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Association rules are ”if-then rules” with two measures which quantify
the support and confidence of the rule for a given data set. Having their
origin in market basked analysis, association rules are now one of the
most popular tools in data mining. This popularity is to a large part due
to the availability of efficient algorithms following from the development
of the Apriori algorithm.

In these lectures we will introduce basic concepts of association rule
discovery including support, confidence, interestingness, the apriori prop-
erty, and hierarchical and quantitative association rules. The core of the
lectures consists of a review of the most important algorithms for as-
sociation rule discovery. Some familiarity with concepts like predicates,
probability, expectation and random variables is assumed.

1. Introduction

Data mining work has a long tradition where data mining refers to computa-
tional, often exploratory, approaches in data analysis. Early methods which
are now considered core topics in data mining include methods for cluster-
ing (like the k-means algorithm), classification and regression trees, clas-
sification rules and artificial neural nets. Regular data mining conferences
started to apear in the late 1980s. However, the introduction of association
rule mining in in 1993 by Agrawal, Imielinski and Swami [2] and, in particu-
lar the publication of an efficient algorithm by Agrawal and Srikant [3] and,
independently by Mannila, Toivonen and Verkamo [9] opened the field to
a wider audience and, in particular, to the data base community. Research
in data mining on computational efficiency, the interface between compu-
tational methods and data access, applications in science and business and
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relations with statistical analysis have strengthened the young discipline
and helped it establish itself as an important and exciting research area in
computer science and data processing.

An association rule is an implication or if-then-rule which is supported
by data. The motivation given in [2] for the development of association
rules is market basket analysis which deals with the contents of point-of-
sale transactions of large retailers. A typical association rule resulting from
such a study could be “90 percent of all customers who buy bread and but-
ter also buy milk”. While such insights into customer behaviour may also
be obtained through customer surveys, the analysis of the transactional
data has the advantage of being much cheaper and covering all current
customers. The disadvantage compared to customer surveys is in the limi-
tation of the given transactional data set. For example, point-of-sale data
typically does not contain any information about personal interests, age
and occupation of customers.

Understanding the customer is core to business and ultimately may
lead to higher profits through better customer relations, customer reten-
tion, better product placements, product development but also fraud de-
tection. While originating from retail, association rule discovery has also
been applied to other business data sets including

• credit card transactions
• telecommunication service purchases
• banking services
• insurance claims and
• medical patient histories.

However, the usefulness of association rule mining is not limited to business
applications. It has also been applied in genomics and text (web page)
analysis.

In these and many other areas, association rule mining has lead to new
insights and new business opportunities. Of course the concept of a market
basket needs to be generalised for these applications. For example, a market
basket is replaced by the collection of medical services received by a patient
during an episode of care, the subsequence of a sequence of amino acids of
a protein or the set of words or concepts used in a web page. Thus when
applying association rule mining to new areas one faces two core questions:

• what are the “items” and
• what are the “market baskets”.
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The answer of these questions is facilitated if one has an abstract mathe-
matical notion of items and market baskets. This will be developed in the
next section.

The efficiency of the algorithms will depend on the particular character-
istics of the data sets. An important feature of the retailer data sets is that
they contain a very large number of items (tens of thousands) but every
market basket typically contains only a small subset.

A simple example in Table ?? illustrates the type of results association
rule mining produces. From the table one can induce the following “rules”:

market basket id market basket content
1 orange juice, soda water
2 milk, orange juice, bread
3 orange juice, butter
4 orange juice, bread, soda water
5 bread

• 80 % of all transactions contain orange juice (1,2,3,4)
• 40 % of all transactions contain soda water (1,4)
• 50 % of the transactions containing orange juice also contain soda

water (1,4) while
• all transactions which contain soda water also contain orange juice

These rules are very simple which is typical for association rule mining.
Only simple rules will ultimately be understandable and useful. However,
the determination of these rules is a major challenge due to the very large
data sets and the large number of potential rules.

Large amounts of data have been collected routinely in the course of
day-to-day management in businesss, administration, banking, the deliv-
ery of social and health services, environmental protection, policing and in
politics. This data is primarily used for accounting and management of the
customer base. However, it is also one of the major assets to the owner as
it contains a wealth of knowledge about the customers which can assist in
the development of marketing strategies, political campaigns, policies and
product quality controll. Data mining techniques help process this data
which is often huge, constantly growing and complex. The discovered pat-
terns point to underlying mechanisms which help understand the customers
and can give leads to better customer satisfaction and relations.
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voting data random data

Fig. 1. 1984 US House of Representatives Votes, with 16 items voted on

As an illustrative (small) example consider the US Congress voting
records from 1984 [8], see figure 1. The 16 columns of the displayed bit
matrix correspond to the 16 votes and the 435 rows to the members of
congress. We have simplified the data slightly so that a matrix element is
one (pixel set) in the case of votes which contains “voted for”, “paired for”
and “announced for” and the matrix element is zero in all other cases. Data
mining aims to discover patterns in this bit matrix. In particular, we will
find columns or items which display similar voting patterns and we aim
to discover rules relating to the items which hold for a large proportion of
members of congress. We will see how many of these rules can be explained
by underlying mechanisms (in this case party membership).
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The choice of the columns and the rows is in this example somewhat
arbitrary. One might actually be interested on patterns which relate to the
members of congress. For example one might be interested in statements
like “if member x and member y vote yes then member z votes yes as
well. Statements like this may reveal some of the connections between the
members of congress. For this the data matrix is thus “transposed”. The
duality of observations and objects occurs in other areas of data mining
as well and illustrates that data size and data complexity are really two
dual concepts which can be interchanged. This is in particular exploited
in some newer association rule discovery algorithms which are related to
formal concept analysis [6].

One now finds that the items have received between 34 to 63.5 percent
yes votes. Pairs of items have received between 4 and 49 percent yes votes.
The pairs with the most yes votes (over 45 percent) are in the columns
2/6, 4/6, 13/15, 13/16 and 15/16. Some rules obtained for these pairs are:
92 percent of the yes votes in column 2 are also yes votes in column 6,
86 percent of the yes votes in column 4 are also yes votes in column 6
and, on the other side, 88 percent of the votes in column 13 are also in
column 15 and 89 percent of the yes votes in column 16 are also yes votes
in column 15. These figures suggest combinations of items which could
be further investigated in terms of causal relationships between the items.
Only a careful statistical analysis may provide some certainty on this. This,
however, is beyond the scope of these lectures.

2. Mathematical Models

Association rule discovery has originated in market basket analysis. Here
the object is a market basket of items purchased by a customer. While many
features may be of interest in market basket analysis, the main features
studied are the types of items in the market basket.

The market basket example is just one incidence where association rule
discovery is used. In general, it is used whenever the objects are sets of
items, and, more generally, a collection of properties Xi(ω) of the objects,
i.e., statements which are either true or false. In all these cases the features
take the form of bitvectors.

2.1. Modelling the Data

Thus one has a set of possible items which we number and represent by their
number. For example, a “micromarket” may sell the following items which
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are given together with a map into integers: This allocation is somewhat

item item number
juice 0
bread 1
milk 2
cheese 3
potatos 4

arbitrary and for particular applications one may wish to choose specific
applications, for example one may order the items such that the itemnum-
bers indicate the rank in which the items were purchased, in the case of
the micromarket juice would be the most frequently purchased, followed by
bread etc.

More generally, we map the items onto integers 0, . . . , d−1. Any market
basket is a set of items and we will model them as a set of integers x ∈
Zd = {0, . . . , d− 1}. Thus the mathematical problem of finding association
rules from data consists of finding structure in a sequence of subsets of Zd.
So the set X of features of objects is the powerset of Zd.

Sets can be represented in various ways and all representations have
their strengths. The representation of a collection of integers is very intuitive
and compact. An alternative representation are bitvectors. With any subset
of Zd one associates a vector of length d containing except at the positions
indicated by the elements of the subset where the component of the vector
is one. So, for example, in the case of the microshop items one may have a
market basket {bread,milk, potatos} which is mapped onto the set {1, 2, 4}
which corresponds to the bitvector (0, 1, 1, 0, 1). Thus in a bitvector not only
can one easily extract what the elements are but also which elements are
not contained in the set.

Using this representation we define our set of features to be

X = {0, 1}d

but occasionally will refer to the vectors as itemsets. The underlying prob-
ability space is discrete. The size of an itemset will be important as it gives
a complexity measure. Using the bitvector representation, the size of x is
then

|x| =
d−1∑

i=0

xi.
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In some cases one would like to enumerate the sets. The bitvector can be
interpreted as the vector of bits of an integer and one thus has the following
mapping of bitvectors (or itemsets) onto integers:

φ(x) =
d−1∑

i=0

xi2i.

Note that this actually gives a bijective map between the set of finite sets of
integers onto the set of integers. Table ?? shows a collection of micromarket
itemsets, the corresponding set of integers, the representing bitvector and
the number in which this subset occurs in the collection of all subsets.

itemset set of numbers bitvector number of subset
{juice, bread, milk } {0, 1, 2} (1, 1, 1, 0, 0) 7

{ potatos } {4} (0, 0, 0, 0, 1) 16
{bread, potatos } {1, 4} (0, 1, 0, 0, 1) 18

The data is thus represented by a sequence of bitvectors or a Boolean
matrix. For example, corresponding to table ?? with the micromarket items
one gets the matrix




1 1 1 0 0
0 0 0 0 1
0 1 0 1 0


 .

In the example of congressional voting the first few records are

1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0

1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0

0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0

0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0

or the same as sets

1 3 4 5 6 8 10 13 14

1 2 3 6 8 9 10 11 13 14

4 5 6 8 9 15

2 4 6 8 9 11 12 15

1 3 7 9 10 11 13 16
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2.2. Modelling the Patterns in the Database

The structure association rules model in these matrices stems from the
similarity of the rows x(i) which is based on some underlying mechanism.
We will now illustrate this for the case of the congressional data. If there
is no underlying mechanism, i.e., the samples are generated independent
random components then the data mining algorithm should not find any
structure. (As any “discovered patterns” would purely reflect the sample
and not the underlying distribution.) If we take to rows at random then
they are modelled by two random vectors X(i) and X(j). Even when they
are at random, there will still be some components which these vectors
share. The number of differing components is also a random variable. This
is defined by the Hamming distance:

dH(x, y) =
d∑

i=1

|xi − yi|.

If the probability that any component is one is p then the probabilty that
this component is the same for both vectors is p2 := p2 + (1 − p)2. The
number of different components is the sum of i.i.d. binary random variables
and thus it has a binomial distribution with expectation dp2 and variance
dp2(1 − p2). Note that the ratio of the standard deviation (or square root
of the variance) to the expectation goes to zero when d goes to infinity.
This is an example of the concentration effect or curse of dimensionality.
In figure 2 we display the distribution of the the actual distances together
with the display of the binomial distribution of distances in the random
case (upper two histograms). Clearly, the histogram in figure 2 shows that
we do not have the random situation and thus we may expect to find mean-
ingful patterns in the data. These patterns will often relate to the party
membership as is shown in the lower two histograms, in the case of the
same party one gets a random distribution with lower expectation and in
the case of different parties one with higher expectation. In the distribu-
tion of all the differences in voting behaviour one has both these effects and
thus a much broader distribution as in the random case. This example is
not so exciting as it is expected that differences accross parties are larger
than differences within a party. Such a “discovery” would be judged to be
less than exciting. We have chosen this example, however, as it illustrates
the case of an underlying “hidden” variable which may be able to explain
the distribution. In practical cases both known and unknown such hidden
mechanims are common.
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Fig. 2. Distribution of distances of two randomly chosen records in the congress voting
data, compared to the binomial distribution and the distribution of the distances in the
case of the same party and different parties.

In the case of the biological data the same distribution together with
the binomial one is displayed in figure 3. The data set has much more noise
and only a few data points which is a big problem, however, it appears
that the distribution of the actual distances is still wider than the random
case and thus on may be able to find some patterns. The “hidden” variable
in this case is the occurrence of tumor and it is conjectured that different
genes are active for tumor cells than for others, in fact, this is what some
think could be used to find tumor. We can expect from this first display
that finding meaningful and correct patterns will be much more difficult for
this data set.
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Fig. 3. Distribution of distances of two randomly chosen records in the tumor data.

In association rule discovery, one would like to make statements about
the objects which are not necessarily universally true but which hold for
a good proportion of the data. More specifically, one is interested to find
mappings a : X→ {0, 1} which are true on a subset of X with large measure,
or equivalently, one would like to find subsets of X which have a large
probability.

The set Sa associated with a predicate a is its support, i.e., the subset
of X where the predicate is one:

Sa = supp(a) = {x|a(x) 6= 0}.

Unfortunately, the probability P (Sa) of the support is also called support



November 24, 2003 9:39 WSPC/Lecture Notes Series: 9in x 6in paper

Algorithms for Association Rules 11

we call it:

s(a) = P (Sa).

We will be looking for statements, predicates a, or alternatively, for subsets
Sa for which the support is high, say, more than a given lower bound σ which
is dictated by the application. Thus we are looking for a with s(a) ≥ σ.
There are trivial examples which satisfy this, including the case a = 1
where Sa = X or the case where Sa = {x(1), . . . , x(N)} being the data set.
In both cases one would have a support s(a) = 1 or at least close to one.
One thus needs to constrain the addimissible predicates a to ones which are
interesting such that these cases are eliminated. Basically, one would like
to have small and simple sets (a la Occam’s razor) with a large support.

A problem related to the curse of dimensionality is that the total number
of predicates is very large. As a predicate can be identified with its support
the total set of predicates is equivalent to the powerset of X. As the size of
X is 2d the size of the powerset of X is 22d

. Finding all the predicates which
have at least support σ seems to be an unsurmountable task. Thus again,
one needs to constrain the types of predicates.

On the one side, many predicates will not be of interest, on the other
side many of the predicates found will be very similar to other ones found,
and, say, differ just for one X. One could thus introduce similarity classes
of predicates. First, however, we can identify a generic property which the
predicates we are interested in should have. For this we go back to the mar-
ket basket example again. A property of a market basket relates to the con-
tents, the price etc. If a market basket contains certain items then a larger
market basket will contain the same items plus some more and thus, for the
purposes of marketing the larger market basket would be just as interesting
as the smaller one. Thus we would like our predicates to be monotone in x,
i.e., if x ≤ y one has a(x) ≤ a(y). Of course this is not allways the case but
this constraint does reduce the number of possible predicates a lot. So now
we have the data mining problem: Find all monotone predicates a which
are frequent. In order to do this we will have to understand more about the
structure of the monotone predicates which we will do in a later section.
Note that this monotonicity constraint does depend on the application and
in other cases one might use different constraints.

The simplest case of such monotone constrains are given by the function
which extracts the i-th component of the vector x, i.e.,

ai(x) = xi.
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In the case of the US cogress votes the support for all the single votes is
displayed in figure 4.
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Fig. 4. Supports for all the votes in the US congress data (split by party).

A different, slightly more complex case is the product (or and) of two
components:

ai,j(x) = xi,j .

For the voting example lets consider votes of the the type “V13 and Vx”.
Here the distributions do look quite different. figure 5. In particular, while
the distribution of the single votes did not show us much about the parties,
the combination certainly does. We can see that there are votes which
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Fig. 5. Supports for pairs of votes in the US congress data (split by party).

do have similar voting behaviours. These similarities seem to go beyond
party boundaries, i.e., high supports of a combination of two votes often
means high supports from both parties. So maybe there is an underlying
mechanism which is more fundamental than the party membership. In the
random case there is only the case where the first vote is combined with
itself (which actually is only one vote) and the case where two votes are
combined.

Finally, the confidences of the rules “if voted yes for V13 then voted yes
for Vx” is displayed in figure 6.

So far we have only considered structure which can be described by
one predicate. However, one is also interested in multiple predicates, in
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Fig. 6. Confidence of rule “if V13 then Vx” for the US congress data (split by party).

particular, pairs of predicates which interact. These are the association
rules which have initiated the work in this area. They are described by a
pair of predicates a, b of which the conjunction has a good support, and for
which the conjunction has a good conditional support in the support Sa.
This conditional support is also called confidence. Again, one is interested
in monotone predicates a and b. The association rules intuitively model
“if-then-rules”, are denoted by a ⇒ b and a is called antecedent and b is
the consequent.

Note that these “if-then-rules have nothing to do with implications in
classical propositional logic where an implication is equivalent to ¬a ∨ b.

So an association rule is a pair of predicates with two numbers, the
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support s(a ⇒ b) = s(a∧ b) and the confidence c(a ⇒ b) = s(aand b)/s(a).
Thus one has

Definition 1: An association rule, denoted by a ⇒ b consists of a pair of
monotone predicates a and b and a measure of support s and a measure of
confidence c such that s(a ⇒ b) = s(a ∧ b) and c(a ⇒ b) = s(a ∧ b)/s(a).

In the following we will discuss algorithms for two data mining problems
for any given probability space P(X, 2X, P ):

• Frequent set mining problem. For given σ > 0 find all (all) mono-
tone predicates a such that s(a) ≥ σ.

• Association rule mining problem. For given σ > 0 and γ > 0 find all
association rules a ⇒ b for which s(a ⇒ b) ≥ σ and c(a ⇒ b) ≥ γ.

In addition to these questions in particular other types of constraints
for the association rules have been considered.

Thus we now have a complete model of the data and the research ques-
tions we can now move on to discussing the structure of the data and pattern
space which will form the basis for the development of efficient algorithms.

2.3. Structure of X

In order to systematically search throught the set X to find the y mentioned
we will need to exploit the structure of X. As X consists of sets, one has a
natural partial ordering which is induced by the subset relation. In terms
of the components one can define this componentwise as

x ≤ y :⇔ xi ≤ yi.

Thus if, for any i, x contains i then xi = 1 and, if x ≤ y then yi = 1 and
so y contains i as well which shows that x ≤ y means that x is a subset of
y. We use the symbol ≤ here instead of ⊂ as we will use the ⊂ symbol for
sets of itemsets.

Of course, subsets have at most the same number of elements as their
supersets, i.e., if x ≤ y then |x| ≤ |y|. Thus the size of a set is a monotone
function of the set wrt the partial order. One can also easily see that the
function φ is monotone as well. Now as φ is a bijection it induces a total
order on X defined as x ≺ y iff φ(x) < φ(y). This is the colex order and the
colex order extends the partial order.

The partial order (and the colex) order have a smallest element which
consists of the empty set, as bitvector x = (0, . . . , 0) and a largest element
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wich is just the set of all items Zd, as bitvector (1, . . . , 1). Furthermore, for
each pair x, y ∈ X there is a greatest lower bound and a least upper bound.
These are just

x ∨ y = z

where zi = max{xi, yi} for i = 0, . . . , d−1 and similar for x∧y. Basically, the
partial order forms a Boolean lattice. We denote the maximal and minimal
elements by 1 and 0.

More generally, a partially ordered set is defined as

Definition 2: A partially ordered set (X,≤) consists of a set X with a
binary relation ≤ such that for all x, x′, x′′ ∈ X:

• x ≤ x (reflexivity)
• If x ≤ x′ and x′ ≤ x then x = x′ (antisymmetry)
• If x ≤ x′ and x′ ≤ x′′ then x ≤ x′′ (transitivity)

A lattice is a partially ordered set with glb and lub:

Definition 3: A lattice (X,≤) is a partially ordered set such that for each
pair of of elements of X there is greatest lower bound and a least upper
bound.

We will call a lattice distributive if the distributive law holds:

x ∧ (x′ ∨ x′′) = (x ∧ x′) ∨ (x ∧ x′′).

where x∨y is the maximum of the two elements which contains ones when-
ever at least one of the two elements and x ∧ x′ contains ones where both
elements contain a one. Then we can define:

Definition 4: A lattice (X,≤) is a Boolean lattice if

(1) (X,≤) is distributive
(2) It has a maximal element 1 and a minimal element 0 such that for all

x ∈ X:

0 ≤ x ≤ 1.

(3) Each element x as a (unique) complement x′ such that x ∧ x′ = 0 and
x ∨ x′ = 1.

The maximal and minimal elements 0 and 1 satisfy 0∨x = x and 1∧x = x.
In algebra one considers the properties of the conjunctives ∨ and ∧ and a
set which has conjunctives which have the properties of a Boolean lattice
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is called a Boolean algebra. We will now consider some of the properties of
Boolean algebras.

The smallest nontrivial elements of X are the atoms:

Definition 5: The set of atoms A of a lattice is defined by

A = {x ∈ X|x 6= 0 and if x′ ≤ x then x′ = x}.

The atoms generate the lattice, in particular, one has:

Lemma 6: Let X be a finite Boolean lattice. Then, for each x ∈ X one has

x =
∨
{z ∈ A(X) | z ≤ x}.

Proof: Let Ax := {z ∈ A(B)|z ≤ x}. Thus x is an upper bound for Ax,
i.e.,

∨
Ax ≤ x.

Now let y be any upper bound for Ax, i.e.,
∨

Ax ≤ y. We need to show
that x ≤ y.

Consider x ∧ y′. If this is 0 then from distributivity one gets x = (x ∧
y) ∨ (x ∧ y′) = x ∧ y ≤ y. Conversely, if it is not true that x ≤ y then
x ∧ y′ > 0. This happens if what we would like to show doesn’t hold.

In this case there is an atom z ≤ x ∧ y′ and it follows that z ∈ Ax. As
y is an upper bound we have y ≥ z and so 0 = y ∧ y′ ≥ x ∧ y′ which is
impossible as we assumed x ∧ y′ > 0. Thus it follows that x ≤ y.

The set atoms associated with any element is unique, and the Boolean
lattice itself is isomorph to the set of sets of atoms. This is the key structural
theorem of Boolean lattices and is the reason why we can talk about sets
(itemsets) in general for association rule discovery.

Theorem 7: A finite Boolean algebra X is isomorphic to the power set
2A(X) of the set of atoms. The isomorphism is given by

η : x ∈ X 7→ {z ∈ A(X) | z ≤ x}
and the inverse is

η−1 : S 7→
∨

S.

In our case the atoms are the d basis vectors e1, . . . , ed and any element
of X can be represented as a set of basis vectors, in particular x =

∑d
i=1 ξiei

where ξi ∈ {0, 1}. For the proof of the above theorem and further informa-
tion on lattices and partially ordered sets see [5]. The significance of the
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lemma lays in the fact that if X is an arbitrary Boolean lattice it is equiva-
lent to the powerset of atoms (which can be represented by bitvectors) and
so one can find association rules on any Boolean lattice which conceptially
generalises the association rule algorithms.

In figure 7 we show the lattice of patterns for a simple market basket
case which is just a power set. The corresponding lattice for the bitvectors

{}

{bread} {coffee} {juice}{milk}

{bread, coffee} {milk, coffee}{milk, bread} {milk, juice} {bread. juice} {coffee, juice}

{milk, coffee, juice} {bread, coffee, juice} {milk, bread, coffee} {milk, bread, juice}

{milk, bread, coffee, juice}

Fig. 7. Lattice of breakfast itemsets

is in figure 8. We represent the lattice using an undirected graph where the

0000

0110 1100

1011 11010111

1111

0100 1000

101010010011

00100001

0101

1110

Fig. 8. Lattice of bitvectors.

nodes are the elements of X and edges are introduced between any element
and its covering elements. A covering element of x ∈ X is an x′ ≥ x such
that no element is “in between” x and x′, i.e., any element x′′ with x′′ ≥ x

and x′ ≥ x′′ is either equal to x or to x′.
In Figure 9 we display the graphs of the first few Boolean lattices.

We will graph specific lattices with (Hasse) diagrams [5] and later use the
positive plane R2

+ to illustrate general aspects of the lattices.
In the following we may sometimes also refer to the elements x of X
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Fig. 9. The first Boolean Lattices

as item sets, market baskets or even patterns depending on the context.
As the data set is a finite collection of elements of a lattice the closure of
this collection with respect to ∧ and ∨ (the inf and sup operators) in the
lattice forms again a boolean lattice. The powerset of the set of elements of
this lattice is then the sigma algebra which is fundamental to the measure
which is defined by the data.

The partial order in the set X allows us to introduce the cumulative
distribution function as the probability that we observe a bitvector less
than a given x ∈ X:

F (x) = P ({x′|x′ ≤ x}) .

By definition, the cumulative distribution function is monotone, i.e.

x ≤ x′ ⇒ F (x) ≤ F (x′).

A second cumulative distribution function is obained from the dual order
as:

F ∂(x) = P ({x′|x′ ≤ x}) .

It turns out that this dual cumulative distribution function is the one which
is more useful in the discussion of association rules and frequent itemsets.

Typically, the set X is very large, for example, with 10, 000 items one
can in principle have 210,000 ≈ 103,000 possible market baskets. It can be
said with certainty that not all possible market baskets will occur, and, in
particular, one would only be interested in market baskets with a limited
number of items, say, with less than 100 items.

In summary, the data is a set of points, see 10. For any given number
of items d and number of records or data points n the number of possible
data sets is very large, for example, there are 103·109

possible data sets
with n = 106 market baskets containing a items from a collection of 10, 000
items. It is thus important to be very systematic when one would like to



November 24, 2003 9:39 WSPC/Lecture Notes Series: 9in x 6in paper

20 M. Hegland

x 1

x 3

x 6

x 7

x 8

x 5

x 9

x 4

x 2

Fig. 10. Data points

compare different data sets and determine their essential properties. Now
this complexity is a bit misleading, as we have not taken into account that
mostly simple market baskets will occur. Note, however, that 106 market
baskets and 10, 000 items corresponds to a relatively “small scenario”.

2.4. Structure of the Predicates on X

We would like to make statements about the x which would hold in with
some probability. These probable statements are one type of structure we
would like to discover for a given distribution. The statements are formu-
lated as predicates

a : X→ {0, 1}.
Such a predicate can be interpreted as a characteristic function of a subset
A ⊂ X, for which the predicate is true (or 1). We are looking for predicates
which are true for a large proportion of the points, equivalently, we are
looking for subsets which have a large probability.

In extremely simple cases one can consider all possible predicates (or
subsets) and determine the support s(a) = P ({x|a(x) = 1} and select
the ones which have large enough support to be interesting. There are a
total of 2|X| = 22d

predicates, which, in the case of market basket analysis
with d = 10, 000 items (which corresponds to a smaller supermarket) is
2103,000 ≈ 103·102,999

. Thus it is impossible to consider all the subsets.
One suggestion is to search through the predicates in a systematic way.

The predicates themselves have an order which is given by the order on the
range of a and is the subset relationship of the sets for which the predicates
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are the characteristic functions. We have

a ≤ b ⇔ a(x) ≤ b(x) for all x

so a is less than b if a is a consequence of b, i.e, if b is true whenever a

is true. With respect to ∨ and ∧ (here in their original logical meaning)
the predicates form a Boolean lattice. So we could systematically start a
the bottom or the top of the lattice and work our way through the lattice
following the edges of the Hasse diagram. Any predicate is defined by the
set of elements on which it is true, i.e., it can be written as an indicator
function of that set as

a(x) = χ{z|a(z)=1}(x)

and if the indicator function for the set containing just x is χx we have

a =
∨

a(y)=1

χy.

It follows directly that the atoms of the Boolean algebra of the predicates
are the indicators χy.

Unfortunately, at the bottom end of the lattice the support for any
predicates will be very low. Thus we need to start at the top and use the
dual ordering. With respect to this dual ordering the atoms are now the
indicator functions of the sets containing everything except y. Thus we get
the opposite situation as before and for a very long time all the predicates
we get have a very large support. Thus it is not feasible to search just along
the edges of the graph of the lattice of the predicates.

The observations indicate that we need to look for a different ordering
of the predicates. Here is where Occam’s razor does give us some intuition.
We are interested in simple predicates or simple sets which we may be able
to interprete. This does not necessarily mean sets with few elements but
sets which have a simple structure. As the full powerset does not lead to
anything usefull we should consider a different set of subsets. In order to do
this we go back to the example of the market baskets. A property which will
make a market basket interesting will typically also make a market basket
which contains the original market basket interesting as well. This leads to
properties which are monotone, i.e. for which we have

x ≤ y ⇒ a(x) ≤ a(y).

The set A for which a is an indicator function is an up-set, also called
increasing set or order filter and it satisfies

x ∈ A and x ≤ y ⇒ y ∈ A.
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(The dual of up-sets are down-sets, decreasing sets or order ideals.)
The set of up-sets F(X) is a subset of the powerset but it is still quite

large. The sizes of some of the smallest sets of up-sets are given in [5] for
the cases of d = 1, . . . , 7. For example, in the case where d = 6 the set X
has 64 elements and the size of the set of up-sets is 7, 828, 354. The simplest
up-sets are the ones generated by one element:

↑ x := {z|z ≥ x}.
In order to better understand the lattice of up-sets F(X) one considers

join-irreducible sets in this lattice. They are defined as

J (F(X)) = {A 6= 0| if A = B ∪ C for some B,C ∈ F(X) then A = B or A = C}.
While join-irreducibility is defined for more general lattices, in our case we
can characterise the join-irreducible up-sets exactly:

Proposition 8:

J (F(X)) = {↑ x | x ∈ X}

Proof: As X is finite there are is for each U ∈ F(X) a sequence xi ∈ X, i =
1, . . . , k such that xi 6≤ xj and U =

⋃k
i=1 ↑ xi. By definition, at most the

U for which k = 1 can be join-irreducible.
Let ↑ x = U ∪ V and, say, x ∈ U . It then follows that ↑ x ⊂ U . As

U ⊂↑ x it follows ↑ x = U . Thus all ↑ x ∈ J (F(X)).

Note that in our case the sets ↑ x {x} are the lower covers of ↑ x, i.e., the
closest up-sets which are subsets. In fact, this is a different characterisation
of the join-irreducible elements of finite lattices, see [5].

The join-irreducible elements are essential in Birkhoff’s representation
theorem for finite distributive lattices [5] which states that the finite dis-
tributive lattices are isomorph to the lattice of down-sets generated by join-
irreducible elements. This representation is also closely related to the dis-
junctive normal form in logic.

We will now consider the join irreducible elements ↑ y further. Lets
denote their characteristic function by ay := χ↑y such that

ay(x) =

{
1 if x ≤ y

0 else.

Note that

ay∨z = ay ∧ az
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but ay ∨ az is in general not of the form az. We can systematically search
through the space of all ay using the ordering induced by the ordering of
the index y. We start with the ax where the x are the atoms of X. Note
that the induced ordering is reversed, i.e., one has

y ≤ z ⇔ ay ≥ az,

and more generally one has

Proposition 9: ay(x) is a monotone function of y and an anti-monotone
function of x and furthermore:

ay(x) =
∧

z∈A(X)

(az(x) ∨ ¬az(y)) .

Proof: The monotonicity/antimonotonicity properties follow directly from
the definition.

While the ↑ y are join-irreducible, they are not meet-irreducible. In
particular, from the representation of Boolean algebras and the isomorphy
of the lattice of join-irreducible elements of F(X) and X one gets

↑ y =
⋂

z≤y, z∈A(X)

↑ z.

If z 6≤ y it follows that ¬az(y) is true.

Now we could use the logical theory of resolution to search for objects
with particular properties or, alternatively, to find all possible predicates
which either hold for all market baskets or for at least one market basket.
These deductions are quite possible for smaller data sets but for larger data
sets one can only hope to find a very limited subset of rules or predicates
which occur very frequently.

Finally, we are interested in predicates a which have a support s(a) ≥
σ, i.e., are frequent. Or more specifically, we are interested in frequent
itemsets z such that s(az) ≥ σ. By the apriori principle we have that if z

is frequent and if y ≤ z then y is frequent as well. Thus the set of frequent
itemsets forms a down-set, decreasing set or order ideal. It follows that we
can represent the set of frequent itemsets F as

F =
⋃

i

↓ z(i)

for a set of maximal elements z(i). The aim of the data mining for frequent
itemsets is to find these maximal elements of F . The apriori algorithm
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searches for these maximal element by looking at the lattice of z and, by
starting at 0 moves to ever larger z until the maxima are found.

In summary, we now have an algebraic framework for the search for
interesting predicates ay.

2.5. Support and antimonotonicity

After having explored the space of predicates we intend to search we now
discuss effects of the criterium used to select predicates further. Intuitively,
we are looking for all predicates which are supported by the data, i.e., for
which the support s(a) is larger than a certain given value σ. Recall the
definition of support

s(a) = P (supp(a)).

In case of the empirical distribution the relative frequency is the support,
in the case where we have a sample (possibly from a larger population) the
relative frequency is an estimator of the support and one has:

ŝ(a) =
1
n

n∑

i=1

a(x(i))

In the literature the term support is used some times also for the estimate
ŝ(a) and some times for the number of transactions for which a holds. In [1]
support is reserved for the set of items in the data base which support the
item, support count is used for the size of this set and support ratio for the
estimate of s(a). In Figure 11 the support is illustrated together with some
data points. From the properties of the probability one gets properties of
the support function s, in particular, one has s(a ∧ b) ≤ s(a).

We will now consider the support of the predicates ay which considered
in the previous section. Their support s(ay) is illustrated in figure 12, it is
not the same as the support of the item set y, i.e., s(ay) 6= P ({y}).

Note that the support of the item set s(ax) and the probability of the
corresponding market basket x is not the same! The support of ax is illus-
trated in However, the support is the the cumulative distribution function
based on the dual lattice of X.

Proposition 10: Let s be the support and ax be the predicate which indi-
cates the presence of the item set x. Then one has

s(ax) = F ∂(x)

where F ∂ is the cumulative distribution function which is based on the dual
partial order.
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Fig. 11. Support of a general predicate

supp(a  )x

x

Fig. 12. Support of ax.

Proof:

s(ay) =
∑

y≥x

p(y).
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While we have used probabilistic language, often, we are only interested
in patterns which are frequent in the current data set and do not rely on
any probabilistic interpretation of the data set or the generalisation of the
rules.

A consequence of this previous proposition is the main property of the
support function. Recall that a function f(x) is monotone iff f(x) ≤ f(y)
whenever x ≤ y and a function is anti-monotone iff f(x) ≥ f(y) whenever
x ≤ y. We now have the core property used for the association rule discovery
algorithms:

Theorem 11: The support s(ay) is an anti-monotone function of y.

Proof: The cumulative distribution function F δ is monotone wrt to the
dual order and is thus anti-monotone wrt to the original order. The theorem
then follows from the previous proposition.

This simple anti-monotonicity property forms the basis of the apriori al-
gorithm. Note that the cumulative distribution function uniquely defines
the distribution and so either the probability distribution p or the support
s(ax) can be used to determine the relevant properties of the probability
space. Association rule mining uses the apriori property to find all the val-
ues of the cumulative distribution function which have at least a given size.
Note that from a practical point of view, the predicates with small support
are uninteresting.

A final comment on the relationship between the item sets and the
relational data model. In the relational data model all the data is defined
with tables or relations. In our case, this is based on two sets, one, the set of
market baskets (stored as basket identifiers) which we call M and the set of
items which we call I. The data base is then a relation R ⊂ M×I. Thus we
have one market basket table with one attribute “contains item” and the
domain of this attribute are the items. The relation forms a bipartite graph.
The contents of the market baskets x are the adjacency sets corresponding
to the elements of M . The supports of item sets are the adjacent sets of
sets of items in this model.

2.6. Expectation and the size of itemsets

For the analysis of the complexity of the association rule discovery algo-
rithms we will require more general functions than predicates. In particular,
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we will consider real functions f : X→ R. Such a function is a random vari-
able and it also denotes a property of the objects we are investigating. In
our case of finite X the function has an expectation which is defined as

E(f) =
∑

x∈X
p(x)f(x).

It follows that the expectation is a linear functional defined on the space
of real functions over X. The expectation is monotone in the sense that
f ≥ g ⇒ E(f) ≥ E(g) and the expectation of a constant function is the
function value. The variance of the random variable corresponding to the
function f is

var(f) = E
(
(f − E(f))2

)
.

A first class of functions f are the predicates a with values of 0 and 1
only. For them we have:

Proposition 12: A predicate a is a random variable with expectation

E(a) = s(a)

and variance

var(a) = s(a)(1− s(a)).

Note that 1− s(a) = s(1− a) is the support of the negation of a. One has
var(a) ≤ 0.25 and the maximum is reached for s(a) = 0.5. In practice one
would not expect any item to be in half of all market baskets and typically,
s(a) is often rather small so that the variance is close to the expectation.
The previous proposition shows that the support can be defined as either
a probability (of the supporting set) or an expectation (of the predicate).
In fact, probability theory itself can be either based on the concept of
probability or the concept of expectation [11].

A second class of examples is obtained when we consider a sample of
independant observations as our objects. Thus the observed feature is the
sequence x(1), . . . , x(n). We consider the relative frequency of a on the ob-
servations, i.e.,

ŝ =
1
n

n∑

i=1

a(x(i))

as function defined on this object. The probability distribution of the obser-
vations is, and here we will assume that the samples are drawn at random
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independantly:

p(x(1), . . . , x(n)) =
m∏

i=1

p(x(i)).

The expectation of the function f(x(1), . . . , x(n)) = (̂s) is

E(ŝ(a)) = s(a)

and the variance is

var(ŝ(a)) =
s(a)(1− s(a))

n
.

All these quantities are thus represented as a function of the support s(a).
A third example of a random variable is the length of an itemset,

f(x) = |x| =
d∑

j=1

xj .

The expectation of the length of an itemset is

E(|x|) =
d∑

j=1

pj

where pj is the probability that the bit j is set. Note that pj = s(aj) where
aj is the predicate defined by

aj(x) =

{
1 if xj = 1

0 else

is the indicator function for the up-set ↑ ej of the j-th atom of X. For
the variance of the length of an itemset we need to also consider aiaj with
is the indicator function for sets of pairs of atoms or 2-itemsets and with
pij = E(aiaj) one gets

var(|x|) =
d∑

i=1

pi(1− pi) +
∑

i6=j

(pij − pipj).

Note that the first sum is the sum of the variances of all the components.
The second sum is a correction which originates from the fact that the
components are not independant.

So far we have considered positive functions f only. One can now give a
simple upper bound for the probabibility that the function values get large
using the expectation only. This is useful as it allows the estimation of a
distribution from a simple feature, the mean. It is unlikely that the the
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random variable takes values which are very different from the expectation.
A simple theorem gives an estimate of the probability for f to reach values
larger than any given bound. It does not require any knowledge of the
distribution. This is Markov’s inequality:

Theorem 13: Let f be a non-negative function. Then, for x > 0:

p(f(x) ≥ c) ≤ E(f)
c

where p(f(x) ≥ c) := P ({x|f(x) ≥ c}).

Proof: From the definition of the expectation one gets

E(f) =
∑

x∈X
f(x)p(x)

=
∑

f(x)≥c

f(x)p(x) +
∑

f(x)<c

f(x)p(x)

≥
∑

f(x)≥c

f(x)p(x)

≥ c
∑

f(x)≥c

p(x)

= cp(f(x) ≥ c)

from which we get the inequality by division by c on both sides.

For the second example we can now see that the probability that
ŝ(a) > c is bounded from above by s(a)/c. This shows that we will not
expect deviations which are too large but it does not tell us how this esti-
mate improves with growing data size n. For example, we can see that the
probability that the estimate is four times the size of s(a) is less or equal
than 0.25. If we consider 1/(̂s) as our random variable we can get a similar
lower bound, i.e., the probability that ŝ(a) is less than s(a)/4 is also 0.25.

For the third example, the size of an itemset one gets similar bounds.
We can again state that the probability that we get observations of the
length of an itemset which is more than 4 times or less than 4 times the
actual size are less or equal 0.25 each.

It turns out, that we can further modify the bounds obtained from the
Markov inequality to include the variance as well. This is due to the fact
that the Markov inequality holds for any positiv function. The variance
now gives us a measure for how much the function values will likely spread.
This is stated in the next theorem:
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Theorem 14: For any real function f and r > 0 on has:

P ({x | E(f)− r
√

var(f) < f(x) < E(f) + r
√

var(f)}) ≥ 1− 1
r2

.

Consider again the examples 2 and 3 from above. Choose r =
ρE(f)/

√
var(f). Then we get

P ({x | E(f)(1− ρ) < f(x) < E(f)(1 + ρ)}) ≥ 1− var(f)
ρ2E(f)2

.

As a consequence, we can now estimate the probability that the function
value is between a bound of, say 25% around the exact value to be 1 −
16 var(f)

E(f)2 .

In the second example we get for this bound 1 − 16(1−s(a))
ns(a) . This is

small for small supports and large for large supports. Note that ns(a) is
just the number of positive cases. Thus for very small s(a) we will need
at 32 positive cases in order to get a 50 percent chance that the estimated
support is within a 25 percent bound. This is actually not bad and thus
the estimator for the support is relatively good.

In the third case the interpretation of the bound is a bit trickier but not
much. We get the bound

1−
16

(∑d
j=1 pj(1− pj) +

∑
i 6=j (pij − pipj)

)

(∑d
j=1 pj

)2

which, in the case of small pj and for indpedendant variables xj is approx-
imated by

1− 16(∑d
j=1 pj

) .

Consequently, in this case we can expect the length of an actual itemset to
be at most 25 percent of its expectation with a probability of more than
0.5 if the expected size is larger than 32.

Note that the dependance of these bounds as a function of the number
of variables d and the number of observations n are manifestations of the
concentration phenomena.

2.7. Examples of distributions

The simplest case is where all pj = q for some q > 0 and

p(x) = q|x|(1− q)d−|x|
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This is the case where every item is bought equally likely with probability
q and independently. The length of the itemset has in this case a binomial
distribution and the expected size of the itemset is

E(|x|) = qd.

The support of ax can be seen to be

s(ax) = q|x|.

This models the observation that large data sets have low support (but not
much else). The frequent itemsets correspond to itemsets which are limited
in size by

|x| ≤ log(σ0)/ log(q).

The distribution of the size is a binomial distribution

p(|x| = r) =
(

d

r

)
qr(1− q)d−r.

For very large numbers of items d and small q this is well approximated by
the Poisson distribution with λ := dq:

p(|x| = r) =
1
r!

e−λλr.

The (dual) cumulative distribution function is

p(|x| ≥ s) =
∞∑

r=s

1
r!

e−λλr.

In Figure 13 this probability is plotted as a function of x for the case of
λ = 4 together with the Markov bound.

This example is not very exciting but may serve as a first test example
for the algorithms. In addition, it is a model for “noise”. A realistic model
for the data would include noise and a “signal”, where the signal models the
fact that items are purchased in groups. Thus this example is an example
with no structure and ideally we would expect a datamining algorithm not
to suggest any structure either.

A second example, with just slightly more structure has again indepen-
dant random variables but with variable distributions such that

p(x) =
m∏

j=1

p
xj

j (1− pj)1−xj .
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Fig. 13. Distribution of size of market baskets for the simplest case (“o”) and the
Markov bound for λ = 4.

The average market basket in this case is

λ =
m∑

j=1

pj

and the support is

s(ax) =
m∏

j=1

p
xj

j .

In examples one can often find that the pj when sorted are approximated
by Zipf’s law, i.e,

pj =
α

j

for some constant

α =
λ∑n

j=1
1
j

.

A third example is motivated by the voting data. In this case we assume
that we have a “hidden variable” u which can take two values and which
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has a distribution of, say p(u = 0) = p(u = 1) = 0.5. In addition, we
have the conditional distributions p(x|u = 0) =

∏m
j=1 p

xj

j (1 − pj)1−xj and
p(x|u = 1) =

∏m
j=1 q

xj

j (1−qj)1−xj . From this we get the distribution of the
x to be

p(x) =
1
2




m∏

j=1

p
xj

j (1− pj)1−xj +
m∏

j=1

q
xj

j (1− 1j)1−xj


 .

Try to determine for this case what the distribution of the size of the item-
set, and the variance are. Choose specific distributions pj and qj . What
about the expected values for the aj and the ajk.

A forth example is again motivated by the voting data. If strickt party
discipline holds for some items, everyone would be voting the same for these
items. Thus we would have random variables x1 = · · ·xk with probability
p1 = · · · = pk and the other random variables could be random with prob-
ability pi, i > k. The probability distribution is then

p(x) = δ(x2 = x1) · · · δ(xk = x1)px1
1 · pxk+1

k+1 · · · pxd

d .

Again, we leave the further analysis of this example to the reader. Hint: the
support for any az with not components larger than k set but at least one
below is p1, independant of how many components are set.

The aim of association rule mining is to find itemsets which occur more
frequently based on an underlying grouping of items into larger blocks of
items which are frequently purchased together. In [3] the authors present a
model for market basket data which is used to generate synthetic data. It
is based on sets of items which are frequently purchased together. We will
not discuss this further at this stage.

3. The Apriori Algorithm

The aim of association rule discovery is the derivation of if-then-rules
based on the predicates ax defined in the previous subsection. An example
of such a rule is “if a market basket contains orange juice then it also
contains bread”.

One possible way to interpret such a rule is to identify it with the pred-
icate “either the market basket contains bread or it doesn’t contain orange
juice”. The analysis could then determine the support of this predicate.
However, this is not a predicate in the class we have defined in the previous
section. Of course it could be determined from the s(ax). However, this
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measure also is not directly interpretable and thus not directly applicable
in retail.

Association rules do not make the above identification but treat the
rule

a ⇒ b

as an (ordered) pair of predicates (a, b) and characterise this pair by its
support

s(a ⇒ b) := s(a ∧ b)

and its confidence

c(a ⇒ b) :=
s(a ∧ b)

s(a)
.

The support does not require further discussion but the confidence is a
measure of how well the predicate a is able to predict the predicate b.
More specifically, the confidence is the conditional probability that a market
basket contains the items in the item set b given that it contains the item
set a.

While the disadvantage of this approach is that it needs two numbers
for each rule, the determination of these numbers is straight-forward as the
first number is just a support of an item set and the second number is the
quotient of two supports. Thus one way to determine these numbers and
all rules for which both numbers are larger than given bounds is to first
determine all item sets with large enough supports, the frequent item sets
and within these search for rules with high confidence. These rules are called
the strong rules. This is indeed the approach taken by many algorithms and
we will discuss this further in later sections. For now we note that in the
case of the predicates defined by the market baskets ω one has

c(ax ⇒ ay) = F δ(y|x)

where F δ(y|x) = F δ(y ∧ x)/F δ(x) is a conditional cumulative distribution
function and ∧ denotes the glb. The relationship between conditional prob-
ability and confidence show one case where one can tell the confidence with
having to compute a quotient, namely, when x and y are two independent
samples such that

F δ(y ∧ x) = F δ(y)F δ(x)

and it follows that c(ax ⇒ ay) = F δ(y). With other words, the proportion
of the events containing x which also contain y is the same as the proportion
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of events which contain y overall. Thus the restriction to ω does not provide
any advantage. A simple way to check for this situation is the lift coefficient

γ(a ⇒ b) :=
c(a ⇒ b)

s(b)

which is one for independent a and b and less otherwise.
Now there are several problems with strong association rules which have

been addressed in the literature:

• The straight-forward interpretation of the rules may lead to wrong in-
ferences.

• The number of strong rules found can be very small.
• The number of strong rules can be very large.
• Most of the strong rules found are expected and do not lead to new

insights.
• The strong rules found do not lend themselves to any actions and are

hard to interpret.

We will address various of these challenges in the following. At this stage
the association rule mining problem consists of the following:

Find all strong association rules in a given data set D.
We will now discuss the classical Apriori algorithm as suggested by

Agrawal et al. in [3] and some of the most important derived algorithms.

3.1. Time complexity – computing supports

The data is a sequence x(1), . . . , x(n) of binary vectors. We can thus repre-
sent the data as a n by d binary matrix. The number of nonzero elements
is

∑n
i=1 |x(i)|. This is approximated by the expected length E(|x|) times n.

So the proportion of nonzero elements is E(|x|)/d. This can be very small,
especially for the case of market baskets, where out of the 10,000 items
usually less than 100 items are purchased. Thus less than one percent of all
the items are nonzero. In this case it makes sense to store the matrix in a
sparse format. Here we will consider two ways to store the matrix, either
by rows or by columns. The matrix corresponding to an earlier example is




1 1 0 0 0
1 0 1 1 0
1 0 0 0 1
1 1 0 1 0
0 0 0 0 1




.
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First we discuss the horizontal organisation. A row is represented simply
by the indices of the nonzero elements. And the matrix is represented as a
tuple of rows. For example, the above matrix is represented as

[
(1, 2) (1, 3, 4) (1, 5) (1, 2, 4) (5)

]

In practice we need in addition to the indices of the nonzero elements in
each row we need pointers which tell us where the row starts if contiguous
locations are used in memory.

Now assume that we have any row x and a az and would like to find
out if x supports az, i.e., if z ≤ x. If both the vectors are represented in the
sparse format this means that we would like to find out if the indices of z

are a subset of the indices of x. There are several different ways to do this
and we will choose the one which uses an auxillary bitvector v ∈ X (in full
format) which is initialised to zero. The proposed algorithm has 3 steps:

(1) Extract x into v, i.e., v ← x

(2) Extract the value of v for the elements of z, i.e., v[z]. If they are all
nonzero then z ≤ x.

(3) Set v to zero again, i.e., v ← 0

We assume that the time per nonzero element for all the steps is the same
τ and we get for the time:

T = (2|x|+ |z|)τ.
Now in practice we will have to determine if az(x) holds for mk different

vectors z which have all the same length k. Rather than doing the above
algorithm mk times one only needs to extract x once and one thus gets the
algorithm

(1) Extract x into v, i.e., v ← x

(2) Extract the values of v for the elements of z(j), i.e., v[z(j)]. If they are
all nonzero then z(j) ≤ x. Do this step for j = 1, . . . , mk.

(3) Set v to zero again, i.e., v ← 0

With the same assumptions as above we get (|z(j)| = k):

T = (2|x|+ mkk)τ.

Finally, we need to run this algorithm for all the rows x(i) and we need
to consider vectors z(j) of different lengths. Considering this one gets the
total time

T =
∑

k

(2
n∑

i=1

|x(i)|+ mkkn)τ
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and the expected time is

E(T ) =
∑

k

(2E(|x|) + mkk)nτ.

Note that the sum over k is for k between one and d but only the k for
which mk > 0 need to be considered. The complexity has two parts. The
first part is proportional to E(|x|)n which corresponds to the number of
data points times the average complexity of each data point. This part
thus encapsulates the data dependency. The second part is proportional to
mkkn where the factor mkk refers to the complexity of the search space
which has to be visited for each record n. For k = 1 we have m1 = 1 as
we need to consider all the components. Thus the second part is larger
than dnτ , in fact, we would probably have to consider all the pairs so that
it would be larger than d2nτ which is much larger than the first part as
2E(|x|) ≤ 2d. Thus the major cost is due to the search through the possible
patterns and one typically has a good approximation

E(T ) ≈
∑

k

mkknτ.

An alternative is the vertical organisation where the binary matrix (or
Boolean relational table) is stored column-wise. This may require slightly
less storage as the row wise storage as we only needs pointers to each
column and one typically has more rows than columns. In this vertical
storage scheme the matrix considered earlier would be represented as

[
(1, 2, 3, 4) (1, 4) (2) (2, 4) (3, 5)

]

The savings in the vertical format however, are offset by extra costs for the
algorithm as we will require an auxillary vector with n elements.

For any az the algorithm considers only the columns for which the com-
ponents zj are one. The algorithm determines the intersection (or elemen-
twise product) of all the columns j with zj = 1. This is done by using the
auxiliary array v which holds the current intersection. We initially set it
to the first column j with zj = 1, later extract all the values at the points
defined by the nonzero elements for the next column j′ for which zj′ = 1,
then zero the original ones in v and finally set the extracted values into the
v. More concisely, we have the algorithm, where xj stands for the whole
column j in the data matrix.

(1) Get j such that zj = 1, mark as visited
(2) Extract xj into v, i.e., v ← xj

(3) Repeat until no nonzero elements in z unvisited:
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(a) Get unvisited j such that zj = 1, mark as visited
(b) Extract elements of v corresponding to xj , i.e., w ← v[xj ]
(c) Set v to zero, v ← 0
(d) Set v to w, v ← w

(4) Get the support s(az) = |w|
So we access v three times for each column, once for the extraction of
elements, once for setting it to zero and once for resetting the elements.
Thus for the determination of the support of z in the data base we have
the time complexity of

T = 3τ

d∑

j=1

n∑

i=1

x
(i)
j zj .

A more careful analysis shows that this is actually an upper bound for the
complexity. Now this is done for mk arrays z(s,k) of size k and for all k.
Thus we get the total time for the determination of the support of all az

to be

T = 3τ
∑

k

mk∑
s=1

d∑

j=1

n∑

i=1

x
(i)
j z

(s,k)
j .

We can get a simple upper bound for this using x
(i)
j ≤ 1 as

T ≤ 3
∑

k

mkknτ

because
∑d

j=1 z
(s,k)
j = k. This is roughly 3 times what we got for the previ-

ous algorithm. If the x
(i)
j are random they all have an expectation E(x(i)

j )
which is typically much less than one and have an average expectation of
E(|x|)/d. If we introduce this into the equation for T we get the approxi-
mation

E(T ) ≈ 3E(|x|)
d

∑

k

mkknτ

which can be substantially smaller than the time for the previous algorithm.
Finally, we should point out that there are many other possible al-

gorithms and other possible data formats. Practical experience and more
careful analysis shows that one method may be more suitable for one data
set where the other is stronger for another data set. Thus one carefully has
to consider the specifics of a data set. Another consideration is also the size
k and number mk of the z considered. It is clear from the above that it is
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essential to carefully choose the “candidates” az for which the support will
be determined. This will further be discussed in the next sections. There is
one term which occured in both algorithms above and which characterises
the complexity of the search through multiple levels of az, it is:

C =
∑

k

mkk.

We will use this constant in the discussion of the efficiency of the search
procedures.

3.2. The algorithm

Some principles of the apriori algorithm are suggested in [2]. In particular,
the authors suggest a breadth-first search algorithm and utilise the apriori
principle to avoid unnecessary processing. However, the problem with this
early algorithm is that it generates candidate itemsets for each record and
also cannot make use of the vertical data organisation. Consequently, two
groups of authors suggested at the same conference a new and faster algo-
rithm which before each data base scan determines which candidate itemset
to explore [3,9]. This approach has substantially improved performance and
is capable of utilising the vertical data organisation. We will discuss this
algorithm using the currently accepted term frequent itemsets. (This was
in the earlier literature called “large itemsets” or “covering itemsets”.)

L0
L1
L2

L3
L4

Fig. 14. Level sets of Boolean lattices

The apriori algorithm visits the lattice of itemsets in a level-wise fashion,
see Figure 14 and Algorithm 1. Thus it is a breadth-first-search or BFS
procedure. At each level the data base is scanned to determine the support
of items in the candidate itemset Ck. Recall from the last section that
the major determining parameter for the complexity of the algorithm is
C =

∑
k mkk where mk = |Ck|.
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Algorithm 1 Apriori
C1 = A(X) is the set of all one-itemsets, k = 1
while Ck 6= ∅ do

scan database to determine support of all ay with y ∈ Ck

extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.
end while

It is often pointed out that much of the time is spent in dealing with
pairs of items. We know that m1 = d as one needs to consider all single
items. Furthermore, one would not have any items which alone are not
frequent and so one has m2 = d(d− 1)/2. Thus we get the lower bound for
C:

C ≤ m1 + 2m2 = d2.

As one sees in practice that this is a large portion of the total computations
one has a good approximation C ≈ d2. Including also the dependence on
the data size we get for the time complexity of apriori:

T = O(d2n).

Thus we have scalability in the data size but quadratic dependence on the
dimension or number of attributes.

Consider the first (row-wise) storage where T ≈ d2nτ . If we have
d = 10, 000 items and n = 1, 000, 000 data records and the speed of the
computations is such that τ = 10−9 the apriori algorithm would require
105 seconds which is around 30 hours, more than one day. Thus the time
spent for the algorithm is clearly considerable.

In case of the second (column-wise) storage scheme we have T ≈
3E(|x|)dnτ . Note that in this case for fixed size of the market baskets the
complexity is now

T = O(dn).

If we take the same data set as before and we assume that the average
market basket contains 100 items (E(|x|) = 100) then the apriori algorithm
would require only 300 seconds or five minutes, clearly a big improvement
over the row-wise algorithm.
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3.3. Determination and size of the candidate itemsets

The computational complexity of the apriori algorithm is dominated by
data scanning, i.e., evaluation of az(x) for data records x. We found earlier
that the complexity can be described by the constant C =

∑
k mkk. As mk

is the number of k itemsets, i.e., bitvectors where exactly k bits are one we
get mk ≤

(
m
k

)
. On the other hand the apriori algorithm will find the set Lk

of the actual frequent itemsets, thus Lk ⊂ Ck and so |Lk| ≤ mk. Thus one
gets for the constant C the bounds

∑

k

k|Lk| ≤ C =
∑

k

mkk ≤
d∑

k=0

(
d

k

)
k.

The upper bound is hopeless for any large size d and we need to get better
bounds. This depends very much on how the candidate itemsets Ck are
chosen. We choose C1 to be the set of all 1-itemsets, and C2 to be the set
of all 2-itemsets so that we get m1 = 1 and m2 = d(d− 1)/2.

The apriori algorithm determines alternatively Ck and Lk such that
successively the following chain of sets is generated:

C1 = L1 → C2 → L2 → C3 → L3 → C4 → · · ·

How should we now choose the Ck? We know, that the sequence Lk satisfies
the apriori property, which can be reformulated as

Definition 15: If y is a frequent k-itemset (i.e., y ∈ Lk) and if z ≤ y then
z is a frequent |z|-itemset, i.e., z ∈ L|z|.

Thus in extending a sequence L1, L2, . . . , Lk by a Ck+1 we can choose the
candidate itemset such that the extended sequence still satisfies the apriori
property. This still leaves a lot of freedom to choose the candidate itemset.
In particular, the empty set would allways be admissible. We need to find
a set which contains Lk+1. The apriori algorithm chooses the largest set
Ck+1 which satisfies the apriori condition. But is this really necessary? It
is if we can find a data set for which the extended sequence is the set of
frequent itemsets. This is shown in the next proposition:

Proposition 16: Let L1, . . . , Lm be any sequence of sets of k-itemsets
which satisfies the apriori condition. Then there exists a dataset D and a
σ > 0 such that the Lk are frequent itemsets for this dataset with minimal
support σ.
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Proof: Set x(i) ∈ ⋃
k Lk, i = 1, . . . , n to be sequence of all maximal item-

sets, i.e., for any z ∈ ⋃
k Lk there is an x(i) such that z ≤ x(i) and x(i) 6≤ x(j)

for i 6= j. Choose σ = 1/n. Then the Lk are the sets of frequent itemsets
for this data set.

For any collection Lk there might be other data sets as well, the one chosen
above is the minimal one. The sequence of the Ck is now characterised by:

(1) C1 = L1

(2) If y ∈ Ck and z ≤ y then z ∈ Ck′ where k′ = |z|.
In this case we will say that the sequence Ck satisfies the apriori condition.
It turns out that this characterisation is strong enough to get good upper
bounds for the size of mk = |Ck|.

However, before we go any further in the study of bounds for |Ck| we
provide a construction of a sequence Ck which satisfies the apriori condi-
tion. A first method uses Lk to construct Ck+1 which it chooses to be the
maximal set such that the sequence L1, . . . , Lk, Ck+1 satisfies the apriori
property. One can see by induction that then the sequence C1, . . . , Ck+1

will also satisfy the apriori property. A more general approach constructs
Ck+1, . . . , Ck+p sucht that L1, . . . , Lk,Ck+1, . . . , Ck+p satisfies the apriori
property. As p increases the granularity gets larger and this method may
work well for larger itemsets. However, choosing larger p also amounts to
larger Ck and thus some overhead. We will only discuss the case of p = 1
here.

The generation of Ck+1 is done in two steps. First a slightly larger set is
constructed and then all the elements which break the apriori property are
removed. For the first step the join operation is used. To explain join let the
elements of L1 (the atoms) be enumerated as e1, . . . , ed. Any itemset can
then be constructed as join of these atoms. We denote a general itemset by

e(j1, . . . , jk) = ej1 ∨ · · · ∨ ejk

where j1 < j2 < · · · < jk. The join of any k-itemset with itself is then
defined as

Lk on Lk := {e(j1, . . . , jk+1) | e(j1, . . . , jk) ∈ Lk, e(j1, . . . , jk−1, jk+1) ∈ Lk}.
Thus Lk on Lk is the set of all k + 1 itemsets for which 2 subsets with
k items each are frequent. As this condition also holds for all elements in
Ck+1 one has Ck+1 ⊂ Lk on Lk. The Ck+1 is then obtained by removing an
elements which contain infrequent subsets.



November 24, 2003 9:39 WSPC/Lecture Notes Series: 9in x 6in paper

Algorithms for Association Rules 43

For example, if (1, 0, 1, 0, 0) ∈ L2 and (0, 1, 1, 0, 0) ∈ L2 then
(1, 1, 1, 0, 0) ∈ L2 on L2. If we also know that (1, 1, 0, 0, 0) ∈ L2 then
(1, 1, 1, 0, 0) ∈ C3.

Having developed a construction for Ck we can now determine the
bounds for the size of the candidate itemsets based purely on combinatorial
considerations. The main tool for our discussion is the the Kruskal-Katona
theorem. The proof of this theorem and much of the discussion follows
closely the exposition in Chapter 5 of [4].

We will denote the set of all possible k-itemsets or bitvectors with ex-
actly k bits as Ik. Subsets of this set are sometimes also called hypergraphs
in the literature. The set of candidate itemsets Ck ⊂ Ik.

Given a set of k-itemsets Ck the lower shadow of Ck is the set of all
k − 1 subsets of the elements of Ck:

∂(Ck) := {y ∈ Ik−1 | y < z for some z ∈ Ck}.
This is the set of bitvectors which have k− 1 bits set at places where some
z ∈ Ck has them set. The shadow ∂Ck can be smaller or larger than the
Ck. In general, one has for the size |∂Ck| ≥ k independant of the size of Ck.
So, for example, if k = 20 then |∂Ck| ≥ 20 even if |Ck| = 1. (In this case we
actually have |∂Ck| = 20.) For example, we have ∂C1 = ∅, and |∂C2| ≤ d.

It follows now that the sequence of sets of itemsets Ck satisfies the
apriori condition iff

∂(Ck) ⊂ Ck−1.

The Kruskal-Katona Theorem provides an estimate of the size of the
shadow.

For our discussion we will map the bitvectors in the usual way onto
integers. This is done with the mapping defined by

φ(x) :=
d−1∑

i=0

2ixi .

For example, φ({1, 3, 5}) = 42. The induced order on the itemsets is then
defined by

y ≺ z :⇔ φ(y) < φ(z).

This is the colex (or colexicographic) order. In this order the itemset
{3, 5, 6, 9} ≺ {3, 4, 7, 9} as the largest items determine the order. In the
lexicographic ordering the order of these two sets would be reversed.
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Let [m] := {0, . . . , m− 1} and [m](k) be the set of all k-itemsets where
k bits are set in the first m positions. As in the colex order any z with bits
m and beyond set are larger than any of the elements in [m](k) this is just
the set of the first

(
m−1

k

)
bitvectors with k bits set.

We will now construct the sequence of the first m bitvectors for any m.
This corresponds to the first numbers, which, in the binary representation
have m ones set. Consider, for example the case of d = 5 and k = 2. For
this case all the bitvectors are in table ??. (Printed reverse for legibility.)

(0,0,0,1,1) 3
(0,0,1,0,1) 5
(0,0,1,1,0) 6
(0,1,0,0,1) 9
(0,1,0,1,0) 10
(0,1,1,0,0) 12
(1,0,0,0,1) 17
(1,0,0,1,0) 18
(1,0,1,0,0) 20
(1,1,0,0,0) 24

As before, we denote by ej the j − th atom and by e(j1, . . . , jk) the
bitvector with bits j1, . . . , jk) set to one. Furthermore, we introduce the
element-wise join of a bitvector and a set C of bitvectors as:

C ∨ y := {z ∨ y | z ∈ C}.
For 0 ≤ s ≤ ms < ms+1 < · · · < mk we introduce the following set of
k-itemsets:

B(k)(mk, . . . ,ms) :=
k⋃

j=s

(
[mj ](j) ∨ e(mj+1, . . . , mk)

)
⊂ Ik.

As only term j does not contain itemsets with item mj (all the others
do) the terms are pairwise disjoint and so the union contains

|B(k)(mk, . . . , ms)| = b(k)(mk, . . . ,ms) :=
k∑

j=s

(
mj

j

)

k-itemsets. This set contains the first (in colex order) bitvectors with k bits
set. By splitting off the last term in the union one then sees:

B(k)(mk, . . . , ms) =
(
B(k−1)(mk−1, . . . ,ms) ∨ emk

)
∪ [mk](k) (1)
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and consequently

b(k)(mk, . . . , ms) = b(k−1)(mk−1, . . . ,ms) + b(k)(mk).

Consider the example of table ?? of all bitvectors up to (1, 0, 0, 1, 0).
There are 8 bitvectors for which come earlier in the colex order. The highest
bit set for the largest element is bit 5. As we consider all smaller elements
we need to have all two-itemsets where the 2 bits are distributed between
positions 1 to 4 and there are

(
4
2

)
= 6 such bitvectors. The other cases have

the top bit fixed at position 5 and the other bit is either on position 1 or
two thus there are

(
2
1

)
= 2 bitvectors for which the top bit is fixed. Thus

we get a total of
(

4
2

)
+

(
2
1

)
= 8

bitvectors up to (and including) bitvector (1, 0, 0, 1, 0) for which 2 bits are
set. This construction is generalised in the following.

In the following we will show that b(k)(mk, . . . , ms) provides a unique
representation for the integers. We will make frequent use of the identity:

(
t + 1

r

)
− 1 =

r∑

l=1

(
t− r + l

l

)
. (2)

Lemma 17: For every m, k ∈ N there are numbers ms < · · · < mk such
that

m =
k∑

j=s

(
mj

j

)
(3)

and the mj are uniquely determined by m.

Proof: The proof is by induction over m. In the case of m = 1 one sees
immediately that there can only be one in the sum (3), thus s = k and the
only choice is mk = k.

Now assume that equation 3 is true for some m′ = m−1. We now show
uniqueness for m. We only need to show that mk is uniquely determined
as the uniqueness of the other mj follows from the induction hypothesis
applied to m′ = m−m− (

mk

k

)
.

So we assume a decomposition of the form 3 is given. Using equation 2
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one gets:

m =
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms

s

)

≤
(

mk

k

)
+

(
mk − 1
k − 1

)
+ · · ·+

(
mk − k + 1

1

)

=
(

mk + 1
k

)
− 1

as mk−1 ≤ mk − 1 etc. Thus we get
(

mk

k

)
≤ m ≤

(
mk + 1

k

)
− 1.

With other words, mk is the largest integer such that
(
mk

k

) ≤ m. This
provides a unique characterisation of mk which proves uniqueness.

Assume that the mj be constructed according to the method outlined
in the first part of this proof. One can check that equation 3 holds for these
mj using the characterisation.

What remains to be shown is mj+1 > mj and using inductions, it is
enough to show that mk−1 < mk. If, on the contrary, this does not hold
and mk−1 ≥ mk, then one gets from 2:

m ≥
(

mk

k

)
+

(
mk−1

k − 1

)

≥
(

mk

k

)
+

(
mk

k − 1

)

=
(

mk

k

)
+

(
mk − 1
k − 1

)
+ · · ·+

(
mk − k + 1

1

)
+ 1

≥
(

mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms

s

)
+ 1 by induction hyp.

= m + 1

which is not possible.

Let N (k) be the set of all k-itemsets of integers. It turns out that the
B(k) occur as natural subsets of N (k):

Theorem 18: The set B(k)(mk, . . . ,ms) consists of the first m =∑k
j=s

(
mj

j

)
itemsets of N (k) (in colex order).

Proof: The proof is by induction over k − s. If k = s and thus m =
(
mk

k

)
then the first elements of N (k) are just [mk](k). If k > s then the first

(
mk

k

)
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elements are still [mk](k). The remaining m − (
mk

k

)
elements all contain

bit mk. By the induction hypothesis the first bk−1(mk−1, . . . , ms) elements
containing bit mk are Bk−1(mk−1, . . . , ms)∨ emk

and the rest follows from
1.

The shadow of the first k-itemsets B(k)(mk, . . . ,ms) are the first k− 1-
itemsets, or more precisely:

Lemma 19:

∂B(k)(mk, . . . , ms) = B(k−1)(mk, . . . , ms).

Proof: First we observe that in the case of s = k the shadow is simply set
of all k − 1 itemsets:

∂[mk]k = [mk](k−1).

This can be used as anchor for the induction over k − s. As was shown
earlier, one has in general:

B(k)(mk, . . . , ms) = [mk]k ∪
(
B(k−1)(mk−1, . . . , ms) ∨ emk

)

and, as the shadow is additive, as

∂B(k)(mk, . . . , ms) = [mk](k−1)∪
(
B(k−2)(mk−1, . . . ,ms) ∨ emk

)
= B(k−1)(mk, . . . , ms).

Note that B(k−1)(mk−1, . . . , ms) ⊂ [ml](k−1).

Recall that the shadow is important for the apriori property and we
would thus like to determine the shadow, or at least its size for more arbitray
k-itemsets as they occur in the apriori algorithm. Getting bounds is feasible
but one requires special technology to do this. This is now what we are going
to develop. We would like to reduce the case of general sets of k-itemsets to
the case of the previous lemma, where we know the shadow. So we would like
to find a mapping which maps the set of k-itemsets to the first k itemsets
in colex order without changing the size of the shadow. We will see that
this can almost be done in the following. The way to move the itemsets to
earlier ones (or to “compress” them) is done by moving later bits to earlier
positions.

So we try to get the k itemsets close to B(k)(mk, . . . , ms) in some sense,
so that the size of the shadow can be estimated. In order to simplify no-
tation we will introduce z + ej for z ∨ ej when ej 6≤ z and the reverse
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operation (removing the j-th bit) by z− ej when ej ≤ z. Now we introduce
compression of a bitvector as

Rij(z) =

{
z − ej + ei if ei 6≤ z and ej ≤ z

z else

Thus we simply move the bit in position j to position i if there is a bit in
position j and position i is empty. If not, then we don’t do anything. So we
did not change the number of bits set. Also, if i < j then we move the bit
to an earlier position so that Rij(z) ≤ z. For our earlier example, when we
number the bits from the right, starting with 0 we get R1,3((0, 1, 1, 0, 0)) =
(0, 0, 1, 1, 0) and R31((0, 0, 0, 1, 1)) = (0, 0, 0, 1, 1). This is a “compression”
as it moves a collection of k-itemsets closer together and closer to the vector
z = 0 in terms of the colex order.

The mapping Rij is not injective as

Rij(z) = Rij(y)

when y = Rij(z) and this is the only case. Now consider for any set C of
bitvectors the set R−1

ij (C) ∩ C. These are those elements of C which stay
in C when compressed by Rij . The compression operator for bitsets is now
defined as

R̃i,j(C) = Rij(C) ∪ (C ∩R−1
ij (C)).

Thus the points which stay in C under Rij are retained and the points
which are mapped outside C are added. Note that by this we have avoided
the problem with the non-injectivity as only points which stay in C can
be mapped onto each other. The size of the compressed set is thus the
same. However, the elements in the first part have been mapped to earlier
elements in the colex order. In our earlier example, for i, j = 1, 3 we get

C = {(0, 0, 0, 1, 1), (0, 1, 1, 0, 0), (1, 1, 0, 0, 0), (0, 1, 0, 1, 0)}
we get

R̃i,j(C) = {(0, 0, 0, 1, 1), (0, 0, 1, 1, 0), (1, 1, 0, 0, 0), (0, 1, 0, 1, 0)}.
Corresponding to this compression of sets we introduce a mapping R̃i,j

(which depends on C) by R̃i,j(y) = y if Ri,j(y) ∈ C and R̃i,j(y) = Ri,j(y)
else. In our example this maps corresponding elements in the sets onto each
other. In preparation, for the next lemma we need the simple little result:

Lemma 20: Let C be any set of k itemsets and z ∈ C, ej ≤ z, ei 6≤ z. Then

z − ej + ei ∈ R̃i,j(C).
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Proof: There are two cases to consider:

(1) Either z − ej + ei 6∈ C in which case z − ej + ei = R̃i,j(z).
(2) Or z− ej + ei ∈ C and as z− ej + ei = R̃i,j(z− ej + ei) one gets again

z − ej + ei ∈ R̃i,j(C).

The next result shows that in terms of the shadow, the “compression”
R̃i,j really is a compression as the shadow of a compressed set can never
be larger than the shadow of the original set. We suggest therefor to call it
compression lemma.

Lemma 21: Let C be a set of k itemsets. Then one has

∂R̃i,j(C) ⊂ R̃i,j(∂C).

Proof: Let x ∈ ∂R̃i,j(C). We need to show that

x ∈ R̃i,j(∂C)

and we will enumerate all possible cases.
First notice that there exists a ek 6≤ x such that

x + ek ∈ R̃i,j(C)

so there is an y ∈ C such that

x + ek = R̃i,j(y).

(1) In the first two cases R̃i,j(y) 6= y and so one has (by the previous
lemma)

x + ek = y − ej + ei, for some y ∈ C, ej ≤ y, ei 6≤ y.

(a) First consider i 6= k. Then there is a bitvector z such that y = z+ek

and z ∈ ∂C. Thus we get

x = z − ej + ei ∈ R̃i,j(∂C)

as z ∈ ∂C and with lemma 20.
(b) Now consider i = k. In this case x + ei = y − ej + ei and so

x = y − ej ∈ ∂C. As ej 6≤ x one gets

x = R̃i,j(x) ∈ R̃i,j(∂C).

(2) In the remaining cases R̃i,j(y) = y, i.e., x + ek = R̃i,j(x + ek). Thus
x+ ek = y ∈ C and so x ∈ ∂C. Note that R̃i,j actually depends on ∂C!

(a) In the case where ej 6≤ x one has x = R̃i,j(x) ∈ R̃i,j(∂C).
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(b) In the other case ej ≤ x. We will show that x = R̃i,j(x) and, as
x ∈ ∂C one gets x ∈ R̃i,j(∂C).

i. If k 6= i then one can only have x + ek = R̃i,j(x + ek) if either
ei ≤ x, in which case x = R̃i,j(x), or x−ej +ei +ek ∈ C in which
case x− ej + ei ∈ ∂C and so x = R̃i,j(x).

ii. Finally, if k = i, then x + ei ∈ C and so x − ej + ei ∈ ∂C thus
x = R̃i,j(x).

The operator R̃i,j maps sets of k itemsets onto sets of k itemsets and
does not change the number of elements in a set of k itemsets. One now
says that a set of k itemsets C is compressed if R̃i,j(C) = C for all i < j.
This means that for any z ∈ C one has again Rij(z) ∈ C. Now we can move
to prove the key theorem:

Theorem 22: Let k ≥ 1, A ⊂ N (k), s ≤ ms < · · · < mk and

|A| ≥ b(k)(mk, . . . ,ms)

then

|∂A| ≥ b(k−1)(mk, . . . , ms).

Proof: First we note that the shadow is a monotone function of the un-
derlying set, i.e., if A1 ⊂ A2 then ∂A1 ⊂ ∂A2. From this it follows that it
is enough to show that the bound holds for |A| = b(k)(mk, . . . , ms).

Furthermore, it is sufficient to show this bound for compressed A as
compression at most reduces the size of the shadow and we are looking for
a lower bound. Thus we will assume A to be compressed in the following.

The proof uses double induction over k and m = |A|. First we show
that the theorem holds for the cases of k = 1 for any m and m = 1 for any
k. In the induction step we show that if the theorem holds for 1, . . . , k − 1
and any m and for 1, . . . , m − 1 and k then it also holds for k and m, see
figure (15).

In the case of k = 1 (as A is compressed) one has:

A = B(1)(m) = {e0, . . . , em−1}
and so

∂A = ∂B(1)(m) = {0}
hence |∂A| = 1 = b(0)(m).
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Fig. 15. Double induction

In the case of m = |A| = 1 one has:

A = B(k)(k) = {e(0, . . . , k − 1)}
and so:

∂A = ∂B(k)(k) = [k](k−1)

hence |∂A| = k = b(k−1)(k).
The key step of the proof is a partition of A into bitvectors with bit 0 set

and such for which bit 0 is not set: A = A0∪A1 where A0 = {x ∈ A|x0 = 0}
and A1 = {x ∈ A|x0 = 1}.
(1) If x ∈ ∂A0 then x + ej ∈ A0 for some j > 0. As A is compressed it

must also contain x + e0 = R0j(x + ej) ∈ A1 and so x ∈ A1 − e0 thus

|∂A0| ≤ |A1 − e0| = |A1|.
(2) A special case is A = B(k)(mk, . . . ,ms) where one has |A0| = b(k)(mk−

1, . . . , ms − 1) and |A1| = b(k−1)(mk − 1, . . . ,ms − 1) and thus

m = b(k)(mk, . . . , ms) = b(k)(mk−1, . . . ,ms−1)+b(k−1)(mk−1, . . . , ms−1)

(3) Now partition ∂A1 into 2 parts:

∂A1 = (A1 − e0) ∪ (∂(A1 − e0) + e0).

It follows from previous inequalities and the induction hypothesis that
|∂A1| = |A1−e0|+ |∂(A1−e0)+e0| = |A1|+ |∂(A1−e0)| ≥ b(k−1)(mk−
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1, . . . , ms − 1) + b(k−2)(mk − 1, . . . , ms − 1) = b(k−1)(mk, . . . ,ms) and
hence

|∂A| ≥ |∂A1| ≥ b(k−1)(mk, . . . , ms)

This theorem is the tool to derive the bounds for the size of future candidate
itemsets based on a current itemset and the apriori principle.

Theorem 23: Let the sequence Ck satisfy the apriori property and let

|Ck| = b(k)(mk, . . . , mr).

Then

|Ck+p| ≤ b(k+p)(mk, . . . ,mr)

for all p ≤ r.

Proof: The reason for the condition on p is that the shadows are well
defined.

First, we choose r such that mr ≤ r + p− 1, mr+1 ≤ r + 1 + p− 1, . . .,
ms−1 ≤ s − 1 + p − 1 and ms ≥ s + p − 1. Note that s = r and s = k + 1
may be possible.

Now we get an upper bound for the size |Ck|:
|Ck| = b(k)(mk, . . . , mr)

≤ b(k)(mk, . . . , ms) +
s−1∑

j=1

(
j + p− 1

j

)

= b(k)(mk, . . . , ms) +
(

s + p− 1
s− 1

)
− 1

according to a previous lemma.
If the theorem does not hold then |Ck+p| > b(k+p)(mj , . . . , mr) and thus

|Ck+p| ≥ b(k+p)(mj , . . . ,mr) + 1

≥ b(k+p)(mk, . . . , ms) +
(

s + p− 1
s + p− 1

)

= b(k+p)(mk, . . . , ms, s + p− 1).

Here we can apply the previous theorem to get a lower bound for Ck:

|Ck| ≥ b(k)(mk, . . . , ms, s + p− 1).

This, however is contradicting the higher upper bound we got previously
and so we have to have |Ck+p| ≤ b(k+p)(mj , . . . , mr).
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As a simple consequence one also gets tightness:

Corollary 24: For any m and k there exists a Ck with |Ck| = m =
b(k+p)(mk, . . . , ms+1). such that

|Ck+p| = b(k+p)(mk, . . . ,ms+1).

Proof: The Ck consists of the first m k-itemsets in the colexicographic
ordering.

In practice one would know not only the size but also the contents of any
Ck and from that one can get a much better bound than the one provided
by the theory. A consequence of the theorem is that for Lk with |Lk| ≤

(
mk

k

)
one has |Ck+p| ≤

(
mk

k+p

)
. In particular, one has Ck+p = ∅ for k > mp − p.

3.4. Apriori Tid

The apriori algorithm discussed above computes supports of itemsets by
doing intersections of columns. Some of these intersections are repeated
over time and, in particular, entries of the Boolean matrix are revisited
which have no impact on the support. The Apriori TID algorithm provides
a solution to some of these problems. For computing the supports for larger
itemsets it does not revisit the original table but transforms the table as
it goes along. The new columns correspond to the candidate items. In this
way each new candidate itemset only requires the intersection of two old
ones.

The following shows an example on how this works. The example is
adapted from [3]. In the first row the itemsets from Ck are depicted. The
minimal support is 50 percent or 2 rows. The initial data is:




1 2 3 4 5
1 0 1 1 0
0 1 1 0 1
1 1 1 0 1
0 1 0 0 1




Note that the column (or item) four is not frequent and thus not considered
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for Ck. Thus one gets in the Apriori TID after one step the matrix:



(1, 2) (1, 3) (1, 5) (2, 3) (2, 5) (3, 5)
0 1 0 0 0 0
0 0 0 1 1 1
1 1 1 1 1 1
0 0 0 0 1 0




Here one can see directly that the itemsets (1, 2) and (1, 5) are not frequent.
It turns out that there remains only one candidate, namely (2, 3, 5) and the
matrix is




(2, 3, 5)
0
1
1
0




Let z(j1, . . . , jk) denote the elements of Ck. Then the elements in the trans-
formed Boolean matrix are az(j1,...,jk)(xi).

We will use again an auxiliary array v ∈ {0, 1}n. The apriori tid algo-
rithm uses the join operation from earlier in order to construct a matrix for
the frequent itemsets Lk+1 from Lk. (This, as the previous algorithms are
assumed to be in-memory, i.e., all data is stored in memory. The case of
very large data sets which do not fit into memory will be discussed later.)
The key part of the algorithm, i.e., the step from k to k + 1 is then:

(1) Select pair of frequent k-itemsets (y, z), mark as read
(2) expand xy =

∧
i xyi

i , i.e., v ← xy

(3) extract elements using xz, i.e., w ← v[xz]
(4) compress result and reset v to zero, v ← 0

There are three major steps where the auxiliary vector v is accessed. The
time complexity for this is

T =
n∑

i=1

(2|(x(i))y|+ |(x(i))z|)τ.

This has to be done for all elements y∨z where y, z ∈ Lk. Thus the average
complexity is

E(T ) =
∑

k

3nmkE(xy)τ
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for some “average” y and xy =
∧

i xyi

i . Now for all elements in Lk the
support is larger than σ, thus E(xy) ≥ σ. So we get a lower bound for the
complexity:

E(T ) ≥
∑

k

3nmkστ.

We can also obtain a simple upper bound if we observe that E(xy) ≤
E(|x|)/d which is true “on average”. From this we get

E(T ) ≤
∑

k

3nmk
E(|x|)

d
τ.

Another (typically lower bound) approximation is obtained if we as-
sume that the components of x are indepdendent. In this case E(xy) ≈
(E(|x|)/d)k and thus

E(T ) ≥
∑

k

3nmk(E(|x|)/d)kτ.

From this we would expect that for some rk ∈ [1, k] we get the approxima-
tion

E(T ) ≈
∑

k

3nmk(E(|x|)/d)rkτ.

Now recall that the original column-wise apriori implementation required

E(T ) ≈
∑

k

3nmkk(E(|x|)/d)τ

and so the “speedup” we can achieve by using this new algorithm is around

S ≈
∑

k kmk∑
k(E(|x|)/d)rk−1mk

.

which can be substantial as both k ≥ 1 and E(|x|)/d)rk−1 < 1. We can see
that there are two reasons for the decrease in work: First we have reused
earlier computations of xj1 ∧ · · · ∧ xjk

and second we are able to make use
of the lower support of the k-itemsets for larger k. While this second effect
does strongly depend on rk and thus the data, the first effect allways holds,
so we get a speedup of at least

S ≥
∑

k kmk∑
k mk

,

i.e., the average size of the k-itemsets. Note that the role of the number mk

of candidate itemsets maybe slightly diminished but this is still the core
parameter which determines the complexity of the algorithm and the need
to reduce the size of the frequent itemsets is not diminished.
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3.5. Constrained association rules

The amount of frequent itemsets found by the apriori algorithm will often
be too large or too small. While the prime mechanism of controlling the
number itemsets found is the minimal support σ, this may often not be
enough as small collections of frequent itemsets may often contain mostly
well known associations whereas large collections may reflect mostly ran-
dom fluctuations. There are effective other ways to controll the amount
of itemsets obtained. First, in the case of too many itemsets one can use
constraints to filter out trivial or otherwise uninteresting itemsets. In the
case of too few frequent itemsets one can also change the attributes or fea-
tures which define the vector x. In particular, one can introduce new “more
general” attributes. For example, one might find that rules with “ginger
beer” are not frequent. However, rules with “soft drinks” will have much
higher support and may lead to interesting new rules. Thus one introduces
new more general items. However, including more general items while main-
taining the original special items leads to duplications in the itemsets, in
our example the itemset containing ginger beer and soft drinks is identi-
cal to the set which only contains ginger beer. In order to avoid this one
can again introduce constraints, which, in our example would identify the
itemset containing ginger beer only with the one containing softdrink and
ginger beer.

Constraints are conditions for the frequent itemsets of interest. These
conditions take the form “predicate = true” with some predicates

b1(z), . . . , bs(z).

Thus one is looking for frequent k-itemsets L∗k for which the bj are true,
i.e.,

L∗k := {z ∈ Lk | bj(z) = 1}.
These constraints will reduce the amount of frequent itemsets which need
to be further processed, but can they also assist in making the algorithms
more efficient? This will be discussed next after we have considered some
examples. Note that the constraints are not necessarily simple conjunctions!
Examples:

• We have mentioned the rule that any frequent itemset should not con-
tain an item and its generalisation, e.g., it should not contain both soft
drinks and ginger beer as this is identical to ginger beer. The constraint
is of the form b(x) = ¬ay(x) where y is the itemset where the “softdrink
and ginger beer bits” are set.
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• In some cases, frequent itemsets have been well established earlier. An
example are crisps and soft drinks. There is no need to rediscover this
association. Here the constraint is of the form b(x) = ¬δy(x) where y

denotes the itemset “softdrinks and chips”.
• In some cases, the domain knowledge tells us that some itemsets are pre-

scribed, like in the case of a medical schedule which prescribes certain
procedures to be done jointly but others should not be jointly. Finding
these rules is not interesting. Here the constraint would exclude certain
z, i.e., b(z) = ¬δy(z) where y is the element to exclude.

• In some cases, the itemsets are related by definition. For example the
predicates defined by |z| > 2 is a consequence of |z| > 4. Having discov-
ered the second one relieves us of the need to discover the first one. This,
however, is a different type of constraint which needs to be considered
when defining the search space.

A general algorithm for the determination of the L∗k determines at ev-
ery step the Lk (which are required for the continuation) and from those
outputs the elements of L∗k. The algorithm is exactly the same as apriori
or apriori tid except that not all frequent itemsets are output. See Algo-
rithm 2. The work is almost exactly the same as for the original apriori

Algorithm 2 Apriori with general constraints
C1 = A(X) is the set of all one-itemsets, k = 1
while Ck 6= ∅ do

scan database to determine support of all z ∈ Ck

extract frequent itemsets from Ck into Lk

use the constraints to extract the constrained frequent itemsets in L∗k
generate Ck+1

k := k + 1.
end while

algorithm.
Now we would like to understand how the constraints can impact the

computational performance, after all, one will require less rules in the
end and the discovery of less rules should be faster. This, however, is not
straight-forward as the constrained frequent itemsets L∗k do not necessar-
ily satisfy the apriori property. There is, however an important class of
constraints for which the apriori property holds:
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Theorem 25: If the constraints bj , j = 1, . . . , m are anti-monotone then
the set of constrained frequent itemsets {L∗k} satisfies the apriori condition.

Proof: Let y ∈ L∗k and z ≤ y. As L∗k ⊂ Lk and the (unconstrained frequent
itemsets) Lk satisfy the apriori condition one has z ∈ Lsize(z).

As the bj are antimonotone and y ∈ L∗k one has

bj(z) ≥ bj(y) = 1

and so bj(z) = 1 from which it follows that z ∈ L∗size(z).

When the apriori condition holds one can generate the candidate item-
sets Ck in the (constrained) apriori algorithm from the sets L∗k instead of
from the larger Lk. However, the constraints need to be anti-monotone. We
know that constraints of the form az(j) are monotone and thus constraints
of the form bj = ¬az(j) are antimonotone. Such constraints say that a cer-
tain combination of items should not occur in the itemset. An example of
this is the case of ginger beer and soft drinks. Thus we will have simpler
frequent itemsets in general if we apply such a rule. Note that itemsets have
played three different roles so far:

(1) as data points x(i)

(2) as potentially frequent itemsets z and
(3) to define constraints ¬az(j) .

The constraints of the kind bj = ¬az(j) are now used to reduce the
candidate itemsets Ck prior to the data base scan (this is where we save).
Even better, it turns out that the conditions only need to be checked for
level k = |z(j)|. (This gives a minor saving.) This is summarised in the next
theorem:

Theorem 26: Let the constraints be bj = ¬az(j) for j = 1, . . . , s. Further-
more let the candidate k-itemsets for L∗k be sets of k-itemsets such that

C∗k = {y ∈ Ik | if z < y then z ∈ L|z| and bj(y) = 1}
and a further set defined by

C̃k = {y ∈ Ik | if z < y then z ∈ L|z| and if |z(j)| = k then bj(y) = 1 }.
Then C̃k = C∗k .

Proof: We need to show that every element y ∈ C̃k satisfies the constraints
bj(y) = 1. Remember that |y| = k. There are three cases:
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• If |z(j)| = |y| then the constraint is satisfied by definition
• If |z(j)| > |y| then z(j) 6≤ y and so bj(y) = 1
• Consider the case |z(j)| < |y|. If bj(y) = 0 then az(j)(y) = 1 and

so z(j) ≤ y. As |z(j)| < |y| it follows z(j) < y. Thus it follows that
z(j) ∈ L∗

z(j) and, consequently, bj(z(j)) = 1 or z(j) 6≤ z(j) which is not
true. It follows that in this case we have bj(y) = 1.

From this it follows that C̃k ⊂ C∗k . The converse is a direct consequence of
the definition of the sets.

Thus we get a variant of the apriori algorithm which checks the constraints
only for one level, and moreover, this is done to reduce the number of
candidate itemsets. This is Algorithm 3.

Algorithm 3 Apriori with antimonotone constraints
C1 = A(X) is the set of all one-itemsets, k = 1
while Ck 6= ∅ do

extract elements of Ck which satisfy the constraints az(j)(x) = 0 for
|z(j)| = k and put into C∗k
scan database to determine support of all y ∈ C∗k
extract frequent itemsets from C∗k into L∗k
generate Ck+1 (as per ordinary apriori)
k := k + 1.

end while

3.6. Partitioned algorithms

The previous algorithms assumed that all the data was able to fit into
main memory and was resident in one place. Also, the algorithm was for
one processor. We will look here into partitioned algorithms which lead to
parallel, distributed and out-of-core algorithms with few synchronisation
points and disk scans. The algorithms have been suggested in [10].

We assume that the data is partitioned into equal parts as

D = [D1, D2, . . . , Dp]

where D1 = (x(1), . . . , x(n/p)), D2 = (x(n/p+1), . . . , x(2n/p)), etc. While we
assume equal distribution it is simple to generalise the discussions below to
non-equal distributions.
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In each partition Dj an estimate for the support s(a) of a predicate
can be determined and we will call this ŝj(a). If ŝ(a) is the estimate of the
support in D then one has

ŝ(a) =
1
p

p∑

j=1

ŝj(a).

This leads to a straight-forward parallel implementation of the apriori al-
gorithm: The extraction of the Lk can either be done on all the processors

Algorithm 4 Parallel Apriori
C1 = A(X) is the set of all one-itemsets, k = 1
while Ck 6= ∅ do

scan database to determine support of all z ∈ Ck on each Dj and sum
up the results
extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.
end while

redundantly or on one master processor and the result can then be com-
municated. The parallel algorithm also leads to an out-of-core algorithm
which does the counting of the supports in blocks. One can equally develop
an apriori-tid variant as well.

There is a disadvantage of this straight-forward approach, however. It
does require many synchronisation points, respectively, many scans of the
disk, one for each level. As the disks are slow and synchronisation expensive
this will cost some time. We will not discuss and algorithm suggested by [10]
which substantially reduces disk scans or synchronisation points at the cost
of some redundant computations. First we observe that

min
k

ŝk(a) ≤ ŝ(a) ≤ max
k

ŝk(a)

which follows from the summation formula above. A consequence of this is

Theorem 27: Each a which is frequent in D is at least frequent in one
Dj .

Proof: If for some frequent a this would not hold then one would get

max ŝj(a) < σ0
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if σ0 is the threshold for frequent a. By the observation above ŝ(a) < σ0

which contradicts the assumption that a is frequent.

Using this one gets an algorithm which generates in a first step frequent k-
itemsets Lk,j for each Dj and each k. This requires one scan of the data, or
can be done on one processor, respectively. The union of all these frequent
itemset is then used as a set of candidate itemsets and the supports of all
these candidates is found in a second scan of the data. The parallel variant
of the algorithm is then Algorithm 5. Note that the supports for all the levels

Algorithm 5 Parallel Association Rules
determine the frequent k-itemsets Lk,j for all Dj in parallel
Cp

k :=
⋃p

j=1 Lk,j and broadcast
determine supports ŝk for all candidates and all partitions in parallel
collect all the supports, sum up and extract the frequent elements from
Cp

k .

k are collected simultaneously thus they require only two synchronisation
points. Also, the apriori property holds for the Cp

k :

Proposition 28: The sequence Cp
k satisfies the apriori property, i.e.,

z ∈ Cp
k & y ≤ z ⇒ y ∈ Cp

|y|.

Proof: If z ∈ Cp
k & y ≤ z then there exists a j such that z ∈ Lk,j . By

the apriori property on Dj one has y ∈ L|y|,j and so y ∈ Cp
|y|.

In order to understand the efficiency of the algorithm one needs to esti-
mate the size of the Cp

k . In the (computationally best case, all the frequent
itemsets are identified on the partitions and thus

Cp
k = Lk,j = Lk.

We can use any algorithm to determine the frequent itemsets on one par-
tition, and, if we assume that the algorithm is scalable in the data size the
time to determine the frequent itemsets on all processors is equal to 1/p of
the time required to determine the frequent itemsets on one processor as
the data is 1/p on each processor. In addition we require to reads of the
data base which has an expectation of nλτDisk/p where λ is the average
size of the market baskets and τDisk is the time for one disk access. There
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is also some time required for the communication which is proportional to
the size of the frequent itemsets. We will leave the further analysis which
follows the same lines as our earlier analysis to the reader at this stage.

As the partition is random, one can actually get away with the determi-
nation of the supports for a small subset of Cp

k , as we only need to determine
the support for az for which the supports have not been determined in the
first scan. One may also wish to choose the minimal support σ for the first
scan slightly lower in order to further reduce the amount of second scans
required.

3.7. Finding strong rules

The determination of rules of the kind az ⇒ ay is the last step in the
apriori algorithm. As it does not require any scanning of the data it has
been given less attention. However, in [3] the authors show how to apply
the antimonotonicity again to get some gains.

Remember that we are interested in strong association rules of the form

az ⇒ ay

for which z ∨ y is a frequent itemset and for which the confidence is larger
than a given threshold γ0 > 0:

conf(az ⇒ ay) =
s(az∨y)
s(az)

≥ γ0.

A simple procedure would now visit each frequent itemset z and look at
all pairs z1, z2 such that z = z1 ∨ z2 and z1 ∧ z2 = 0 and consider all rules
az1 ⇒ az2 . This procedure can be improved by taking into account that

Theorem 29: Let z = z1 ∨ z2 = z3 ∨ z4 and z1 ∧ z2 = z3 ∧ z4 = 0. Then if
az1 ⇒ az2 is a strong association rule and z3 ≥ z1 then so is az3 ⇒ az4 .

This is basically “the apriori property for the rules” and allows pruning
the tree of possible rules quite a lot. The theorem is again used as a nec-
essary condition. We start the algorithm by considering z = z1 ∨ z2 with
1-itemsets for z2 and looking at all strong rules. Then, if we consider a
2-itemset for z2 both subsets y < z2 need to be consequents of strong rules
in order for z2 to be a candidate of a consequent. By constructing the con-
sequents taking into account that all their nearest neighbors (their cover
in lattice terminology) need to be consequents as well. Due to the inter-
pretability problem one is mostly interested in small consequent itemsets
so that this is not really a big consideration.
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4. Other Approaches

4.1. Mining Sequences

The following is an example of how one may construct more complex struc-
tures from the simple market baskets. We consider here a special case of
sequences, see [7,1]. Let the data be of the form

(x1, . . . , xm)

where each xi is an itemset (not a component as in our earlier notation.
Examples of sequences correspond to the shopping behaviour of customers
of retailers over time, or the sequence of services a patient receives over time.
The focus is thus not on individual market-baskets but on the customers.
We do not discuss the temporal aspects, just the sequencial ones.

In defining our space of features we include the empty sequence () but
not components of the sequences are 0, i.e.,

xi 6= 0.

The rationale for this is that sequences correspond to actions which occur in
some order and 0 would correspond to a non-action. We are not interested
in the times when a shoper went to the store and didn’t buy anything at
all. Any empty component itemsets in the data will also be removed.

The sequences also have an intrinsic partial ordering

x ≤ y

which holds for (x1, . . . , xm) and (y1, . . . , yk) when ever there is a sequence
1 ≤ i1 < i2 < · · · < im ≤ k such that

xi ≤ yis , s = 1, . . . ,m.

One can now verify that this defines a partial order on the set of se-
quences introduced above. However, the set of sequences does not form
a lattice as there are not necessarily unique lowest upper or greatest
lower bounds. For example, the two sequences ((0, 1), (1, 1), (1, 0)) and
((0, 1), (0, 1)) have the two (joint) upper bounds ((0, 1), (1, 1), (1, 0), (0, 1))
and ((0, 1), (0, 1), (1, 1), (1, 0) which have now common lower bound which
is still an upper bound for both original sequences. This makes the search
for frequent itemsets somewhat harder.

Another difference is that the complexity of the mining tasks has grown
considerably, with |I| items one has 2|I| market-baskets and thus 2|I|m

different sequences of length ≤ m. Thus it is essential to be able to deal
with the computational complexity of this problem. Note in particular, that
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the probability of any particular sequence is going to be extremely small.
However, one will be able to make statements about the support of small
subsequences which correspond to shopping or treatment patterns.

Based on the ordering, the support of a sequence x is the set of all
sequences larger than x:

supp(x) = {y|x ≤ y}.
The probability of this set of sequences is again called support:

s(x) = P (supp(x)).

This is estimated by the number of sequences in the data base which are in
the support. Note that the itemsets now occur as length 1 sequences and
thus the support of the itemsets can be identified with the support of the
corresponding 1 sequence. As our focus is now on sequences this is different
from the support we get if we look just at the distribution of the itemsets.

The length of a sequence is the number of non-empty components. Thus
we can now define an apriori algorithm as before. This would start with the
determination of all the frequent 1 sequences which correspond to all the
frequent itemsets. Thus the first step of the sequence mining algorithm is
just the ordinary apriori algorithm. Then the apriori algorithm continues
as before, where the candidate generation step is similar but now we join
any two sequences which have all components identical except for the last
(non-empty) one. Then one gets a sequence of length m + 1 from two such
sequences of length m by concatenating the last component of the second
sequence on to the first one. After that one still needs to check if all subse-
quences are frequent to do some pruning.

There has been some arbitrariness in some of the choices. Alternatives
choose the size of a sequence as the sum of the sizes of the itemsets. In this
case the candidate generation procedure becomes slightly more complex,
see [1].

4.2. The FP tree algorithm

The Apriori algorithm is very effective for discovering a reasonable num-
ber of small frequent itemsets. However it does show severe performance
problems for the discovery of large numbers of frequent itemsets. If, for
example, there are 106 frequent items then the set of candidate 2-itemsets
contains 5 · 1011 itemsets which all require testing. In addition, the Apriori
algorithm has problems with the discovery of very long frequent itemsets.
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For the discovery of an itemset with 100 items the algorithm requires scan-
ning the data for all the 2100 subsets in 100 scans. The bottleneck in the
algorithm is the creation of the candidate itemsets, more precisely, the num-
ber of candidate itemsets which need to be created during the mining. The
reason for this large number is that the candidate itemsets are visited in a
breadth-first way.

The FP tree algorithm addresses these issues and scans the data in a
depth-first way. The data is only scanned twice. In a first scan, the frequent
items (or 1-itemsets) are determined. The data items are then ordered based
on their frequency and the infrequent items are removed. In the second scan,
the data base is mapped onto a tree structure. Except for the root all the
nodes are labelled with items, each item can correspond to multiple nodes.
We will explain the algorithm with the help of an example, see table ?? for
the original data and the records with the frequent itemsets only (here we
look for support > 0.5).

items s > 0.5
f, a, c, d, g, i,m, p f, c, a,m, p

a, b, c, f, l, m, o f, c, a, b, m

b, f, h, j, o, w f, b

b, c, k, s, p c, b, p

a, f, c, e, l, p, m, n f, c, a,m, p

Initially the tree consists only of the root. Then the first record is read
and a path is attached to the root such that the node labelled with the
first item of the record (items are ordered by their frequency) is adjacent
to the root, the second item labels the next neighbor and so on. In addition
to the item, the label also contains the number 1, see Step 1 in figure 16.
Then the second record is included such that any common prefix (in the
example the items f,c,a is shared with the previous record and the remaining
items are added in a splitted path. The numeric parts of the labels of the
shared prefix nodes are increased by one, see Step 2 in the figure. This is
then done with all the other records until the whole data base is stored
in the tree. As the most common items were ordered first, there is a big
likelihood that many prefixes will be shared which results in substantial
saving or compression of the data base. Note that no information is lost
with respect to the supports. The FP tree structure is completed by adding
a header table which contains all items together with pointers to their first
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c : 1

a : 1

m : 1

p : 1

f : 1

c : 2

a : 2

m : 1

p : 1

f : 2

b : 1

m : 1

c : 3 b : 1 b : 1

p : 1a : 3

m : 2

p : 2

f : 4 c : 1

b : 1

m : 1

Step 1 Step 2 Step 5

Fig. 16. Construction of the FP-Tree

occurrence in the tree. The other occurrences are then linked together so
that all occurrences of an item can easily be retrieved, see figure 17.

c : 3 b : 1 b : 1

p : 1a : 3

m : 2

p : 2

f : 4

{}

c : 1

b : 1

m : 1

4

4

3

3

3

3

f

c

a

b

m

p

item support

header table

Fig. 17. Final FP-Tree

The FP tree does never break a long pattern into smaller patterns as
this is done when searching the candidate itemsets. Long patterns can be
directly retrieved from the FP tree. The FP does also contain the full rele-
vant information about the data base. It is compact, as all infrequent items
are removed and the highly frequent items share nodes in the tree. The
number of nodes is never less than the size of the data base measured in
the sum of the sizes of the records but there is anecdotal evidence that
compression rates can be over 100.
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The FP tree is used to find all association rules containing particular
items. Starting with the least frequent items, all rules containing those items
can be found simply by generating for each item the conditional data base
which consists for each path which contains the item of those items which
are between that item and the root. (The lower items don’t need to be
considered, as they are considered together with other items.) These con-
ditional pattern bases can then again be put into FP-trees, the conditional
FP-trees and for those trees all the rules containing the previously selected
and any other item will be extracted. If the conditional pattern base con-
tains only one item, that item has to be the itemset. The frequencies of
these itemsets can be obtained from the number labels.

An additional speed-up is obtained by mining any long prefix paths and
the rest separately and combine the results at the end. Of course any chain
does not need to be broken into parts necessarily as all the frequent subsets,
together with their frequencies are easily obtained directly.
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