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We shall present the construction and analysis of a universal estimator for
the mathematical problem of supervised learning. In this problem, we observe
the data z = (z1, . . . , zm) ⊂ X × Y of m independent random observations
zi = (xi, yi), i = 1, . . . ,m, identically distributed according to a probability ρ on
a product space X × Y . We are interested in estimating the regression function
fρ(x) defined as the conditional expectation of the random variable y at x:

fρ(x) :=

∫
Y

ydρ(y|x)

with ρ(y|x) the conditional probability measure with respect to x. The estimator
fz is assessed by the measure of the error ‖fρ − fz‖ in the L2(X, ρX) metric with
ρX the marginal probability which is unknown. This type of problem is refered
to as distribution-free, see [?] for a general introduction.

Universal means that the estimator does not depend on any a priori assump-
tions about the regression function to be estimated. Our universal estimator,
introduced in [?], consists of a least-square fitting procedure using piecewise con-
stant functions on a partition which depends adaptively on the data. The parti-
tion is generated by a splitting procedure which somehow differs from those used
in CART algorithms [?] in the sense that it is based on thresholding empirical
quantities which play the role of wavelet coefficients.

It is proven that this estimator performs at the optimal convergence rate for
a wide class of priors on the regression function. Namely if the regression func-
tion is in a smoothness space of order not exceeding one (a limitation resulting
because the estimator uses piecewise constants) then the estimator converges to
the regression function (in the least squares sense) with an optimal rate of con-
vergence in terms of the number of samples. The estimator is also numerically
feasible and can be implemented on-line.
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