
Algorithms for Association Rules
Tutorial, IMS Singapore 10.-12. December 2003

Markus Hegland

Markus.Hegland@anu.edu.au

Centre for Mathematics and its Applications

Mathematical Sciences Institute

Australian National University, Canberra

Markus Hegland, ANU – p.1/80



Contents

• Introduction

• Searching for Rules

• Analysis of the Apriori Algorithm

• Improving Performance

Markus Hegland, ANU – p.2/80



Introduction

→ Association Rules: Patterns and Noise, Market Baskets,
Rules

• Data Mining: Techniques, KDD, other Data Disciplines

• Applications of Data Mining: Data Challenge,
Management and Science, Classification
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Pattern or Noise?

voting data random data

1984 US House of Representatives votes: 16 votes / 435 representatives UCI ML data
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Tracing the Pattern
number of different votes
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Counting Votes

V2 V8 V3 V14 V15 V9 V10 V12

voting data

vote number

pr
op

or
tio

n 
ye

s 
vo

te
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

V2 V8 V3 V14 V15 V9 V10 V12

random data

vote number

pr
op

or
tio

n 
ye

s 
vo

te
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Support for all votes in US congress data
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Pairs of Votes
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voting data

vote number of second vote in pair

pr
op

or
tio

n 
ye

s 
vo

te
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

V2 V8 V3 V14 V15 V9 V10 V12

random data

vote number of second vote in pair

pr
op

or
tio

n 
ye

s 
vo

te
s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Markus Hegland, ANU – p.7/80



Confidence of Rules
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Market Basket Analysis

Hmmm, which items are frequently

purchased together by my customers?

milk
cereal
bread milk bread

butter
milk bread
sugar eggs

Customer 1

Market Analyst

Customer 2

sugar
eggs

Customer n

Customer 3

Shopping Baskets

from: Han/Kamber, “Data Mining”, 2001

• Aim: Understand
customer interests and
behaviour

• Why: Product
placement, specials,
marketing

• Health: Basket of
medical services

• Challenge: 10,000
items or more not
uncommon
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What are Rules

• “A male shopper who buys nappies on Friday night also
buys beer”

• if-then rule: A→ C

• Predicates: antecedent A(X), consequent C(X)

• X feature vector, data X1, . . . , Xn (flat file)

• A(X) = A1(X) ∧ · · · ∧Ak(X)

• Challenge: utilise intricate structure between predicates
Ai

• Rules are “understandable”
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What Makes Rules Interesting

• Rules should be interpretable in domain context

• Interesting rules suggest actions and/or are unexpected

• Example: action = product placement

• Unexpectedness = contradicting beliefs from domain
knowledge
“beer and nappies purchases are unrelated”

• Many discovered rules are uninteresting, e.g., trivial,
inexplicable or useless⇒ use domain knowledge /
constraints
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Association Rules = Rules ++

• “If customer buys milk, then she buys bread”

• Support = Proportion of baskets which contain both milk
and bread

• Confidence = Proportion of the baskets with milk which
contain bread as well

• Find all rules which have support and confidence larger
than given threshold: strong rules

• Support + confidence 6= Interestingness!
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Introduction

• Association Rules: Patterns and Noise, Market Baskets,
Rules

→ Data Mining: Techniques, KDD, other Data Disciplines

• Applications of Data Mining: Data Challenge,
Management and Science, Classification
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Data Mining Techniques

• What they do
Detect patterns in data: rules, associations and
functional dependencies, outliers, groupings, data
distribution

• How they do it
Search through data and pattern space, nonparametric
modelling, filtering, aggregation

• How well they do it
Errors and biases, overfitting, confounding effects, speed
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A Definition of KDD

Knowledge discovery in databases is the non-
trivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable pat-
terns in data.

Fayyad, Piatetsky-Shapiro and Smyth (1996)
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The KDD Process

Evaluate
Model

Build
Model(s)

Prepare
Data

Take
Action

Understand
Data

Understand
Business

• Typically 90 % in first 3 steps

• Build Model = “Data Mining”

• Iterative and interactive process
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Data Mining and Database Management

• Management of transactions is not data mining

• Data access and integrity essential

• Search, summarisation and data extraction

• Models to integrate data mining and DBMS:
• Extract all data into “flat file”
• SQL deals with data-intensive tasks
• Extend SQL with important primitives
• Implement algorithms in SQL
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Data Mining and Machine Learning

• Many machine learning methods used in data mining
techniques: Neural nets, support vector machines,
genetic algorithms, decision trees

• Data mining deals with very large data sets

• Data mining more modest than AI: Automate tedious
discovery tasks, not emulate human discovery
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Data Mining and Statistics

• Similar goal: analysis of data

• Same limitations: real effects masked and spurious
correlations significant

• Different focus:
• Computational – data size and complexity
• Exploratory – search for hypothesis
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Introduction

• Association Rules: Patterns and Noise, Market Baskets,
Rules

• Data Mining: Techniques, KDD, other Data Disciplines

→ Applications of Data Mining: Data Challenge,
Management and Science, Classification
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The Data Challenge

• Data size:

1995 2000 2005 2010 2015

10 min  

 1 hour  

 1 day  

 1 week  

 1 year  

Automatic data acquisition
Data doubles every 18 months –
need “scalable” algorithms

• Complexity:

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6 Multimedia, text, lots of attributes,
concentration, curse of dimension-
ality
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MBA needs Data Mining

• Curse of dimensionality: With 10,000 items there are
210,000 ≈ 103,000 possible market baskets

• Most market baskets have very few distinct entries

• Model: 10,000 Boolean random variables

• Contingency table has 210,000 entries, most are zero

• Find the most common combinations of items through
systematic search, discard infrequent combinations
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Data Mining in Health Services

• Fraud detection in health insurance

• Assist in evidence-based medicine, detect
non-conformance

• Evaluate outcomes of service providers

• Find best practice, most effective treatments

• Find patients at risk of certain ailments

• Predict outcomes based on patient parameters in
intensive care

• Cross-selling and marketing in pharma. industry
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Applications of Association Rule Mining

• Market basket analysis: product placement, direct
marketing

• Web usage mining: weblog data analysis, e-commerce
customers, improve information delivery, prime
advertisement locations, web page organisation

• DNA sequence and protein structure mining: DNA
tandem repeats (. . . TCGGCGGCGGA. . . ), protein
function prediction, sliding window

• Intrusion detection
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A Data Mining Approach to Classification

• Computational challenges for classification:
• Very large data sets
• Large numbers of of attributes
• Complex data

• Basic approach:
1. Detect dominant features, frequent patterns or

regularities of classes
2. Use this information for classification

• Advantage: Interpretable models based on, e.g., rules
and clusters
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Classification with Apriori
• Class Association Rule:

(X1 = x1) ∧ · · · ∧ (Xk = xk)→ Y = y

item = attribute / value pair, consequent fixed

• Prune rules with high error rate

• Build classifier using “best rules” w.r.t.
1. Confidence 2. Support 3. Simplicity

• Minimal support 1% Confidence 50%

• Good classification and interpretability

B. Liu, W. Hsu, and Y. Ma, Integrating classification and association rule mining, Knowledge Discovery and Data Mining, 1998, pp. 80–86.
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Searching for Rules

→ Finding Rules – a Hard Problem

• The Search for Association Rules – Apriori
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The Search for Interesting Rules

1. Find the most interesting rule

2. Find all rules with interestingness ≥ given bound

• Search-space: Ai1 ∧ · · · ∧Aik
→ C for

Aij
∈ {A1, . . . , Ap}, 0 ≤ k ≤ p

• Challenge:
There are 2p different rules!
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Complexity of Rule Search

• Theorem [Morishita ’98]
The determination of the best rule is NP hard.

• Corollary:
No algorithms are known which have polynomial time
complexity.

• Use approximations and heuristics.

Markus Hegland, ANU – p.29/80



The Search Tree

• Nodes = rules A→ C, root = 1→ C.

• Edges = defined by specialisation, i.e., if B → A (e.g.
B = A ∧As) then

A→ C 7→ B → C

• Specialisation increases confidence

• Use domain knowledge to prune unwanted branches.

• Complicated rules are impractical =⇒ don’t specialise
too much.

• More general rules are more interesting and have larger
support.
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A General Search Approach: GAT
level = 1, L1 = {1→ C}
while Llevel 6= ∅ do

level = level +1
for rule1 ∈ Specialise(Llevel−1) do

if rule1 interesting then
output rule1

else if rule1 ripe for pruning then
discard rule1

else
add rule1 to Llevel

Generate and test algorithm (Provost, Aronis and Buchanan ’99)
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Properties of the GAT algorithm

• Expensive part: evaluation of interestingness.

• One data scan per level.

• Complexity O(n
∑maxlevel

l=1 lslrl) for testing
interestingness.
s specialisations, rl rules, n data points

• Scalability in n with a large factor

• Special cases: Greedy algorithm

• Research: Effect of pruning? Alternative algorithms?
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Searching for Rules

• Finding Rules – a Hard Problem

→ The Search for Association Rules – Apriori
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Transactional Data

• I = {a1, a2, . . . , am} set of items

• Transaction Ti ⊂ I

• Transaction Database DB = 〈T1, T2, . . . , Tn〉

• Support of a pattern (or itemset) A ⊂ I:

s(A) = #{Ti ∈ DB|A ⊂ Ti}/n

• Confidence of rule A→ B for A, B ⊂ I:

c(A→ B) = s(A ∪B)/s(A)
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Mining for patterns and rules

• Frequent pattern mining problem:
Find all predicates A which predefined support
Such a predicate is called frequent pattern

• Association rule mining: Find all association rules with
predefined support and confidence
These are the strong association rules

• Two step algorithm:
1. Find all frequent patterns A

2. Find all predicates A1 and A2 such that A = A1 ∧A2

and A1 → A2 has predefined confidence
Note: Only the first step requires scanning the data
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The Apriori property
• Apriori property :

If pattern A frequent and B ⊂ A then B is frequent

• Find association rules from the frequent itemsets

• Example:

TID

T100

T200

T300

T400

T500

T600

T700

T800

T900

List of item_IDs

I1, I2, I5

I2, I4

I2, I3

I1, I2, I4

I1, I3

I2, I3

I1, I3

I1, I2, I3, I5

I1, I2, I3

R. Agrawal and R. Srikant, Fast algorithms for mining association rules, VLDB 94, pp. 487–499
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The Search Tree for Apriori

{}

{a}

{a,b,c}

{b} {c}

{a,b} {a,c} {b,c}

• Itemsets are
Boolean lattice

• Frequent itemsets
are down-sets

• Apriori is level-wise
or breadth-first
search
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The Algorithm

• L1 := {frequent 1-itemsets}
level := 1
while Lk is not empty do

level := level +1
Clevel := sets of candidate itemsets
Prune candidate sets using apriori property
Determine the support of all candidate itemsets in
Clevel

Llevel := frequent itemsets in Clevel : needs DB
scan

• Operation count: O(n
∑maxlevel

l=1 lslrl) as before
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Best Candidates
• Lk = {A, B, . . .} ⊂ 2I : set of frequent k-itemsets

• Store A as alphabetically ordered lists A[1 : k]

• Join operation:

Lk ∗ Lk := {A ∪B|A[: k − 1] = B[: k − 1], A[k] < B[k]}

• Lemma: Lk+1 ⊂ Lk ∗ Lk.
Proof: A ∈ Lk+1, then A[1 : k] ∈ Lk and
A[: k − 1] ∪A[k + 1] ∈ Lk.

• Smallest possible candidate itemset without scan:

Ck+1 = {A ∈ Lk ∗ Lk|B ⊂ A⇒ B ∈ L|B|}
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Example (from Han/Kamber 2001)

C1

Itemset


{I1}

{I2}

{I3}

{I4}

{I5}

Scan D for

count of each


candidate

Generate C2
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Sup. count

6

7

6

2

2

C2

Itemset

{I1, I2}

{I1, I3}

{I1, I4}

{I1, I5}

{I2, I3}

{I2, I4}

{I2, I5}

{I3, I4}

{I3, I5}

{I4, I5}

Generate C3

candidates from


L2

C3

Itemset


{I1, I2, I3}




{I1, I2, I5}

C2

Itemset

{I1, I2}

{I1, I3}

{I1, I4}

{I1, I5}

{I2, I3}

{I2, I4}

{I2, I5}

{I3, I4}

{I3, I5}

{I4, I5}

Sup. count

4

4

1

2

4

2

2

0

1

0

Scan D for

count of each


candidate

Scan D for

count of each


candidate

L1

Itemset


{I1}

{I2}

{I3}

{I4}

{I5}

Compare candidate

support count with

minimum support


count

Sup. count

6

7

6

2

2

Compare candidate

support count with

minimum support


count

Compare candidate

support count with

minimum support


count

C3

Itemset


{I1, I2, I3}




{I1, I2, I5}

Sup. count

2



2

L3

Itemset


{I1, I2, I3}




{I1, I2, I5}

Sup. count

2



2

L2

Itemset

{I1, I2}

{I1, I3}

{I1, I5}

{I2, I3}

{I2, I4}

{I2, I5}

Sup. count

4

4

2

4

2

2
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Analysis of Apriori

→ Mathematical Modeling – Lattice of Itemsets, Probability
and Predicates

• Algorithms – Search in Levelsets, Support

• Enumeration of k-Itemsets

• Bounds on the Number of Candidate Itemsets
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Why mathematical modelling

• Analysis of time complexity

• Development of new algorithms

• Implementation of algorithms and datastructures
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Itemsets and Bitvectors

itemset bitvector number
{juice, bread, milk } (1, 1, 1, 0, 0) 7

{ potatos } (0, 0, 0, 0, 1) 16
{bread, potatos } (0, 1, 0, 0, 1) 18

• X = {0, 1}d itemsets as bitvectors

• |x| =
∑d−1

i=0 xi size of itemset

• φ(x) =
∑d−1

i=0 xi2
i “number” of bitvector

• dH(x, y) =
∑d

i=1 |xi − yi| Hamming distance

• x ≤ y :⇔ xi ≤ yi (for all i) partial order

• There are 2d different itemsets with d items
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The Boolean Lattice of Itemsets

{}

{bread} {coffee} {juice}{milk}

{bread, coffee} {milk, coffee}{milk, bread} {milk, juice} {bread. juice} {coffee, juice}

{milk, coffee, juice} {bread, coffee, juice} {milk, bread, coffee} {milk, bread, juice}

{milk, bread, coffee, juice}
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Probability Distribution

• p : X→ R+ distribution,
∑

x∈X
p(x) = 1

• P (A) =
∑

x∈A p(x) for A ⊂ X

• P (X) = 1, P (∅) = 0, P (A ∪B) ≤ P (A) + P (B)

• Sample probability, for x1, x2, . . . , xn:

P (A) =
1

n
#{i|xi ∈ A}

• Cumulative distribution function:

F (x) := P ({y|y ≤ x})

• F (1) = 1, x ≤ y ⇒ F (x) ≤ F (y)

• Dual cumulative distribution function:

F ∂(x) := P ({y|y ≥ x})
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Rules and Predicates

• a : X→ {0, 1} predicate

• There are 22d

different predicates for itemsets of d items

• Example d = 10, 000, . . .

• supp(a) = {x|a(x) = 1} support of predicate a

• s(a) = P (supp(a)) also called support
Predicate with large support is more likely to be true

• A natural class of predicates:

ay(x) = 1 if x ≤ y and = 0 else

• Antimonotone in y and monotone in x:
If y ≤ z then az(x) ≤ ay(x) but ax(y) ≤ ax(z) but

• s(ax) = F ∂(x)
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Support of Predicates and Itemsets

supp(a)

X

x 1

x 3

x 2

x 4

x 7

x 5

x 9

x 8

x 6

supp(a  )x

x
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Other properties of predicates

• For a sample distribution:

s(a) =
n

∑

i=1

a(xi)

• s(ax) is anti-monotone in x (as ax is antimonotone and
F is monotone)

• A predicate is a random variable with E(a) = s(a) and
var(a) = s(a)(1− s(a))

• Support of conjunction: s(a ∧ b) ≤ s(a)

• Confidence c(a⇒ b) = s(a ∧ b)/s(a)

• Conditional probability: c(a⇒ b) = P (b|a)
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Analysis of Apriori

• Mathematical Modeling – Lattice of Itemsets, Probability
and Predicates

→ Algorithms – Search in Levelsets, Support

• Enumeration of k-Itemsets

• Bounds on the Number of Candidate Itemsets
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Apriori Algorithm

C1 = A(X) is the set of all one-itemsets, k = 1
while Ck 6= ∅ do

scan database to determine support of all ay with
y ∈ Ck

extract frequent itemsets from Ck into Lk

generate Ck+1

k := k + 1.
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Levelsets

L0
L1
L2

L3
L4
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How to Determine the Support
















1 1 0 0 0

1 0 1 1 0

1 0 0 0 1

1 1 0 1 0

0 0 0 0 1

















⇒
[

(1, 2) (1, 3, 4) (1, 5) (1, 2, 4) (5)
]

Algorithm for z ≤ x (time T = (2|x|+ |z|)τ ):

1. Extract x into bitvector v: v[x]← 1

2. Extract the values of v for the elements of z: w ← v[z]

3. If all components of w = 1 then z ≤ x)

4. Set v[x]← 0

n itemsets x = xi and mk itemsets z of length k:
T =

∑

k(2
∑n

i=1 |x
(i)|+ mkkn)τ ≈ (

∑

k mkk)nτ
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Columnwise Storage
[

(1, 2, 3, 4) (1, 4) (2) (2, 4) (3, 5)
]

Algorithm to find #{i|z ≤ xi}:

1. v[Xz[0]]← 1

2. w[Xz[1]]← v[Xz[1]]

3. for j = z[2], z[3], . . .

(a) v[Xz[j−2]]← 0

(b) v[Xz[j]]← w[Xz[j]]

(c) swap v and w

4. Get the support s(az) = |w|

Complexity:

T = 3τ
d

∑

j=1

n
∑

i=1

x
(i)
j zj ≈

3E(|x|)

d

∑

k

mkknτ
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Analysis of Apriori

• Mathematical Modeling – Lattice of Itemsets, Probability
and Predicates

• Algorithms – Search in Levelsets, Support

→ Enumeration of k-Itemsets

• Bounds on the Number of Candidate Itemsets
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A Representation Lemma

For every m, k ∈ N there are numbers ms < · · · < mk

such that

m =
k

∑

j=s

(

mj

j

)

and the mj are uniquely determined by m.

Proof: see notes, uses induction and the identity
(

t + 1

r

)

− 1 =
r

∑

l=1

(

t− r + l

l

)
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Colexicographic Ordering

• Recall φ(x) =
∑d−1

i=0 xi2
i “number” of bitvector

• Colexicographic Ordering

y ≺ z ⇔ φ(y) < φ(z)

• y < z ⇒ y ≺ z

• Example: All two-itemsets with five items in
colexicographic order: (0, 0, 0, 1, 1), (0, 0, 1, 0, 1),
(0, 0, 1, 1, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 1, 0, 0),
(1, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 1, 0, 0), (1, 1, 0, 0, 0)

• Let [m] := {0, . . . , m− 1} and

[m](k) = all k-itemsets using first m items only

are the first
(m−1

k

)

itemsets in colexicographic ordering
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The first m k-itemsets
The set of the first m k-itemsets in colex ordering is

B(k)(mk, . . . , ms) :=
k
⋃

j=s

[mj]
(j) ∨ e(mj+1, . . . , mk)

where C ∨ y := {z ∨ y | z ∈ C}, the mi are given by
b(k)(mk, . . . , ms) = m and ms < · · · < mk

Proof:

1. Components of the union are disjoint as for i < j one
has x ≺ y if x ∈ [mi]

(i) ∨ e(mi+1, . . . , mk) and
y ∈ [mj]

(j) ∨ e(mj+1, . . . , mk)

2. If mk is the highest bit set one gets:

B(k)(mk, . . . , ms) = [mk]
(k)∪B(k−1)(mk−1, . . . , ms)∨e(mk)
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Analysis of Apriori

• Mathematical Modeling – Lattice of Itemsets, Probability
and Predicates

• Algorithms – Search in Levelsets, Support

• Enumeration of k-Itemsets

→ Bounds on the Number of Candidate Itemsets
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Simple Bounds

Apriori generates a sequence of sets of frequent k-itemsets
Lk and candidate sets Ck

C1 = L1 → C2 → L2 → C3 → L3 → C4 → · · ·

where Ck is the largest set of k-itemsets such that any
subset z of a k-itemset in Ck is in L|z|. Then

∑

k

|Lk|k ≤
∑

k

mkk ≤
d

∑

k=0

(

d

k

)

k

The upper bound is too pessimistic in most cases
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Shadows and the Apriori Condition

The sequence C1, C2, . . . of itemsets is said to satisfy the
apriori condition if

• Ck contains only k-itemsets

• x ∈ Ck and y < x then y ∈ C|y|

The candidate sets generated by the apriori algorithm
satisfy the apriori condition

The shadow of a set of k-itemsets Ck is defined as

∂Ck := {x||x| = k − 1 and x < z for some z ∈ Ck}

The sequence C1, C2, . . . satisfies the apriori condition⇔
∂Ck ⊂ Ck−1 for all k
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The Inverse Problem

Is it possible to choose something smaller than the maximal
set which satisfies the apriori condition?

No, as for any sequence Ck satisfying the apriori condition
there is a data set D and σ > 0 such that the Ck are the
sets of frequent k-itemsets of D with support σ

Proof:
Choose C ⊂

⋃

k Ck to be the set of all maximal itemsets,
and σ ≤ 1/|C| and the database D be any sequence of
elements which contains exactly every element of C once
Then the maximal itemsets are frequent and (by the apriori
property) so are all the subsets of the maximal itemsets

What about σ > 1/#{maximal elements}?
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The shadow of B(k)(mk, . . . , ms)

∂B(k)(mk, . . . , ms) = B(k−1)(mk, . . . , ms)

Proof:

• Case s = k

∂[mk]
k = [mk]

(k−1)

• By recursion for B(k)(mk, . . . , ms) and additivity of the
shadow one gets ∂B(k)(mk, . . . , ms) =

[mk]
(k−1) ∪

(

∂B(k−1)(mk−1, . . . , ms)
)

∨ emk
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Compressing sets of k-itemsets
Idea: map any Ck close to B(k)(mk, . . . , ms)

• Compression of bitvector:

Rij(z) =

{

z − ej + ei if ei 6≤ z and ej ≤ z

z else

• Not injective as Rij(y) = Rij(Rij(y))

• Compression of set C of itemsets:

R̃i,j(C) = Rij(C) ∪ (C ∩R−1
ij (C)).

add itemsets which remain in C after compression

• Compression Lemma: ∂R̃i,j(C) ⊂ R̃i,j(∂C)

• C is compressed if R̃i,j(C) = C for all i, j
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The Kruskal/Katona Theorem
For any k-itemset C with |C| = b(k)(mk, . . . , ms):

|∂C| ≥ b(k−1)(mk, . . . , ms)

Proof:

• Compression reduces size of shadow

• Double induction over k and m = |A|

• k = 1 and any m (as A is compressed):
A = {e0, . . . , em−1} thus ∂A = {0}

• m = 1 andy any k: A = {e(0, . . . , k − 1)} thus
∂A = [k](k−1)

• Rest of proof a bit technical. Idea: Partition
A = A0 ∪A1 where A0 contains elements with bit 0 not
set. Induction considering different cases
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Bounding the Candidate Itemsets

If Ck satisfies apriori property, |Ck| = b(k)(mk, . . . , ms)
and p ≤ s then

|Ck+p| ≤ b(k+p)(mk, . . . , ms)

Proof:

• Assume |Ck+p| > b(k+p)(mk, . . . , ms)

• Then, by Kruskal-Katona:

|Ck| ≥ b(k)(mk, . . . , ms, s + p− 1)

• However, one can see that

|Ck| < b(k)(mk, . . . , ms, s + p− 1)

Bound is tight, Geerts et al 2001
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Performance Improvements

→ Data Distribution and Access

• Association Rules with Constraints

• Frequent Pattern Trees
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Apriori TID: Transforming the Database










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

1 2 3 4 5

1 0 1 1 0

0 1 1 0 1

1 1 1 0 1

0 1 0 0 1



















→



















(1, 2) (1, 3) (1, 5) (2, 3) (2, 5) (3, 5)

0 1 0 0 0 0

0 0 0 1 1 1

1 1 1 1 1 1

0 0 0 0 1 0



















→



















(2, 3, 5)

0

1

1

0



















• “New items” = itemsets in Lk

• Larger sparsity, less columns for higher k

• Bound on expected time:

E(T ) ≤ 3n
E(|x|)

d
τ

∑

k

mk

Analysis like for the case of determination of support
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Partition: Reducing the Number of Scans
• Partition database: DB = DB1 ∪ · · · ∪DBp

• Invariant partitioning property :

s(A; DB) ≤ max
j

s(A, DBj)

where s(A; DBj) is support of A in DBj

• Algorithm “Partition”:
1. First DB scan: Generate all Lk(DBj)

2. Candidates: Ck :=
⋃

j Lk(DBj)

3. Second DB scan: Counts for all the Ck

• Applications: Parallel computing, very large data set,
distributed data

A. Savasere, E. Omiecinski, and S. Navathe, An efficient algorithm for mining association rules in large databases, VLDB ’95, pp. 432–443.
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Performance Improvements

• Data Distribution and Access

→ Association Rules with Constraints

• Frequent Pattern Trees
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Mining Items with Taxonomies
• Multiple taxonomies on items: brands/categories/product

groups, sale

• Rules involving ancestors have higher support

• Model multiple taxonomies with a DAG

• Basic: include ancestors in transactions

• Normalise: Remove ancestors in frequent itemsets

• Lemma: Elements of Lk normalised⇒ elements of
Ck+1 are

R. Srikant and R. Agrawal, Mining generalized association rules, VLDB ’95, pp. 407–419.
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Why Constraints?
• Association rule mining process:

1. User selects data
2. User selects support/confidence thresholds
3. System runs data-intensive mining
4. System returns large numbers of rules
5. User searches for useful information

• Problems with this approach:
• Lack of user exploration and control – user cannot

change query during mining stage
• Lack of focus – user cannot specify candidate rules of

interest

=⇒ Constraints for better focus and interaction
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What are constraints

• Example: Price limited market baskets:

C(A) :=
∑

a∈A

ca ≤ cmax

• A constraint C is a predicate defined on itemsets, i.e.,

C : 2I → {T, F}

(2I : powerset of set of items I)

• Constrained association rules: Association rules A→ B
where antecedent and consequent satisfy constraints
Ca(A) and Cc(B) respectively
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Two simple methods

• Constraints on frequent itemsets

• Trivial and sound approach (Apriori+):
1. Find all frequent itemsets with Apriori
2. Remove ones which do not satisfy constraints

Apriori does not make use of constraints

• Naive pushing constraints into Apriori:
• Use constraints to prune candidate k-itemsets
• Can give wrong results!

Example: Average item price bound may not hold for
frequent subsets of frequent itemset satisfying bound
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Two Types of Constraints
• C is antimonotone iff

(A ⊂ B) ∧ C(B)⇒ C(A)

• Example: Prize of market basket ≤ cmax

• Naive Pushing gives correct results

• C is monotone iff

(A ⊂ B) ∧ C(A)⇒ C(B)

• Example: Prize of market basket ≥ cmin

• Trivial Algorithm, saving in checking constraints

R. Ng, L. Lakshmanan, J. Han, and A. Pang, Exploratory mining and pruning optimizations of constrained associations rules, SIGMOD 1998, pp. 13–
24.
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Performance Improvements

• Data Distribution and Access

• Association Rules with Constraints

→ Frequent Pattern Trees
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Limitations of the Apriori algorithm

• Large numbers of frequent itemsets are expensive: 106

frequent 1-itemsets require testing of 5 ∗ 1011 candidate
2-itemsets

• No good for long patterns: A frequent itemset of size 100
requires testing of 2100 ≈ 1030 smaller candidate
itemsets

• Repeated scans of the DB are expensive

• Bottleneck: Candidate generation mechanism
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DB compression in FP-tree

items s > 0.5

f, a, c, d, g, i, m, p f, c, a, m, p

a, b, c, f, l, m, o f, c, a, b, m

b, f, h, j, o, w f, b

b, c, k, s, p c, b, p

a, f, c, e, l, p, m, n f, c, a, m, p

c : 3 b : 1 b : 1

p : 1a : 3

m : 2

p : 2

f : 4

{}

c : 1

b : 1

m : 1

4

4

3

3

3

3

f

c

a

b

m

p

item support

header table

• 2 scans of DB to determine frequent 1-itemsets and build
FP-tree

J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, 2000 ACM SIGMOD Intl. Conference on Management of Data,
pp. 1–12.
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Benefits of the FP-tree Structure

• Completeness
• Never breaks a long pattern of any transaction
• Contains all information for frequent pattern mining

• Compactness
• Removing infrequent items
• Items frequent⇒ likely shared
• Never larger than original database (+ links)
• Compression ratios of over 100 observed

From J.Han and J.Pei: Sequential Pattern Mining, PAKDD 2001
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Conditional Pattern-Bases

c : 3 b : 1 b : 1

a : 3

m : 2

p : 2

f : 4

{}

c : 1

b : 1

m : 1

4

4

3

3

3

3

f

c

a

b

m

item support

p

p : 1

header table

item conditional pattern base

c f : 3

a fc : 3

b fca : 1, f : 1, c : 1

m fca : 2, fcab : 1

p fcam : 2, cb : 1

• Frequent patterns of DB are frequent patterns of a
conditional pattern base

• Ordering removes some redundancy
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Conditional FP-trees
item conditional pattern base conditional FP-tree

c f : 3 (f : 3)

a fc : 3 (f : 3) − (c : 3)

b fca : 1, f : 1, c : 1 ∅

m fca : 2, fcab : 1 (f : 3) − (c : 3) − (a : 3)

p fcam : 2, cb : 1 (c : 3)

• Frequent patterns of DB from conditional FP-trees

• Apply recursively

• Tree = path⇒ all subsets frequent

• Separately mine prefix path and rest and combine
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