Approximation power of refinable spaces

Olga Holtz

Department of Mathematics

University of California-Berkeley

holtz@math.berkeley.edu

joint work with Amos Ron

Wavelet theory and applications Singapore, August 2004

Outline

- Refinement equations
- Compactly supported solutions
- Appr. orders of SI spaces
- Appr. orders of smooth refinable functions
- Coherent appr. orders
- Condition Z_k and sum rules
- Coherent polynomial reproduction

Refinement equations

Vector refi nement equation

$$\widehat{\Phi}(2\cdot) = P\widehat{\Phi}.$$

P, a square matrix-valued 2π-periodic measurable function, is a refi nement (matrix) mask,
Φ, a solution, is a refi nable vector.

The space of all tempered distributional solutions Φ is generally infinite-dimensional, but

R(P) := the space of compactly supported solutions is always finite-dimensional

Compactly supported solutions

Result [Jia, Jiang, Shen]. P a trig. polynomial, $N := \max\{n : 2^n \in \sigma(P(0))\},$ $\mathcal{Z}_N := \{\alpha \in \mathbb{Z}_+^d : |\alpha| \le N\}.$

The map

 $\Phi \mapsto ((D^{\alpha}\widehat{\Phi})(0))_{\alpha \in \mathcal{Z}_N}$

is then a bijection between the space R(P) and the kernel ker L of the map

 $L: \mathbb{C}^r \times \mathcal{Z}_N \to \mathbb{C}^r \times \mathcal{Z}_N :$ $(w_{\alpha}) \mapsto (2^{|\alpha|} w_{\alpha} - \sum_{0 \le \beta \le \alpha} (D^{\alpha - \beta} P)(0) w_{\beta}), \ \alpha \in \mathcal{Z}_N.$

More about the space R(P)

Theorem. Suppose there are matrices T and P s.t. (i) T is analytic and invertible around the origin, (ii) P is a trig. polynomial, (iii) $T(2 \cdot) P - \tilde{P}T = O(|\cdot|^{N+1}),$ (iv) \tilde{P} is block diagonal to order N+1 around 0 and the spectrum of each block evaluated at zero intersects the set $\{2^j: j = 0, \ldots, N\}$ at ≤ 1 point. Let Φ be in R(P), and assume that each entry of $\widehat{\Phi}$ has a zero of order l at the origin. Then $\Phi = \sum_{j=l}^{N} p_j(D) \Phi_j, \quad \Phi_j \in R(P/2^j), \quad \widehat{\Phi}_j(0) \neq 0,$ and p_i a homogeneous polynomial of degree j, $j = l, \ldots, N.$

More about the space R(P)

Fact. The 'layer' decomposition of the previous theorem may not be possible.

Example. Let d = 2 and let P be s.t.

$$P(0) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 4 \end{bmatrix},$$
$$(D^{(0,1)}P)(0) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
$$(D^{(1,0)}P)(0) = 0.$$

SI spaces

F a space of functions over \mathbb{R}^d . $S \subset F$ is a shiftinvariant (SI) space if

 $f \in S \Longrightarrow f(\cdot - \alpha) \in S$, all $\alpha \in (h)\mathbb{Z}^d$.

• A principal shift-invariant (PSI) space S_ϕ is the closure of

$$\operatorname{span}[\phi(\cdot - j) : j \in \mathbb{Z}^d]$$

in the topology of F.

• A finitely generated shift-invariant (FSI) space S_{Φ} is the closure of

$$\sum_{\phi \in \Phi} S_{\phi}$$

in F, with Φ a finite subset of F.

Approximation order

Sobolev space $W_2^s(\mathbb{R}^d)$: tempered distributions fwith \widehat{f} locally in $L_2(\mathbb{R}^d)$ and

 $\|f\|_{W_2^s(\mathbb{R}^d)}^2 := \int_{\mathbb{R}^d} (1+|\cdot|)^{2s} |\widehat{f}|^2 < \infty.$

A ladder $S := (S^h := S^h(W_2^s))_{h>0}$ of SI spaces provides approximation order k, k > s, in $W_2^s(\mathbb{R}^d)$ if, for every $f \in W_2^k(\mathbb{R}^d)$,

 $\operatorname{dist}_{s}(f, S^{h}) := \inf_{g \in S^{h}} \|f - g\|_{W_{2}^{s}(\mathbb{R}^{d})} \le Ch^{k-s} \|f\|_{W_{2}^{k}(\mathbb{R}^{d})},$

with constant C independent of f and h.

Characterization of appr. order

Theorem. An FSI stationary ladder $(S^h := S^h(W_2^s))$, with $S^h = S_{\Phi}(\cdot/h)$, $\Phi \subset W_2^s$, provides approximation order k > 0 if and only if there exists a neighborhood Ω of 0 such that the function

$$\mathcal{M}_{\Phi,s}: \omega \mapsto \frac{1}{|\omega|^{2k-2s}} \inf_{v \in \mathbb{C}^{\Phi}} \frac{v^* G_{\Phi,s}^0(\omega) v}{v^* G_{\Phi,s}(\omega) v}$$

lies in $L_{\infty}(\Omega)$. Here $G_{\Phi,s} := \sum_{\alpha \in 2\pi \mathbb{Z}^d} \widehat{\Phi}(\cdot + \alpha) \widehat{\Phi}^*(\cdot + \alpha) |\cdot + \alpha|^{2s},$ $G_{\Phi,s}^0 := \sum_{\alpha \in 2\pi \mathbb{Z}^d \setminus 0} \widehat{\Phi}(\cdot + \alpha) \widehat{\Phi}^*(\cdot + \alpha) |\cdot + \alpha|^{2s}$ (the Gramian and the truncated Gramian).

Superfunctions

 $\psi \in S$ is a superfunction for S if appr.order $(S_{\psi}) =$ appr.order (S).

Theorem. Any FSI space $S_{\Phi} \subset W_2^s(\mathbb{R}^d)$ contains a superfunction.

A superfunction for an FSI space S_{Φ} is good if it is nondegenerate:

 $|\widehat{\psi}|$ is bounded away from 0 in a nbhd of 0, and finitely spanned by the shifts of Φ :

 $\widehat{\psi} = \tau^* \widehat{\Phi}$, with τ a trigonometric polynomial.

Strang-Fix conditions

Theorem. If $S_{\phi} \subset W_2^s(\mathbb{R}^d)$ provides approximation order k, then

 $\widehat{\phi}(\cdot + \alpha) = O(|\cdot|^k), \quad \text{all} \quad \alpha \in 2\pi \mathbb{Z}^d \setminus 0.$

Polynomial reproduction

Theorem. If $S_{\phi} \subset W_2^s(\mathbb{R}^d)$ provides appr. order k and ϕ is compactly supported, then

 $\phi *' \Pi_{< k} \subseteq \Pi_{< k}.$

Here *' is the semi-discrete convolution

$$g^*: f \mapsto \sum_{j \in \mathbb{Z}^d} g(\cdot - j) f(j),$$

 $\Pi := \Pi(\mathbb{I}\mathbb{R}^d) \text{ is all } d\text{-variate polynomials, and} \\ \Pi_{< k} := \{ p \in \Pi : \deg p < k \}. \\ \text{Moreover, if } \widehat{\phi}(0) \neq 0 \text{, then } \phi *' \Pi_{< k} = \Pi_{< k}. \end{cases}$

Smoothness+refinability⇒appr.order

Theorem. Suppose $s \le 0$, $\Phi \subset W_2^s$ is refinable, there exists a compact set A s.t. $A \cap 2A$ has measure zero and $\bigcup_{m=-\infty}^{0} A/2^m$ contains a nbhd of 0, and some function $f \in S_{\Phi}(W_2^s)$ satisfies

- $|\widehat{f}|$ is bounded above and away from zero on A;
- the numbers

 $\lambda_m := \|\sum_{\alpha \in 2^m (2\pi \mathbb{Z}^d \setminus 0)} |\widehat{f}(\cdot + \alpha)|^2 \|_{L_{\infty}(A)},$ $m \in \mathbb{Z}_+, \text{ decay as } \lambda_m = O(2^{-2mk}), \text{ for some positive } k.$

Then $S_{\Phi}(W_2^s)$ provides approximation order k.

Coherent appr. orders

To analize:

$$\omega \mapsto \inf_{v \in \mathbb{C}^{\Phi}} \frac{v^* G^0_{\Phi,s}(\omega) v}{v^* G_{\Phi,s}(\omega) v}.$$

Diffi cult already in L_2 since the Gramian G_{Φ} of each solution Φ is not invertible at zero if the refi nement equation has multiple solutions.

Result [Jiang, Shen]. Let $\Phi \subset L_2$ be a compactly supported refi nable vector with Gramian G_{Φ} . If $G_{\Phi}(0)$ is invertible, then the spectral radius $\varrho(P(0))$ of P(0) is equal to 1, 1 is the only eigenvalue on the unit circle, and 1 is a simple eigenvalue.

Coherent appr. orders

Instead, analize this:

$$\omega \mapsto \inf_{v \in \mathbb{C}^{\Phi}} \frac{v^* G^0_{R(P),s} v}{v^* G_{R(P),s}(\omega) v}$$

where $G_{R(P),s} := \sum_{j=1}^{n} G_{\Phi_j,s}$ (combined Gramian), $G_{R(P),s}^0 := \sum_{j=1}^{n} G_{\Phi_j,s}^0$ (truncated combined Gramian), (Φ_j) is a basis for R(P). We say that R(P) provides coherent appr. order k if there exists a nbhd Ω of 0 such that the function $\mathcal{M}_{P,s,k}$:

$$\omega \mapsto \frac{1}{|\omega|^{2k-2s}} \inf_{v} \frac{v^* G^0_{R(P),s}(\omega) v}{v^* G_{R(P),s}(\omega) v}$$

belongs to $L_{\infty}(\Omega)$.

Universal supervectors

A vector v that realizes coherent appr. order is a universal supervector. It is a regular universal supervector if

$$\frac{v^* G_{R(P),s} v}{v^* v} \sim |\cdot|^{2s}, \quad \frac{v^* G_{R(P),s}^0 v}{v^* v} = O(|\cdot|^{2k}).$$

Theorem. Let R(P) provide coherent appr. order k in $W_2^s(\mathbb{R}^d)$.

• Let $S_P \subset W_2^s(\mathbb{R}^d)$ be the SI space generated by R(P). Then S_P is an FSI space and provides appr. order k.

Universal supervectors

• Let v be a regular universal supervector of order k bounded in a nbhd of 0. Then, for any $\Phi \in R(P)$,

(i) $v^* G^0_{\Phi,s} v = O(|\cdot|^{2k})$ around 0. The function ψ defined by $\widehat{\psi} := v^* \widehat{\Phi}$ satisfies the Strang-Fix conditions of order k.

(ii) If $|v^*\widehat{\Phi}| \ge c > 0$ a.e. in a nbhd of 0, then S_{Φ} provides appr. order k. Moreover, with $\psi \in S_{\Phi}$ defined by $\widehat{\psi} := v^*\widehat{\Phi}$, the PSI space S_{ψ} already provides that appr. order.

Condition Z_k and sum rules

Condition Z_k . $v^*(2\cdot)P - \delta_{l,0}v^*$ has a zero or order k at each $\pi l, l \in \{0, 1\}^d$, while $v(0) \neq 0$.

Sum rules (variant I).

 $\sum_{\sigma \in \mathbb{Z}^d} \sum_{\gamma \in \mathbb{Z}^d} v_{\sigma-\gamma}^* P_{l+2\sigma} q(l+2\gamma) = 2^{-d} \sum_{\gamma \in \mathbb{Z}^d} v_{-\gamma}^* q(\gamma), \ l \in E, \ q \in \Pi_{< k}.$

Sum rules (variant II).

 $\sum_{\beta \le \alpha} 2^{|\alpha - \beta|} (v^{\alpha - \beta})^* (D^{\beta} P)(\pi l) = \delta_{l,0} (v^{\alpha})^*, \quad l \in E, \ |\alpha| < k.$

Result. Condition $Z_k \iff$ either of the sum rules.

Condition $Z_k \Longrightarrow$ **coherent a.o.** k

Theorem. Let *P* be a trig. polynomial mask, let $R(P) \subset W_2^s$, and let *v* be a trig. polynomial vector. Suppose that *P* and *v* satisfy Condition Z_k for some k > 0. Then:

• For each $\Phi \in R(P)$, the function ψ defined by $\widehat{\psi} := v^* \widehat{\Phi}$ satisfies the Strang-Fix conditions of order k, and $\widehat{\psi} - \widehat{\psi}(0) = O(|\cdot|^k)$. Consequently, if $v^*(0)\widehat{\Phi}(0) \neq 0$, then $S_{\Phi}(W_2^s)$ provides appr. order k, and $\psi \in S_{\Phi}(W_2^s)$ is a corresponding superfunction.

• If $v^*(0)\widehat{\Phi}(0) \neq 0$ for some $\Phi \in R(P)$, then R(P) provides coherent appr. order k, and v is a corresponding universal regular supervector.

Condition $Z_k \stackrel{?}{\Leftarrow}$ **coherent a.o.** k

Theorem. Let P be an $r \times r$ trig. polynomial mask. Suppose that $R(P) \subset L_2$ and that the combined Gramian $G_{R(P)}$ satisfi es some technical assumptions, is smooth around each $l \in E$ and is boundly invertible around each $l \in E$. If P(0) = I, TFAE:

(a) P satisfies Condition Z_k with some vector v.

(b) There exists a regular universal supervector v of order k for the space R(P).

In addition, a regular universal supervector v of order k can be always chosen so that, for every $\Phi \in R(P)$,

$$v^*\widehat{\Phi} - (v^*\widehat{\Phi})(0) = O(|\cdot|^k).$$

Coherent polynom. reproduction

Theorem. Let *P* be a refi nement mask such that $R(P) \subset W_2^s(\mathbb{R}^d)$. Let k > 0 and let *v* be a trig. polynomial such that one of the following holds:

- v satisfies Condition Z_k .
- v and P satisfy either version of the sum rules
- v is a regular universal supervector of order k.

Let $\tilde{v} =: (\tilde{v}_1, \dots, \tilde{v}_r)$ be the sequence of the Fourier coefficients of v^* , and let $\Phi =: (\phi_1, \dots, \phi_r)' \in R(P)$. Then the map T_{Φ} maps $\Pi_{<k}$ into itself: $T_{\Phi} : q \mapsto \sum_{i=1}^r \phi_i *' (\tilde{v}_i *' q) =: \Phi *' (\tilde{v} *' q)$ The map is surjective iff $v^*(0)\widehat{\Phi}(0) \neq 0$.

Post Scriptum

Preprint available at
http://www.cs.berkeley.edu/~oholtz
/articles.html

Thanks

for

your

