
Mathematical Epidemiology of 
Varicella and Herpes Zoster

Designing vaccination programs to 
mitigate the burden of diseases caused 
by varicella-zoster virus

”And the mathematical method of treatment is really nothing but the 
application of careful reasoning to the problems at hand.” Sir Ronald Ross



Outline
• Colleagues – within CDC and elsewhere
• Objective – predict long-term impact of childhood and 

adult vaccination
• Process – models as hypotheses
• Details – assumptions, conceptual model, particular 

functions, parameters
• Immunity – waning at different rates, with and without 

internal boosting
• Surveillance – Antelope Valley, CA, and West 

Philadelphia, PA, a rural and urban community
• Progress – winnowing alternative hypotheses, refining 

survivors, …



Collaborators

Herpes virus team:
• Paul Gargiullo
• Dalya Guris

Others:
• Aisha Jumaan
• Scott Schmid
• Jane Seward

Substantive experts:
• Ann Arvin
• Steve Black
• Anne Gershon
• Philip Krause
• Philip LaRussa
• Myron Levin
• Henry Shinefield
• Barbara Watson



Objectives: Determine the Long-
term Impacts of …

1. … childhood vaccination (1 or 2 doses) on varicella, …
a) Has vaccination increased susceptibility to or incidence of 

varicella among adolescents and adults? Would catch-up or a 
second dose mitigate this effect? 

b) If the herd immunity threshold cannot be attained via a single 
dose, what second-dose coverage and effectiveness are 
required? What is the optimum age? 

2. … and herpes zoster (HZ) caused by wild-type and vaccine virus
a) Will reduction in varicella increase rates of wild-type HZ 

temporarily? 
b) What role, if any, does internal vs. external boosting play in 

maintaining protection against HZ? 
3. … adult vaccination on HZ and varicella 

a) Will adult vaccination affect varicella by reducing 
opportunities for exposure to adults with HZ? 

b) What is (are) the optimal age(s) for vaccinating adults? Does it
depend on their history of disease or vaccination? 



Modeling Process
1. Formulate answerable questions and devise a suitable 

conceptual model (states and transition processes)
2. Present for review by substantive experts, and revise as 

invariably (in my experience) is needed
3. Write and encode equations, increasingly explicit 

representations of our collective understanding
4. Estimate parameters from observations insofar as possible, 

querying experts if necessary
5. Attempt to reproduce active surveillance in sentinel site(s), 

and remedy apparent deficiencies
6. Experiment or analyze to answer policy questions



Evaluation
• Insofar as models are hypotheses, failures are 

informative provided we can diagnose their causes 
and remedy them

• Our model includes hypothetical contributions to the 
force of infection from modified disease and zoster, 
durations of naturally-acquired and artificially-
induced immunity, suppositions about the nature and 
contribution of internal boosting, possible forcing, …

• Evaluation can not only increase understanding of 
relevant phenomena, but assures reliable 
policymaking tools



Assumptions
• Even after two doses, vaccinees may remain wholly or partially 

susceptible
• People with typical and modified varicella and HZ do not contribute 

equally to the force of infection
• Everyone is protected on recovery from varicella. Because 

immunity wanes, people would become “increasingly susceptible to 
HZ” absent boosting. Until about 45 years of age, we are boosted by
controlled reactivations of latent virus (internally) as well as
exposure to infectious persons (externally), but we lose our ability to 
control reactivations, eventually becoming “susceptible to HZ.”
Older people may be boosted by exposure, but develop HZ on 
reactivation

• Those “susceptible to HZ,” who are neither exposed nor reactivate, 
become “susceptible to modified varicella” and eventually to 
varicella (i.e., wholly susceptible)

• Primary and secondary vaccine failures result in typical and 
relatively mild disease post-vaccination, respectively



Epidemiologic
Sub-model
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Demographic
Sub-model
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Third National Health and Nutrition 
Examination Survey (NHANES III), 1988-94

Risk of Varicella among Susceptible Americans
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Infection Rates (with epsilon=0.6; 
slightly assortative mixing)†

<1
15-19

35-39
65-74

<1
20-
24

45-
54

0

0.05

0.1

0.15

0.2

0.25

0.3

Beta

Age 
(susceptible)

Age 
(infectious)

0.250-0.300
0.200-0.250
0.150-0.200
0.100-0.150
0.050-0.100
0.000-0.050

†Hethcote, HW. Modeling heterogeneous mixing in infectious disease dynamics. pp. 215-37 in Models
for Infectious Human Diseases: their Structure and Relation to Data, Isham and Medley, 1996, Cambridge



Q1: How do People with Typical and Modified Varicella 
and Herpes Zoster Contribute to the Force of Infection?

• Risk per Susceptible = Infection rate * probability of 
encountering an infectious person

• Infection rate ≈ average probability of transmission on 
contact * rate of contact (either may vary seasonally)

• F1 is the contribution of people with modified relative to 
typical varicella (≈ 0.5, Seward et al. 2004. JAMA 
292:704ff), and F2 and F3 are the relative contributions 
of people with wild-type and vaccine-strain zoster, 
respectively (F2 ≈ 0.1, Ferguson et al. 1996. PNAS 
93:7231ff; F3 ≈ 0.01, guesstimate)
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Household Contact Study
• Vax Hx: Among unvaccinated contacts, vaccinated primary 

cases with <50 lesions had much lower (23%) and 
unvaccinated primaries with 50+ higher (74%) SARs

• But vaccinated primary cases with 50+ lesions (primary 
failures?) and unvaccinated primaries with <50 (histories?) 
had similar SARs (65% and 68%, respectively)

• Dis Hx: Among naive contacts, primary cases with histories 
had lower SARs (44%) than those without histories (72%), 
but secondary cases had similar lesion distributions

Seward, JF, Zhang, JX, Maupin, TJ, Mascola, L, Jumaan, AO 2004. Contagiousness
of varicella in vaccinated cases: a household contact study. JAMA 292:704-08 



Seasonal Forcing (external factors 
possibly affecting Pr(T|C) and C rates)



School Enrollment’s effect* on Disease 
Incidence is Age-Specific, Temperature’s …

Model R2 School p Temperature p 
0-1 0.6 -0.09 0.93 -2.502 0.01 
2 0.55 0.59 0.56 -3.003 0.003 
3-4 0.71 2.75 0.007 -3.817 0.0002 
5 0.73 1.066 0.29 -5.108 0.001 
6-9 0.8 2.804 0.006 -4.34 0.0001 
10-12 0.53 2.057 0.04 -2.081 0.039 
13-19 0.47 1.88 0.06 -2.943 0.004 
20+ 0.45 1.122 0.26 -3.166 0.002 
 

*Conditional on vaccination



Q2: Duration of Naturally-Acquired Immunity 
(absent boosting), and Distribution among 3 States?

• Modelers have assumed 5-20 years
• Some calculations (with boosting): 

o Difference between mean ages of varicella and HZ is 62 years. 
This interval is an emergent property (we hypothesize), with 
boosting to higher levels of immunity forestalling HZ. Without 
such boosting, immunity would continue waning toward 
susceptibility to HZ, resulting in a much shorter HZ-free period

o Cumulating annual estimates (based on NHIS) of proportions 
infected at successive ages, interpreting the result, 1.07, as 7% 
experience more than one episode, comparing with age-specific 
proportions seropositive (based on NHANES), calculating the 
requisite waning rate and inverting it yields 27 years

• Partition into fully protected, increasingly susceptible to 
zoster, protected from modified and typical varicella



Conventional Wisdom?

• On recovery from varicella, VZV 
establishes latency in dorsal root ganglia

• Reactivates (periodically ?), and immune 
system responds

• Ability to quell reactivation declines with 
age, certain illnesses, drugs, stress

• Eventually, episodes of zoster may occur



Progression to Herpes Zoster is Unique 
among Natural History Parameters
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Donahue, JG, Manson, JE 1995. The incidence of herpes zoster. Archives of Internal Medicine 155:1605-09. 



Q3: Why does Zoster Increase with Age?

• Immunocompetence certainly declines, but 
evidently immunity can be boosted via vaccination 
(Oxman et al. 2005. NEJM 352:2271ff)

• Reduced exposure? Incidence is lower among 
adults exposed to children w/chickenpox (Thomas 
et al. 2002. Lancet 360:678ff)

• Both (i.e., increased waning and reduced 
boosting)?



Details
• We model reactivation of latent virus via the harmonic 

function, y = a sin (bx + c) + d, where |a| is amplitude, 
2π/|b| period, and x age. To simulate diminution in 
ability to control reactivation, a is an exponential 
function of age. With the exponent estimated from 
Donahue et al. (1995), this simulates zoster. With 
smaller exponents, it also simulates internal boosting

• Assuming that latency evolved as a means of persistence 
when humans were small scattered bands (Hope-
Simpson 1965), we allow the period to be N(µ,σ2), with 
µ=15 years (and σ=0.1587*µ), the hypothetical mean 
age of childbearing, or generation time, when HZV 
evolved. For reference, µ is about 25 years in the 
developed world now



Here b = 2*π/15, c = 15, and d = 0. The nature of the 
increase depends on the coefficient of age
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Antelope Valley, CA
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Vaccination in Antelope Valley, CA
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Varicella in Antelope Valley, CA
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Disease Severity
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One Previous Episode
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Timing of Disease
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Evaluation Strategy

• Simulating model with 35- and 70-year 
durations of immunity with and without 
internal boosting (next slide)

• Will determine how well models reproduce 
observed time-series, eliminate worst and 
refine best combination



Parameter Combinations
If Immunity lasts 35 yrs, ...
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Combinations “explain” typical (>50 lesions) 
better than modified disease, suggesting …

Typical Disease
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Why Model the Underlying 
Mechanisms (insofar as possible)?

• Why not just fit a statistical model to these data 
(next slide)?

• If we want reliable answers to such questions as
o Is catch-up indicated?
o What about a second dose?
o When should adults be vaccinated? 

• The system must respond realistically to simulated 
alternatives (i.e., experiments)

• Only to the extent that we model the relevant 
processes can we hope for this



Phenomenological Modeling
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Q4: Residual Issues

1. Duration of artificially-induced immunity 
and distribution among states?

2. Incidence of vaccine-strain HZ, duration 
of episodes and contribution to FOI?
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