Rubella in Romania

An Evaluation of Possible Vaccination Strategies via Mathematical Modeling[†]

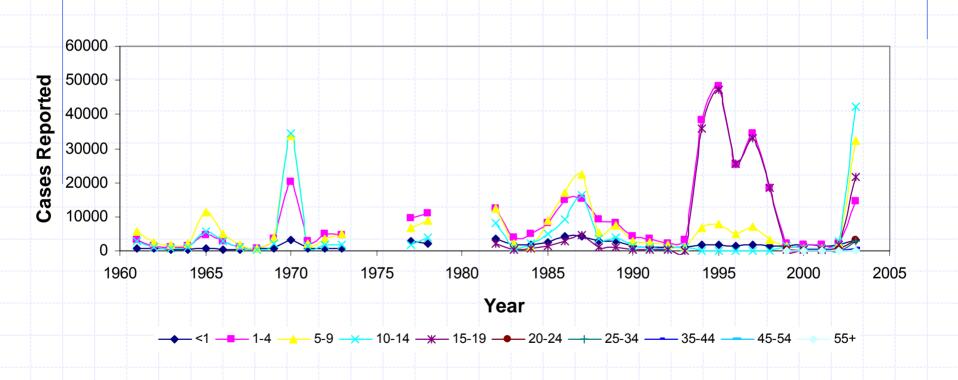
[†]"And the mathematical method of treatment is really nothing but the application of careful reasoning to the problems at hand." Sir Ronald Ross

Contributors

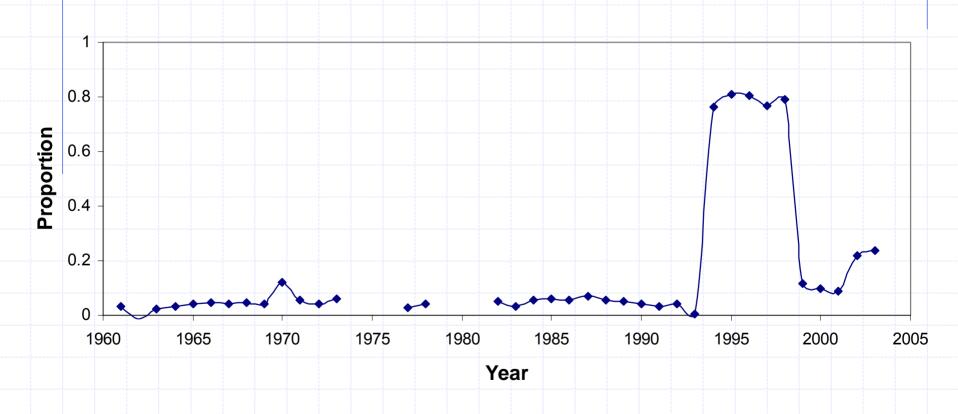
NCCDSC, Bucharest

- Adriana Pistol
- Alexandru Rafila

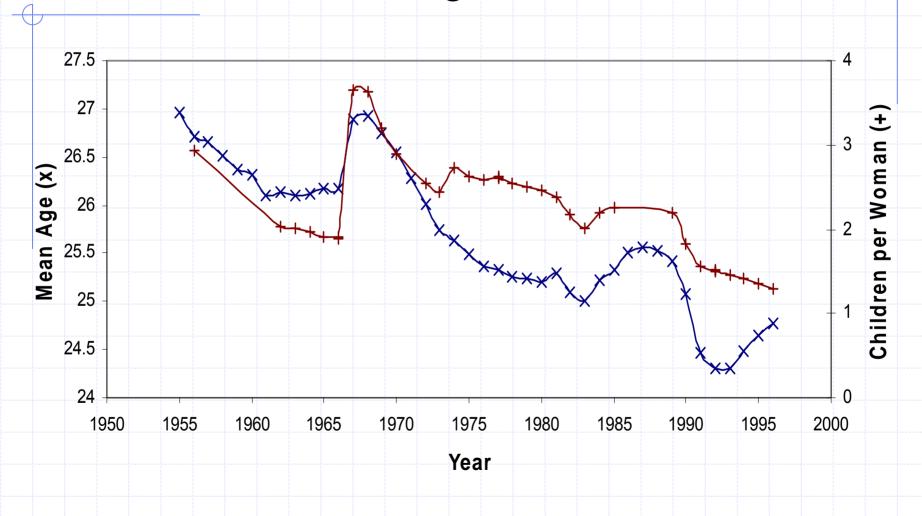
- CDC, Atlanta
 - John Glasser
 - Charley LeBaron
 - Mona Marin
- WHO, Geneva
- Maureen Birmingham
 Peter Strebel
- Brad Hersh


• Sue Reef

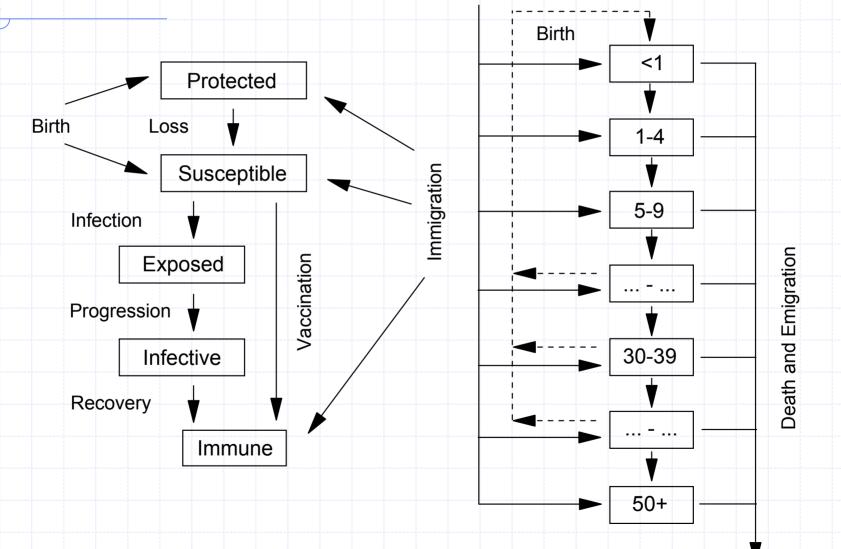
Outline


1. Observations

- Historical surveillance
- Explanation for secular patterns, relevance to vaccination
- 2. Mathematical modeling
 - Measles/rubella model, modeling process
 - Evaluation via comparison of predicted and reported rubella and congenital rubella syndrome
- 3. Policy assessments
 - Routine childhood vaccination, coverage required for control
 - Marginal benefit of catch-up campaigns
 - Targeted vaccination: adolescent girls and young women or women of childbearing age
 - Composite strategies
- 4. Summary

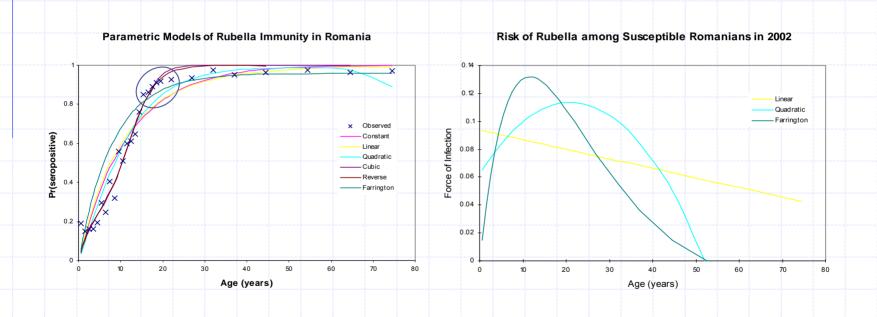

Rubella in Romania

Rubella among Romanians ≥ 15 Years Old

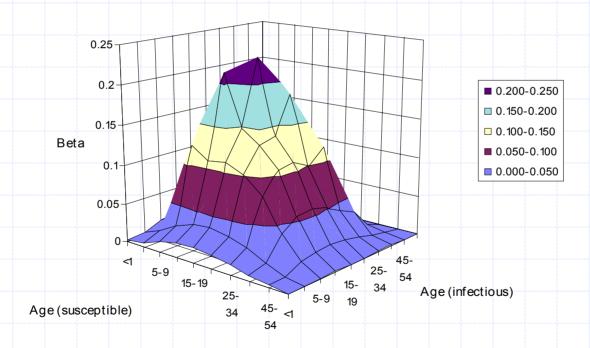

Childbearing in Romania

Pattern and Explanation

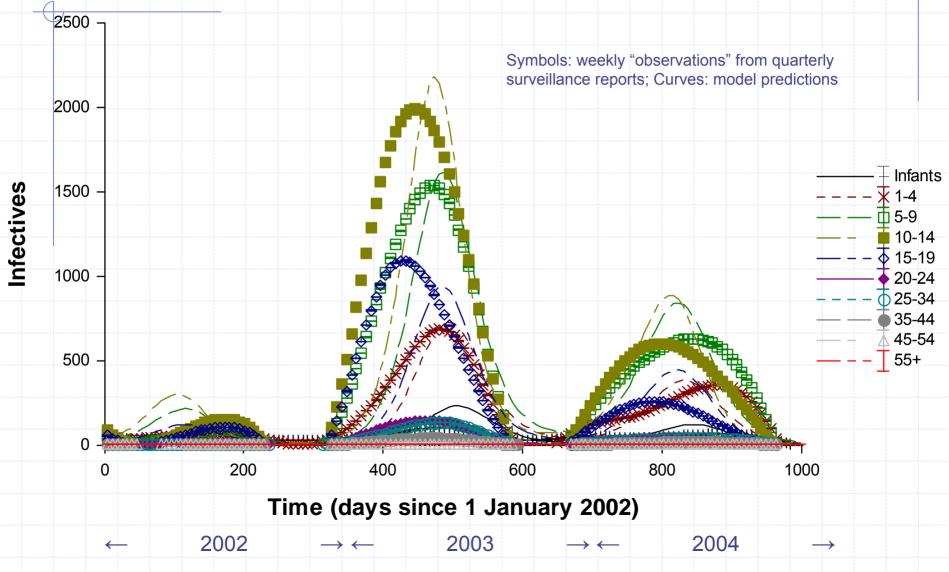
- Transition from relatively small 5- to larger 10year cycles (a period-doubling bifurcation?)
- As births decline, longer periods are required for enough susceptibles to accumulate
- The mean age of infection increases, and with it the incidence of congenital rubella syndrome
- Childhood vaccination can have this effect if coverage is insufficient
- We will ascertain coverage required to preclude it via mathematical modeling


Measles/Rubella Model

Modeling Process


- Estimate parameters from observations insofar as possible (e.g., infection rates from cross-sectional serological survey assuming mixing)
- Adjust infection rates and harmonic coefficients (seasonal forcing) to minimize disparities between predictions and observations
- Evaluate possible vaccination strategies for mitigating the burden of CRS (e.g., routine childhood, w/ and w/o catch-up, targeted female)

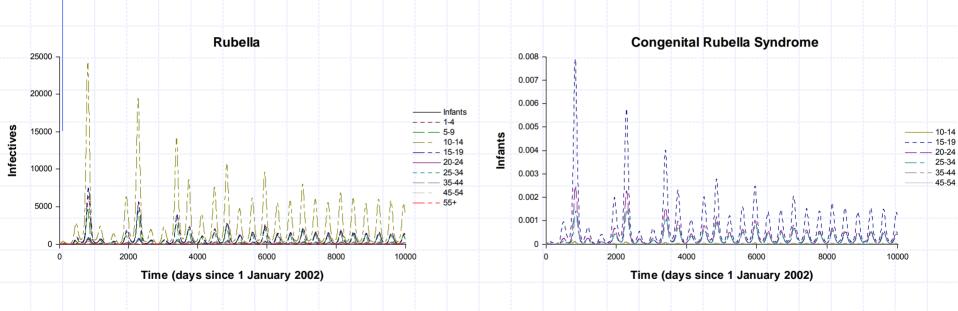
Catalytic Modeling


NB: in February of 2002, 37,375 girls 14-18 years of age were vaccinated in Bucharest (ca. 10% of population)

Infection Rates

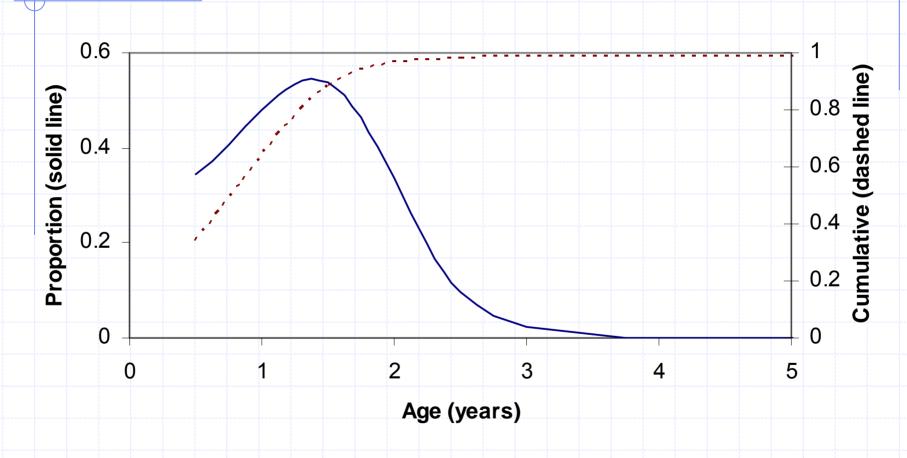
4		ļ	0.06249	0.00487	-0.000116							Childbearin	0			Infection		
Group	x	n	Midpoint	Pr(+)	Population	Susceptible	Immune	Pr(female)) BR	DR	proportion		variance	gamma	proportion		variance	gamma
<1	0	1	0.5	0.03135	234,888	227,525	7,363	3 0.486032		0.020725		0	0	4.78E-27	0.03135	0.01567	0.00784	0.005377
1-4	1	4	3	0.18806	929,487	754,686	174,801	0.486415		0.001051		0	0	8.09E-12	0.15671	0.47014	1.41042	0.166646
5-9	5	5	7.5	0.44527	1,432,890	794,872	638,018	0.489514	0	0.000814		0	0	2.2E-05	0.2572	1.92904	14.4678	0.313125
10-14	10	5	12.5	0.66242	1,702,905	574,864	1,128,041	0.489752	0.000555	0.000517	0.001951	0.024389	0.304866	0.009792	0.21716	2.71444	33.9305	0.239683
15-19	15	5	17.5	0.80446	1,778,748	347,819	1,430,929	0.490311	0.040335	0.000637	0.148245	2.594281	45.39991	0.135002	0.14204	2.48565	43.4989	0.143238
20-24	20	5	22.5	0.88902	1,971,486	218,791	1,752,695	5 0.486561	0.096879	0.000819	0.391623	8.811521	198.2592	0.340811	0.08456	1.90268	42.8103	0.075854
25-34	25	10	30	0.95135	3,371,755	164,036	3,207,719	0.494026	0.058884	0.001349	0.413343	12.40028	372.0085	0.461008	0.06233	1.86983	56.0949	0.051503
35-44	35	10	40	0.98024	3,070,435	60,666	3,009,769	0.500687	0.00682	0.0038	0.044185	1.767405	70.69622	0.040456	0.02889	1.15568	46.2273	0.010645
45-54	45	10	50	0.98755	2,723,718	33,899	2,689,819	0.510457	0.000111	0.008183	0.000653	0.032659	1.632975	0.000981	0.00731	0.36561	18.2807	0.002008
55+	55	20	65	0.9765	5,286,491	124,256	5,162,235	5 0.560713	0	0.04162	0	0	0	1.75E-06	-0.0111	-0.7188	-46.723	0.000297
Total					22,502,803						1		688.3017	0.988073	0.976496		210.0058	1.008375
											mean:	25.63054			mean:	12.1899		
Initial cond	litions:										variance:	31.37716			variance:	61.41129		
Pr(+) are probabilities of being seropositive from a catalytic model whose						std:	5.601532			std:	7.836535							
force of in	fection i	s a line	ear function	n of age; s	ee FOI_Rom	nania for othe	r models											
Multiplying the population by Pr(+) and 1-Pr(+) give immune and susceptible					Alpha	20.93639			Alpha	2.419661								
											Beta	1.22421			Beta	5.037868		
Other dem																		
					at randomly o	chosen perso	ns are) fer	male										
BR and DF	≺ are an	nual d	irth and de	ath rates														
In the remain	aining c	olumns	s are calcu	lated the n	nean age of i	mothers, its s	tandard de	eviation.										
	0				0	on's paramete												
			0			the dynamic r												
mean age	es and st	tandar	d deviation	s; post-pa	rtum mothers	s are one suc	h strategy											

Model fit to 1Q02-1Q04 surveillance predicts 2Q-3Q04 reasonably well (overall $R^2 \approx 0.7$)

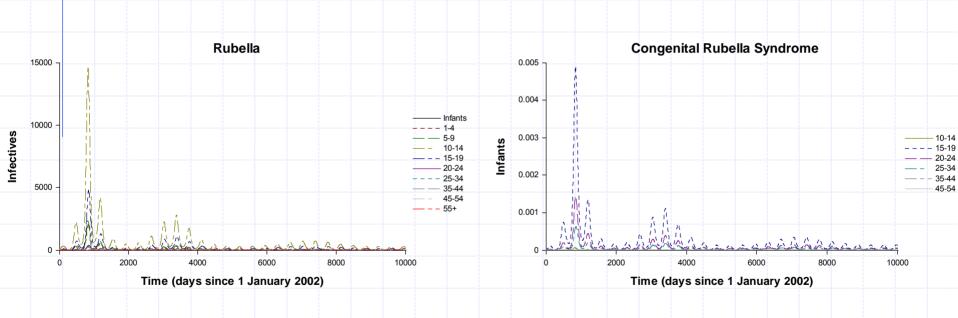


Predictions (annual areas under curves) and Surveillance Reports (the next year) 0.012 0.01 Mid-2004: 160 Suspected, 8 IgM+; 2003: 87 Predicted 0.0075 10-14 15-19 20-24 0.005 25-34 35-44 45-54 2003: 150 Suspected, 7 IgM+; 2002: 8 Predicted 0.0025 0 200 600 400 800 1000 0 Time (days since 1 January 2002) 2002 2003 2004

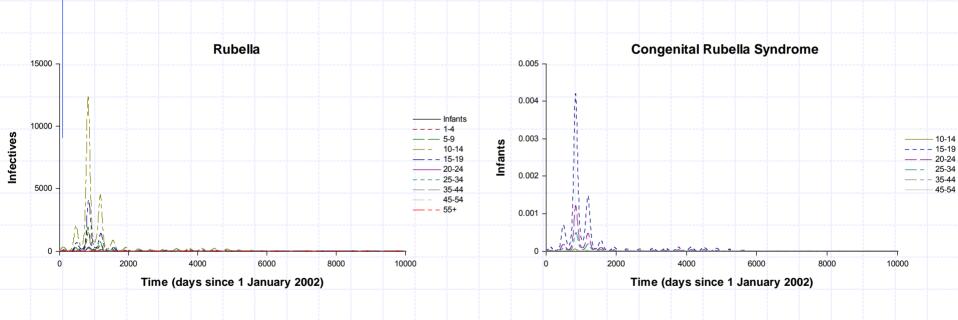
of mother)

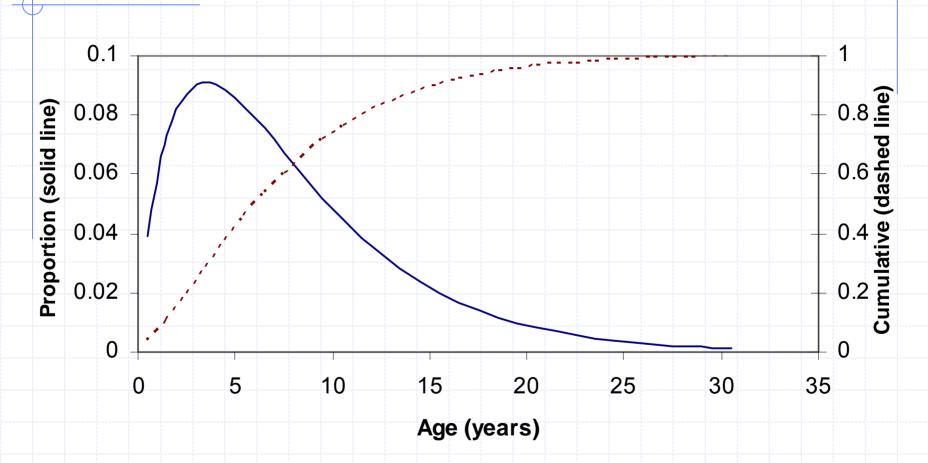

nfants (by age

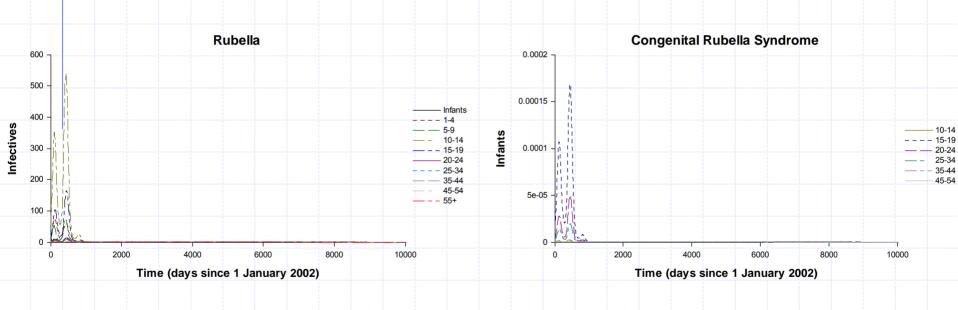
No Vaccination (left: rubella by age; right: CRS by age of mother)



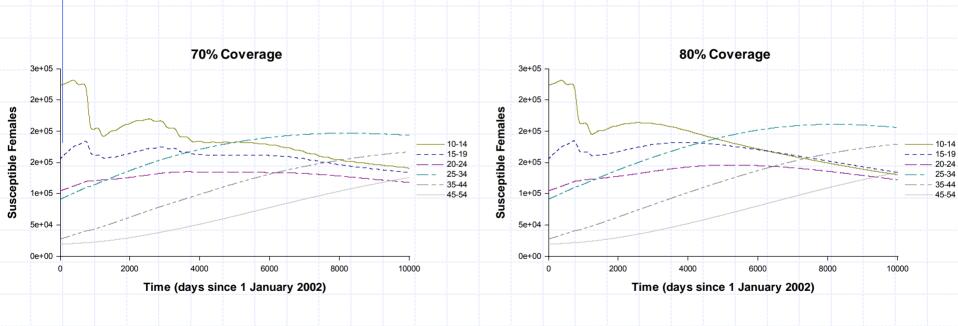
NB: the mean age of childbearing is 25.6 years, so 10,000 days is roughly a generation


Age Distribution, Single Dose

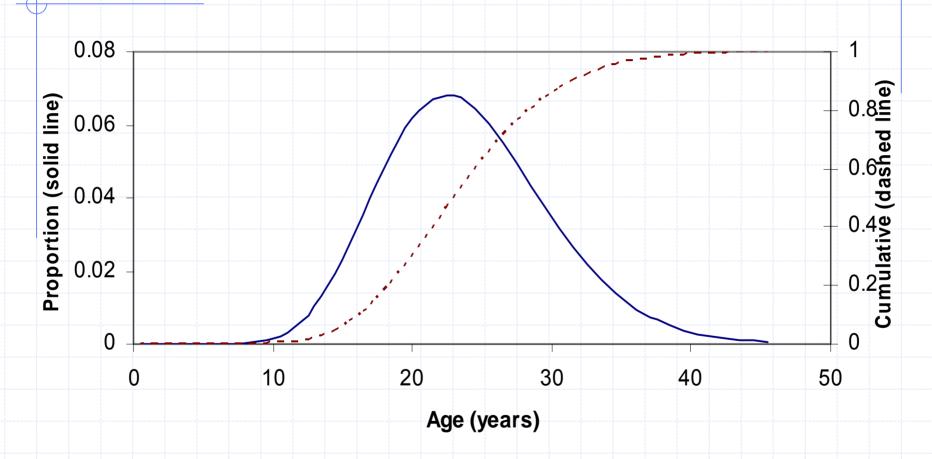

70% Coverage, 1 Dose


80% Coverage, 1 Dose

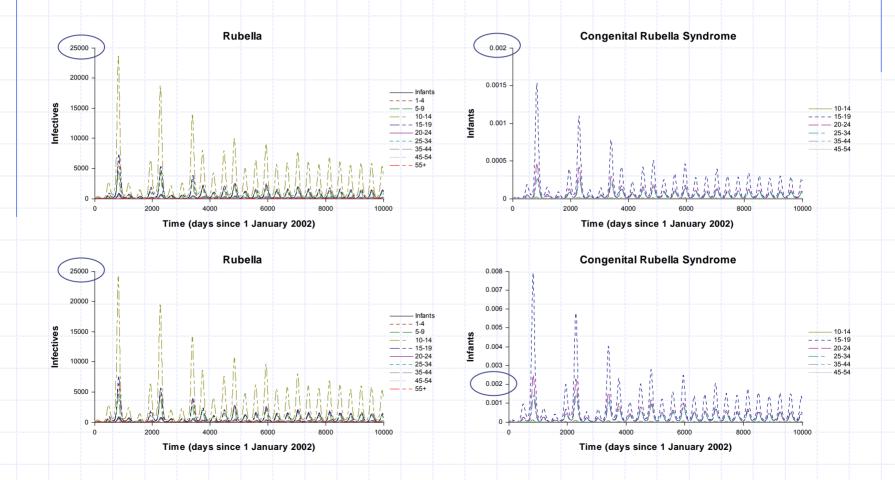
Age Distribution, Catch-up Campaign


With Catch-up Campaign among 2-14 yr old Children 1 yr Later

Conclusions about the Policymaking Tool and Childhood Vaccination

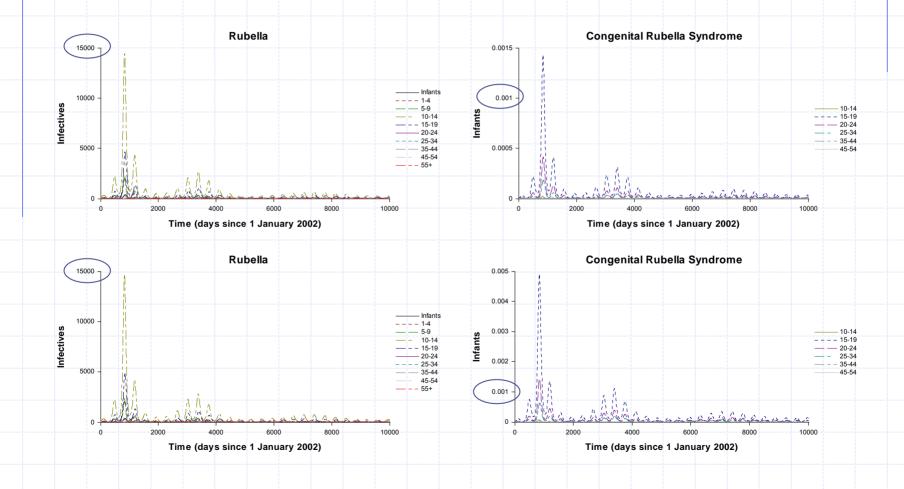

- Model predicts two quarters of surveillance and reproduces
 5-year cycle typically observed
- Multi-annual periodicity obliterated as model population approaches stable age distribution
- Simulations confirm $R_0 \approx 3.8$ calculated from crosssectional serosurvey ...
- ... as coverage of about 80% is required to control rubella in Romania (i.e., 0.78*0.95 ≈ 1-[1/3.8])
- At this coverage, catch-up campaign among 2-14 year olds shortens time to elimination, ...
- But, in answer to one policy question, it is not necessary despite the fact that ...

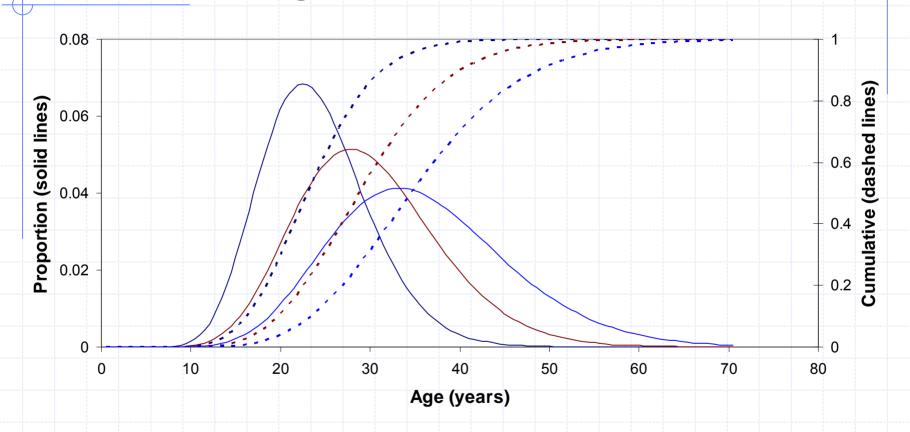
Childhood Vaccination Increases Susceptibility among Older People



NB: Susceptibility increases among women 25-54 years old because 20-30% of girls are not vaccinated and (1-VE) of the remainder not immunized. On the left, this increase is slowed by disease among adolescent and young adult females.

Age Distribution, Targeted Vaccination


Vaccination of Adolescent Girls and Young Women (cf. no vaccination, bottom panels)


Considerations

- 1. Because targeting of adolescent girls and young women reduces CRS by 3/4, supplementing childhood vaccination would insure against insufficient coverage. This essentially is the rationale for childhood plus post-partum vaccination in the developed world
- 2. But need one-time catch-up campaigns among women of childbearing age accompany the introduction of childhood vaccination? If so, all childbearing ages?
 - As risk of exposure declines with age, individual benefits decrease, except for women who might become pregnant
 - As older people are less likely to infect others than younger ones, the benefit to society also decreases with age
 - Accessibility declines too, increasing the cost per person vaccinated
 - Cost-effectiveness consequently decreases with age, limiting optimal campaigns to young women
 - How young depends on demographic and social phenomena that vary among countries

70% Coverage with (top) and without Targeting (bottom) Females

Targeted Female Vaccination

Costs (average annual doses) and Benefits (percent reduction)

Scenario	Doses	Rubella	CRS		
80% of children	138,966	89%	86%		
Plus catch-up	155,452	99%	99%		
Young women	7,818	3%	42%		
Older women	7,270	2%	43%		
Still older ones	6,685	1%	43%		

Conclusions about Vaccinating Adolescent Girls and Young Women

- Targeting adolescent girls and young women reduces CRS, but not rubella
- Childhood vaccination requires much more vaccine, so targeting may be more cost-effective
- But increasing the mean age of targeted female vaccination has no benefit
- Especially where women complete their families at an early age (e.g., contemporary Romania)
- And may have a cost, insofar as older women are less accessible or motivated
- Where childbearing extends to older ages, composite strategies may be indicated

Summary

- Declining birth rates changed dynamics from 5- to 10-year cycles, increasing mean age of infection, and CRS
- Mathematical model reproduces recent rubella surveillance, but predicts more CRS than reported
- 80% coverage with a single dose during the second year of life would control rubella, eliminating CRS eventually
- Catch-up among children 2-14 years old would reduce the time to elimination, but is not necessary
- Vaccination of adolescent girls and young women reduces CRS without affecting rubella
- Could supplement childhood vaccination to insure against insufficient coverage (e.g., post-partum women)
- But including older women of childbearing age has no benefit and may have substantial cost