Approximation power of refinable spaces

Olga Holtz

Department of Mathematics
University of California-Berkeley
holtz@math.berkeley.edu
joint work with Amos Ron

Wavelet theory and applications
Singapore, August 2004

Outline

- Refinement equations
- Compactly supported solutions
- Appr. orders of SI spaces
- Appr. orders of smooth refinable functions
- Coherent appr. orders
- Condition Z_{k} and sum rules
- Coherent polynomial reproduction

Refinement equations

Vector refi nement equation

$$
\widehat{\Phi}(2 \cdot)=P \widehat{\Phi} .
$$

P, a square matrix-valued 2π-periodic measurable function, is a refi nement (matrix) mask Φ, a solution, is a refi nable vector

The space of all tempered distributional solutions Φ is generally infi nite-dimensional, but
$R(P)$:= the space of compactly supported solutions is always fi nite-dimensional

Compactly supported solutions

Result [Jia, Jiang, Shen]. P a trig. polynomial,

$$
\begin{aligned}
& N:=\max \left\{n: 2^{n} \in \sigma(P(0))\right\}, \\
& \mathcal{Z}_{N}:=\left\{\alpha \in \mathbb{Z}_{+}^{d}:|\alpha| \leq N\right\} .
\end{aligned}
$$

The map

$$
\Phi \mapsto\left(\left(D^{\alpha} \widehat{\Phi}\right)(0)\right)_{\alpha \in \mathcal{Z}_{N}}
$$

is then a bijection between the space $R(P)$ and the kernel ker L of the map

$$
\begin{aligned}
& L: \mathbb{C}^{r} \times \mathcal{Z}_{N} \rightarrow \mathbb{C}^{r} \times \mathcal{Z}_{N}: \\
& \left(w_{\alpha}\right) \mapsto\left(2^{|\alpha|} w_{\alpha}-\sum_{0 \leq \beta \leq \alpha}\left(D^{\alpha-\beta} P\right)(0) w_{\beta}\right), \alpha \in \mathcal{Z}_{N} .
\end{aligned}
$$

More about the space $R(P)$

Theorem. Suppose there are matrices T and \tilde{P} s.t. (i) T is analytic and invertible around the origin, (ii) \tilde{P} is a trig. polynomial, (iii) $T(2 \cdot) P-\tilde{P} T=O\left(|\cdot|^{N+1}\right)$, (iv) \tilde{P} is block diagonal to order $N+1$ around 0 and the spectrum of each block evaluated at zero intersects the set $\left\{2^{j}: j=0, \ldots, N\right\}$ at ≤ 1 point.
Let Φ be in $R(P)$, and assume that each entry of $\widehat{\Phi}$ has a zero of order l at the origin. Then

$$
\Phi=\sum_{j=l}^{N} p_{j}(D) \Phi_{j}, \quad \Phi_{j} \in R\left(P / 2^{j}\right), \widehat{\Phi}_{j}(0) \neq 0,
$$

and p_{j} a homogeneous polynomial of degree j, $j=l, \ldots, N$.

More about the space $R(P)$

Fact. The 'layer' decomposition of the previous theorem may not be possible.
Example. Let $d=2$ and let P be s.t.

$$
\begin{aligned}
& P(0)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & -1 & 4
\end{array}\right], \\
& \left(D^{(0,1)} P\right)(0)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \\
& \left(D^{(1,0)} P\right)(0)=0 .
\end{aligned}
$$

SI spaces

F a space of functions over $\mathbb{R}^{d} . S \subset F$ is a shiftinvariant (SI) space if

$$
f \in S \Longrightarrow f(\cdot-\alpha) \in S, \quad \text { all } \alpha \in(h) \mathbb{Z}^{d} .
$$

- A principal shift-invariant (PSI) space S_{ϕ} is the closure of

$$
\operatorname{span}\left[\phi(\cdot-j): j \in \mathbb{Z}^{d}\right]
$$

in the topology of F.

- A fi nitely generated shift-invariant (FSI) space S_{Φ} is the closure of

$$
\sum_{\phi \in \Phi} S_{\phi}
$$

in F, with Φ a fi nite subsetof F.

Approximation order

Sobolev space $W_{2}^{s}\left(\mathbb{R}^{d}\right)$: tempered distributions f with \widehat{f} locally in $L_{2}\left(\mathbb{R}^{d}\right)$ and

$$
\|f\|_{W_{2}^{s}\left(\mathbf{R}^{d}\right)}^{2}:=\int_{\mathbb{R}^{d}}(1+|\cdot|)^{2 s}|\widehat{f}|^{2}<\infty .
$$

A ladder $\mathcal{S}:=\left(S^{h}:=S^{h}\left(W_{2}^{s}\right)\right)_{h>0}$ of SI spaces provides approximation order $k, k>s$, in $W_{2}^{s}\left(\mathbb{R}^{d}\right)$ if, for every $f \in W_{2}^{k}\left(\mathbb{R}^{d}\right)$,
$\operatorname{dist}_{s}\left(f, S^{h}\right):=\inf _{g \in S^{h}}\|f-g\|_{W_{2}^{s}\left(\mathbf{R}^{d}\right)} \leq C h^{k-s}\|f\|_{W_{2}^{k}\left(\mathbf{R}^{d}\right)}$,
with constant C independent of f and h.

Characterization of appr. order

Theorem. An FSI stationary ladder $\left(S^{h}:=S^{h}\left(W_{2}^{s}\right)\right)$, with $S^{h}=S_{\Phi}(\cdot / h), \Phi \subset W_{2}^{s}$, provides approximation order $k>0$ if and only if there exists a neighborhood Ω of 0 such that the function

$$
\mathcal{M}_{\Phi, s}: \omega \mapsto \frac{1}{|\omega|^{2 k-2 s}} \inf _{v \in \mathbb{C}^{\Phi}} \frac{v^{*} G_{\Phi, s}^{0}(\omega) v}{v^{*} G_{\Phi, s}(\omega) v}
$$

lies in $L_{\infty}(\Omega)$. Here
$G_{\Phi, s}:=\sum_{\alpha \in 2 \pi \mathbb{Z}^{d}} \widehat{\Phi}(\cdot+\alpha) \widehat{\Phi^{*}(\cdot+\alpha)|\cdot+\alpha|^{2 s}, ~}$
$G_{\Phi, s}^{0}:=\sum_{\alpha \in 2 \pi \mathbb{Z}^{d} \backslash 0} \widehat{\Phi}(\cdot+\alpha) \widehat{\Phi}^{*}(\cdot+\alpha)|\cdot+\alpha|^{2 s}$
(the Gramian and the truncated Gramian).

Superfunctions

$\psi \in S$ is a superfunction for S if

$$
\operatorname{appr} . \operatorname{order}\left(S_{\psi}\right)=\operatorname{appr} . \operatorname{order}(S) .
$$

Theorem. Any FSI space $S_{\Phi} \subset W_{2}^{s}\left(\mathbb{R}^{d}\right)$ contains a superfunction.
A superfunction for an FSI space S_{Φ} is good if it is nondegenerate:
$|\widehat{\psi}|$ is bounded away from 0 in a nbhd of 0 , and fi nitely spannedby the shifts of Φ :
$\widehat{\psi}=\tau^{*} \widehat{\Phi}$, with τ a trigonometric polynomial.

Strang-Fix conditions

Theorem. If $S_{\phi} \subset W_{2}^{s}\left(\mathbb{R}^{d}\right)$ provides approximation order k, then

$$
\widehat{\phi}(\cdot+\alpha)=O\left(|\cdot|^{k}\right), \quad \text { all } \quad \alpha \in 2 \pi \mathbb{Z}^{d} \backslash 0 .
$$

Polynomial reproduction

Theorem. If $S_{\phi} \subset W_{2}^{s}\left(\mathbb{R}^{d}\right)$ provides appr. order k and ϕ is compactly supported, then

$$
\phi *^{\prime} \Pi_{<k} \subseteq \Pi_{<k} .
$$

Here $*^{\prime}$ is the semi-discrete convolution

$$
g *^{\prime}: f \mapsto \sum_{j \in \mathbb{Z}^{d}} g(\cdot-j) f(j),
$$

$\Pi:=\Pi\left(\mathbb{R}^{d}\right)$ is all d-variate polynomials, and $\Pi_{<k}:=\{p \in \Pi: \operatorname{deg} p<k\}$.
Moreover, if $\widehat{\phi}(0) \neq 0$, then $\phi *^{\prime} \Pi_{<k}=\Pi_{<k}$.

Smoothness+refinability \Rightarrow appr.order

Theorem. Suppose $s \leq 0, \Phi \subset W_{2}^{s}$ is refi nable, there exists a compact set A s.t. $A \cap 2 A$ has measure zero and $\cup_{m=-\infty}^{0} A / 2^{m}$ contains a nbhd of 0 , and some function $f \in S_{\Phi}\left(W_{2}^{s}\right)$ satisfi es

- $|\widehat{f}|$ is bounded above and away from zero on A;
- the numbers

$$
\begin{aligned}
& \lambda_{m}:=\left\|\sum_{\alpha \in 2^{m}\left(2 \pi \mathbb{Z}^{d} \backslash 0\right)}|\widehat{f}(\cdot+\alpha)|^{2}\right\|_{L_{\infty}(A)}, \\
& m \in \mathbb{Z}_{+}, \text {decay as } \lambda_{m}=O\left(2^{-2 m k}\right) \text {, for some } \\
& \text { positive } k \text {. }
\end{aligned}
$$

Then $S_{\Phi}\left(W_{2}^{s}\right)$ provides approximation order k.

Coherent appr. orders

To analize:

$$
\omega \mapsto \inf _{v \in \mathbb{C}^{\Phi}} \frac{v^{*} G_{\Phi, s}^{0}(\omega) v}{v^{*} G_{\Phi, s}(\omega) v}
$$

Diffi cult already in L_{2} since the Gramian G_{Φ} of each solution Φ is not invertible at zero if the refi nement equation has multiple solutions.

Result [Jiang, Shen]. Let $\Phi \subset L_{2}$ be a compactly supported refi nable vector with Gramian G_{Φ}. If $G_{\Phi}(0)$ is invertible, then the spectral radius $\varrho(P(0))$ of $P(0)$ is equal to 1,1 is the only eigenvalue on the unit circle, and 1 is a simple eigenvalue.

Coherent appr. orders

Instead, analize this:

$$
\omega \mapsto \inf _{v \in \mathbf{C}^{\Phi}} \frac{v^{*} G_{R(P), s}^{0} v}{v^{*} G_{R(P), s}(\omega) v},
$$

where $G_{R(P), s}:=\sum_{j=1}^{n} G_{\Phi_{j}, s}$ (combined Gramian), $G_{R(P), s}^{0}:=\sum_{j=1}^{n} G_{\Phi_{j}, s}^{0}$ (truncated combined Gramian), $\left(\Phi_{j}\right)$ is a basis for $R(P)$. We say that $R(P)$ provides coherent appr. order k if there exists a nbhd Ω of 0 such that the function $\mathcal{M}_{P, s, k}$:
$\omega \mapsto \frac{1}{|\omega|^{2 k-2 s}} \inf _{v} \frac{v^{*} G_{R(P), s}^{0}(\omega) v}{v^{*} G_{R(P), s}(\omega) v}$ belongs to $L_{\infty}(\Omega)$.

Universal supervectors

A vector v that realizes coherent appr. order is a universal supervector. It is a regular universal supervector if

$$
\frac{v^{*} G_{R(P), s} v}{v^{*} v} \sim|\cdot|^{2 s}, \quad \frac{v^{*} G_{R(P), s}^{0} v}{v^{*} v}=O\left(|\cdot|^{2 k}\right) .
$$

Theorem. Let $R(P)$ provide coherent appr. order k in $W_{2}^{s}\left(\mathbb{R}^{d}\right)$.

- Let $S_{P} \subset W_{2}^{s}\left(\mathbb{R}^{d}\right)$ be the SI space generated by $R(P)$. Then S_{P} is an FSI space and provides appr. order k.

Universal supervectors

- Let v be a regular universal supervector of order k bounded in a nbhd of 0 . Then, for any $\Phi \in R(P)$,
(i) $v^{*} G_{\Phi, s}^{0} v=O\left(|\cdot|{ }^{2 k}\right)$ around 0 . The function ψ defi ned by $\widehat{\psi}:=v^{*} \widehat{\Phi}$ satisfi es the Strang-Fix conditions of order k.
(ii) If $\left|v^{*} \widehat{\Phi}\right| \geq c>0$ a.e. in a nbhd of 0 , then S_{Φ} provides appr. order k. Moreover, with $\psi \in S_{\Phi}$ defi ned by $\widehat{\psi}:=v^{*} \widehat{\Phi}$, the PSI space S_{ψ} already provides that appr. order.

Condition Z_{k} and sum rules

Condition $Z_{k} . \quad v^{*}(2 \cdot) P-\delta_{l, 0} v^{*}$ has a zero or order k at each $\pi l, l \in\{0,1\}^{d}$, while $v(0) \neq 0$.
Sum rules (variant I).
$\sum_{\sigma \in \mathbb{Z}^{d}} \sum_{\gamma \in \mathbb{Z}^{d}} v_{\sigma-\gamma}^{*} P_{l+2 \sigma} q(l+2 \gamma)=2^{-d} \sum_{\gamma \in \mathbb{Z}^{d}} v_{-\gamma}^{*} q(\gamma), l \in E, q \in \Pi_{<k}$.
Sum rules (variant II).

$$
\sum_{\beta \leq \alpha} 2^{|\alpha-\beta|}\left(v^{\alpha-\beta}\right)^{*}\left(D^{\beta} P\right)(\pi l)=\delta_{l, 0}\left(v^{\alpha}\right)^{*}, \quad l \in E,|\alpha|<k .
$$

Result. Condition $Z_{k} \Longleftrightarrow$ either of the sum rules.

Condition $Z_{k} \Longrightarrow$ coherent a.o. k

Theorem. Let P be a trig. polynomial mask, let $R(P) \subset W_{2}^{s}$, and let v be a trig. polynomial vector. Suppose that P and v satisfy Condition Z_{k} for some $k>0$. Then:

- For each $\Phi \in R(P)$, the function ψ defi ned by $\widehat{\psi}:=v^{*} \widehat{\Phi}$ satisfi es the Strang-Fix conditions of order k, and $\widehat{\psi}-\widehat{\psi}(0)=O\left(|\cdot|^{k}\right)$. Consequently, if $v^{*}(0) \widehat{\Phi}(0) \neq 0$, then $S_{\Phi}\left(W_{2}^{s}\right)$ provides appr. order k, and $\psi \in S_{\Phi}\left(W_{2}^{s}\right)$ is a corresponding superfunction.
- If $v^{*}(0) \widehat{\Phi}(0) \neq 0$ for some $\Phi \in R(P)$, then $R(P)$ provides coherent appr. order k, and v is a corresponding universal regular supervector.

Condition $Z_{k} \stackrel{?}{-}$ coherent a.o. k

Theorem. Let P be an $r \times r$ trig. polynomial mask. Suppose that $R(P) \subset L_{2}$ and that the combined Gramian $G_{R(P)}$ satisfi es some technical assumptions, is smooth around each $l \in E$ and is boundly invertible around each $l \in E$. If $P(0)=I$, TFAE:
(a) P satisfi es Condition Z_{k} with some vector v.
(b) There exists a regular universal supervector v of order k for the space $R(P)$.
In addition, a regular universal supervector v of order k can be always chosen so that, for every $\Phi \in R(P)$,

$$
v^{*} \widehat{\Phi}-\left(v^{*} \widehat{\Phi}\right)(0)=O\left(|\cdot|^{k}\right) .
$$

Coherent polynom. reproduction

Theorem. Let P be a refi nement mask such that $R(P) \subset W_{2}^{s}\left(\mathbb{R}^{d}\right)$. Let $k>0$ and let v be a trig. polynomial such that one of the following holds:

- v satisfi es Condition Z_{k}.
- v and P satisfy either version of the sum rules
- v is a regular universal supervector of order k.

Let $\tilde{v}=:\left(\tilde{v}_{1}, \ldots, \tilde{v}_{r}\right)$ be the sequence of the Fourier coeffi cients of \tilde{v}^{*}, and let $\Phi=:\left(\phi_{1}, \ldots, \phi_{r}\right)^{\prime} \in R(P)$. Then the map T_{Φ} maps $\Pi_{<k}$ into itself: $T_{\Phi}: q \mapsto \sum_{i=1}^{r} \phi_{i} *^{\prime}\left(\tilde{v}_{i} *^{\prime} q\right)=: \Phi *^{\prime}\left(\tilde{v} *^{\prime} q\right)$
The map is surjective iff $v^{*}(0) \widehat{\Phi}(0) \neq 0$.

Post Scriptum

Preprint available at

http://www.cs.berkeley.edu/~oholtz
/articles.html

Thanks

for

your

attention!

