• According to Shannon:
– All signals bandlimited to (−π, π) can be represented by sinc(x-n)…
– those bandlimited to (−2π, π ) U (π, 2π),   by  
– those bandlimited to (−4π, 2π ) U (2π, 4π), by
– ...

).( sinc )2( sinc 2)(
shannon

xxx −=ψ

pi-pi

Fourier of 2sinc(2x)
Fourier of sinc(x)

-2pi 2pi

).( nx −ψ
).2(2,1 nxn −= ψψ
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Shannon wavelets (cont’d)

• According to Shannon:
– All signals bandlimited to (- ,   ) can be represented by sinc(x-n)…
– those bandlimited to (-2   , - ) U (   , 2   ),   by  
– those bandlimited to (-4   ,-2   )U(2   ,  4   ), by
– ...

. . . . . .

π π
π π

π π ππ
ππ ).( nx −ψ

).2(2,1 nxn −= ψψ

.s' )(by  drepresente nx −ψ
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π π4π2
2
π

ξ
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Partition of the time-frequency plane

• Heisenberg’s uncertainty principle requires that each TF
(time-frequency) atom must have: 

• Thus, for an optimal localization, the “life time” of an 
atom must influence its scale or frequency content.

frequency

time

sinc(x-n)

 sinc(2x-m)

sinc(4x-k)

.2π≥∆⋅∆ xt

General way of construction General way of construction 
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Multiresolution analysis

Mallat and Meyer (1986):

An (orthogonal) multiresolution of  L2(R) is a chain of 
closed subspaces indexed by all integers:

subject to the following three conditions:
– (completeness)

– (scale similarity)

– (translation seed) V0 has an orthonormal basis consisting of all 
integral translates of a single function 

LL 21012 VVVVV ⊂⊂⊂⊂ −−

}.0{lim),(lim 2 ==
−∞→∞→ nnnn

VRLV

.)2()( 1+∈⇔∈ nn VxfVxf

:)(xφ }.:)({ Znnx ∈−φ
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Equations for designing MRA

• The refinement (dilation) equation for the “seed” function: 

This seed function is called: scaling function, shape fcn…

• Where is the wavelet?
Let       denote the orthogonal complement of      in          
Then      is also orthogonally spanned by the integer 
translates of a single translation seed      the wavelet!

s.' ofset  suitable afor   ),2(2)( nn n hnxhx −= ∑ φφ

0W .1V0V
0W

),(xψ

s.' ofset  suitable afor   ),2(2)( nn n gnxgx −= ∑ φψ
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Wavelets representation

Theorem:Theorem:

is an orthonormal basis for

Wavelets representation of a signal:Wavelets representation of a signal:

},:)2(2{ 2/
, Zkjkxjj
kj ∈−= ψψ .2L

jj VII ∈~
+

11 −− ∈ jj VI
+

11 −− ∈ jj Wd

+

L2−jd .00 Wd ∈

.00 VI ∈

.0021 IdddI jjj ++++= −− L
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An example of wavelet decomposition

One level wavelet decomposition of a 1-D signal
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2-channel filter bank: Analysis bank

G’

H’ 2

2

x
s

d

lowpass channel

highpass channel

• H’ is the lowpass filter  and G’ is the highpass filter.
• 2 is the downsampling operator: (1 3 4 6 5)      (1 4 5).
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2-channel filter bank: Synthesis bank

• H is the lowpass filter  and G is the highpass filter.
• 2 is the upsampling operator: (1 4 5)        (1 0 4 0 5).                  

G

H2

2

s

d

lowpass channel

highpass channel

y
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A biorthogonal  biorthogonal  filter bank

G’

H’ 2

2

x
s

d

G

H2

2

s

d
y

Biorthogonal (or perfect) filter bank: if  y=x for all inputs x .
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An  orthogonalorthogonal filter bank

G’

H’ 2

2

x
s

d

Orthogonal filter bank:  if it is biorthogonal, and both  
analysis filters H’ and G’ are the time reversals of the 
synthesis filters H & G:  H=(1, 2, 3)       H’=(3, 2, 1). 

G

H2

2

s
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y

=H
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The fundamental theorem of MRA

• An orthogonalorthogonal Mallat-Meyer MRA corresponds to an 
orthogonalorthogonal filter bank with the synthesis filters:

where, the h’s and g’s are the 2-scale connection 
coefficients in the dialation and wavelet equations:

And, the multiresolution wavelet decomposition of   f  
corresponds to the iteration of the analysis bank with the 
φ-coefficients of   f  as the input digital data.

).:(),:( ZngGZnhH nn ∈=∈=

).2(2)(),2(2)( nxgxnxhx
n nn n −=−= ∑∑ φψφφ
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The fundamental theorem (cont’d)

jj VI ∈
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Besov images and multiscale control

• At each scale h, the p-modulus of continuity is

• Cross-scale control via the homogeneous Besov norm

• The meaning of a, p, q:
– : smoothness index ( <1, otherwise use high order FD)
– p : intra-scale control index
– q : inter-scale control index
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Wavelets as building blocks of Besov Images

∑∑ ∑ −≥
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For an image u with wavelets representation 

inhomogeneous Besov norm can be simply characterized via wavelets coeff. 

[ in 2[ in 2--D, replace (1/2D, replace (1/2--1/p) by 1/p) by 22(1/2(1/2--1/p) ]1/p) ]

When p=q (resonance), intra-scale correlation is decoupled
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Linear compression: scale truncation
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A linear compressed reconstruction T has to take the form of

∑∑ −≥−≥
 →=

kj kjkjkjwisecoeffkj kjkj dtdTuT
,1 ,,,.,1 ,, )()()( ψψ

where where tt is a is a univariateunivariate linear function [ linear function [ t..(d) =d t..(1)t..(d) =d t..(1) ]]

Compression via scale truncation is: t..(d ) = 0, if j >J;  d, otherwise :  

Suppose the target image u belongs to )( 2
2 LB α

Evaluation: Not so ideal if the image features concentrate on scales finer than J. 

Keywords: Be adaptive, or data driven !!!
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Nonlinear compression of images in
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Step I. Order the wavelet coefficients by their significance (magnitude) 

Step II. Only keep the N largest terms, dump the rest, and reconstruct.

Evaluation of reconstruction accuracy for images in pd
ap

p LB 1
2
1   )( =+α

Pro and Con:  procedure is data driven,  but N is still not.   Remedy: Learning Theory 

(in 2-D, d=2; then
– α instead of -2α)
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Signal and image denoising

nuunuu additive += →⊗= 00  

Noising process u (clean image) à u0 (noisy image)

Denoising process:  u0à u .   Challenge and Approach:

Ø ill-posed inverse problem

Ø prior knowledge on  u is crucial (Bayesian Methodology)

Ø Deterministic priors: Sobolev,  BV, Besov…

Why noise:  (a) ubiquitous (thermal fluctuation/noise)
(b) 1/f noise in many areas (fractal, dynamic systems, etc)
(c) very useful (instead of being annoying) in EE/system/signal
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Denoising of Besov images

2
02)(0 2  min

L

q

LB
uuu p

q
−+ λ

α

)( p
q LB αBasic assumption:  the target image u belongs to 

(Chambolle, DeVore , Lee, Lucier, 1998)

Variational denoising scheme is to solve the optimization problem: 

Tikhonov Language: 

Bayesian Language:

[Regularization] [Least Square Fitting]

[Prior Knowledge] [Gaussian Noise/Data Model]
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Consider for example, the denoising of Besov images in

The previous variational formulation allows clean wavelet representation 

p=q=1à allows a perfect decoupling: reduction to singleton optimization

The origin of soft thresholding
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Leave you a simple homework assignment

least square fitting Besov prior/regularity
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More about soft thresholding

Ø For Besov images, soft thresholding or hard truncation 
provides near optimal solutions to the variational cost function.

Ø The above variational approach to thresholding and truncation 
belongs to Ron DeVore’s school (Lucier, Jawerth, Lee, Chambolle, etc). 

Ø Soft thresholding technique was initially discovered and 
proposed by Donoho and Johnstone (1994, 1995), in the context 
of statistical estimation theory via wavelets (via oracles, 
uniform shrinkage, and near optimal minimax estimation, etc.).

Ø The above variational approach is convenient for this tutorial, 
and  is directly connected to the two tutorial talks to come by 
Professor Tony Chan (in terms of framework and spirit). 
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More applications

• FBI fingerprints.
• JPEG2000.
• Image indexing and image search engines (for databank).
• Image modeling (such as MRF on the wavelets domain).
• Image restorations.
• Texture analysis and synthesis.
• Direct processing tools on the wavelets domain.
• Algorithm speeding up based on multi-resolution rep.. 
• Time series analysis.
• A lot of others ...
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New trends of wavelets

• Random Wavelets Expansion (RWE) by Mumford-
Gidas [2001], to model the scale-invariance of general 
images.

• Geometric Wavelets:

– D. Donoho’s school: ridgelets, wedgelets, beamlets, curvelets.

– Mallat and Pennec [2000]:  bandlets.

– T. Chan & H.-M. Zhou [2000], A. Cohen [2002]: integrate 
computational PDE techniques such as the ENO scheme into 
wavelet transforms, to better capture shocks (discontinuities). 



That is all, folks…
Thank you for your patience!

Jackie


