
Mathematical Models in Epidemiology
Several have been the classi�cations of models in infectious disease. So, for

instance, Anderson and May (1991) use to classify models in microparasites
(viruses, bacteria and protozoa) as prevalence-based models, and models in
macroparasites (helminths, �at-worms, etc.) as density-based models. Other
authors use a mathematical approach to classify models in deterministic and
stochastic models (Bailey, 1975).
Current models take several forms, although most fall into two broad cate-

gories, which will be detailed further on: analytical and computer simulations.
Compared to computer simulation models, analytical models tend to be rel-
atively simple, usually sets of di¤erential equations that keep track of a few
important variables. In contrast, computer simulation models try to incorpo-
rate many more of the variables in�uencing transmission.
Analytical models are those which involve the association of a set of equa-

tions to each step individuals from the community take with the development
of the natural history of the infection. Also called dynamical models, they cap-
ture the structure of the disease as this take their natural course. They can
be of either deterministic or stochastic nature. Deterministic models are those
which use di¤erence, di¤erential, integral or functional di¤erential equations to
describe the changes in time of the sizes of the epidemiological classes. So,
consider, for instance, the picture described in �gure 10, which describes the
progress of a viral infection, such as measles, through a host.

Figure 10

The curves above in the �gure illustrate the growth of the virus popula-
tion, the immune response to the virus, and the timing of acute disease. The
block diagram below represents the �ow of the transmission between infection
categories. In this simple situation, the total population is considered to be
constant, and therefore the birth and death rates are equal (�). People are born
susceptible X, are infected at a rate �, passing by a latent state, H, before
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developing the acute disease with a rate �. Those infected and infectious, Y ,
recover from the infection at a rate 
, remaining immune, Z, for life.
The system illustrated by �gure 1 is extremely simple but it captures the

essence of the transmission chain between the involved categories. In general,
systems like this, although still very simple in its biological assumptions are
too complex to have analytical solution, i.e., the solution of the associated sys-
tem of di¤erential equations without the help of numerical simulations. This
is the �rst problem posed by modelling biological phenomena: the highest the
biological realism the lower the probability of analytical solution. Figure 11
illustrates, through a �ow chart, the algorithm to solve infectious diseases prob-
lem by mathematical and computer modelling.

Figure 11

As can be noted from the �gure, everything starts, as in any scienti�c ap-
proach, by de�ning the problem to be modelled. The next step is to design
the model, in this case, the set of di¤erential equations associated to the dis-
ease categories. If the system is simple enough then the analytical solution (by
pencil and paper) is feasible. If so, then is just to interpret the results and the
problem is �nished. If, on the other hand, the problem is too complex, then it
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is necessary the application of numerical methods for the computational solu-
tion. If the system to solve the model numerically is available, then is just to
interpret the results and the problem is �nished. If the computational system is
not available, then the model needs to be reformulated, whenever possible, and
the problem starts again. In case the model cannot be reformulated, then it is
not possible to solve it and the system stop. Let us see some examples of the
situation described above.
In �gure 12, it is illustrated the simplest epidemic model as possible, involv-

ing only two categories, namely, susceptibles, X, and infected,Y . Individuals
acquire the infection with a rate �, normally denoted the force of infection. This
later parameter is related to the incidence rate, i:r:, by the equation:

i:r: = �X (1)

Figure 12

In this simple, and unrealistic model, it is associated the following system of
ordinary di¤erential equation (ODE):

dX(t)
dt = ��X(t)

dY (t)
dt = �X(t)

(2)

If we assume the total population as a constant, we can work with propor-
tions, in the sense that X(t) + Y (t) = 1. The analytical solution of equations
?? is then straightforward:

X(t) = X(0) exp[��t]
and
Y (t) = 1� fX(0) exp[��t]g

(3)
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