

University of Oxford, Department of Zoology Evolutionary Biology Group Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS, U.K. Fax: +44 1865 271249

Evolutionary Analysis of Viral Genomes

Lecture 4: Natural Selection & Viral Adaptation

Oliver G. Pybus Department of Zoology, University of Oxford

http://evolve.zoo.ox.ac.uk

Natural Selection

"This preservation of favourable variations and the rejection of injurious variations, I call natural selection. Variations neither useful nor injurious would not be affected by natural selection, and would be a left a fluctuating element" (Darwin, On The Origin of Species).

The **selection coefficient** (*s*) of a mutation measures the degree by which it increases or decreases the fitness of an organism.

Mutations are classified as:
advantageous / benficial (s>0)
disadvantageous / deleterious (s<0)
neutral (s=0)

The Fate of Mutations (Simplified)

Fixation = Nucleotide Substitution

The Fate of Mutations (Simplified)

Distribution of Selection Coefficients Selectionist Model Neutralist Model s<0 s>0 Most *fixed* mutations Most *fixed* mutations s≈0 are advantageous are neutral

A Model Of Substitution Rate

 \bigcirc *m* = mutation rate per site per individual

N = population size

f(s) = distribution of selection coefficients

= probability that a given mutation has selection coefficient *s* p(s) = probability of fixation of mutations with selection coefficient *s* ~ (1-exp(-2s)) / (1-exp(-2Ns)) in a constant-size population r(s) = rate at which mutations with selection coefficient *s* are fixed = N m f(s) p(s)

• $\mu = \text{total substitution rate}$ $\mu = \int r(s).ds$ $= Nm \int f(s) p(s).ds$

A Model Of Substitution Rate

•For neutral mutations, *s*=0

p(0) = 1/N , $r(0) \approx mNf(0)/N = mf(0)$

For advantageous mutations, s>0

 $p(s>0) \approx 2s$, $r(s>0) \approx 2Nmsf(s>0)$

For disadvantageous mutations, s<0</p>

 $p(s < 0) \approx 0$ hence $r \approx 0$

dN/dS

Are fixed mutations neutral or advantageous?

Silent mutations are likely to be neutral.

Replacement changes could be neutral, beneficial or deleterious.

 $\bigcirc dN/dS = \omega$ = ratio of replacement and silent substitution rates.

dN/dS = 1 if all replacement changes are neutral dN/dS < 1 if some replacement changes are deleterious dN/dS = 0 if all replacement changes are deleterious dN/dS > 1 only if some replacement changes are beneficial

When are silent changes not neutral?

• Overlapping genes and reading frames. Very common in viruses (e.g. Hepatitis B Virus)

Secondary RNA / DNA structure

e.g. stem-loop structures

Codons for the same amino acid differ in fitness May result from different translational efficiencies. Gives rise to codon bias.

Outranslated or regulatory regions

Detecting Selection Using dN/dS

Pairwise method: Calculates *dN/dS* from each pair of sequences, then averages *dN/dS* across all pairs.

e.g. Nei & Gojobori 1986 (uses Jukes-Cantor model)

Parsimony method: Start with a phylogeny. A parsimony algorithm then estimates the ancestral codons at the internal nodes. dN/dS is then calculated from the tree with specified ancestral codons.

e.g. ADAPTSITE (Suzuki & Gojobori 1999) http://mep.bio.psu.edu

Substitution model method: Starts with a phylogeny. Uses a codon-based substitution model that contains *dN/dS* as a parameter. Allows *dN/dS* to vary among codons and can identify individual codons under selection. Uses realistic models of substitution.

e.g. CODEML (Yang et al. 2000) http://abacus.gene.ucl.ac.uk/

Codon Substitution Model

• Define a 61×61 substitution matrix (**Q**). Each element in the matrix $q_{i,j}$ defines the substitution rate of codon *i* to codon *j*.

<i>q</i> _{<i>ij</i>} = {	0,	if <i>i</i> and <i>j</i> differ at more than one position
	π_j ,	forsynonymous transversion
	κπ _j ,	forsynonymous transition
	$\omega \pi_j$,	for nonsynonymous transversion
	ωκ $π_j$,	for nonsynonymous transition

• κ is the transition/transversion rate ratio • ω is the silent/replacement rate ratio • π_i is the frequency of codon *j*

Codon Substitution Models

Codon models are calculated like nucleotide models.

• The genetic distance between codon *i* and codon *j* is given by the distribution $P_{i,j}(t) = \exp(\mathbf{Q}t)$.

This probability is multiplied across all codons and across all branches in the tree. As before, it is then integrated over all possible ancestral codons at internal nodes.

• This gives the final phylogenetic probability: *P*(*seqs*|**T**,**B**,**Q**)

If ω varies among codons, then the final probability is obtained by integrating across the specified distribution of ω among sites.

Disadvantages of dN/dS methods

Assumes all changes are the result of past fixation events. Caution is required if genetic variation represents non-fixed polymorphism (e.g. within-patient viral data sets).

Conservative. Will fail to detect many cases of selection, especially if a site has only undergone a single selective sweep.

Such methods therefore tend to identify sites that are repeatedly positively selected.

Assumes substitutions are independent at each codon (no epistasis or clonal interference).

Gene	Organism	Refs	Gene	Organism	Refs			
Genes involved in defensive systems of	r immunity	Genes involved in reproduction						
Class I chitinase gene	Arabis and Arabidopsis	41	18-kDa fertilization protein gene	Abalone (Haliotis)	61			
Colicin genes	Escherichia coli	45	Acp26Aa	Drosophila	62			
Defensin genes	Rodents	46	Androgen-binding protein gene	Rodents	63			
Fv1	Mus	47	Bindin gene	Echinometra	64			
Immunoglobulin V _H genes	Mammals	48	Egg-laying hormone genes	Aplysia californica	3			
MHC genes	Mammals	49	Ods homeobox gene	Drosophila	65			
Polygalacturonase inhibitor	Legume and dicots	50	Pem homeobox gene	Rodents	66			
genes			Protamine P1 gene	Primates	67			
RH blood group and RH50	Primates and rodents	51	Sperm lysin gene	Abalone (Haliotis)	61			
genes			S-Rnase gene	Rosaceae	68			
Ribonuclease genes	Primates	52	Sry gene	Primates	69			
Transferrin gene	Salmonid fishes	53	Course investigation discretion					
Type I interferon- v gene	Mammals	54	Genes involvea in aigestion	Devide	70			
a 1-Proteinase inhibitor genes	Rodents	55	K-casein gene	Bovids	70			
Concentration and in a defension of			Lysozyme gene	Primates	23			
Genes involved in evaling dejensive s	Siems or immunity	Toxin protein genes						
CED TDAD MEA 2 and DE92	FIVID VIIUS	42 56	Conotoxin genes	Conus gastropods	71			
CSP, IRAP, MSA-2 and PF83	Plasmodium laiciparum	50 57	Phospholipase A $_2$ gene	Crotalinae snakes	72			
Delta-antigen coding region	Hepatitis D virus Dhagaa $C4 \neq V174$ and	2/		1/				
E gene	Phages $G4$, $IXI/4$, and	3	Genes related to electron transport and	a/or AIP synthesis	2			
	515	40	ATP synthase F $_0$ subunit gene		3			
Envelope gene	HIV	40	COX/A isoform genes	Primates	13			
gH glycoprotein gene	Pseudorables virus	3	COX4 gene	Primates	/4			
Hemagglutinin gene	Human influenza A virus	33	Cytokine genes					
Invasion plasmid antigen genes	Shigella	3	Granulocyte-macrophage SF gene	Rodents	75			
Merozoite surface antigen-1 gene	Plasmodium falciparum	58	Interleukin-3 gene	Primates	75			
msp 1 a	Anaplasma marginale	3	Interleukin-4 gene	Rodents	75			
net	HIV	38	0					
Outer membrane protein gene Chlamydia		3	Miscellaneous					
Polygalacturonase genes	Fungal pathogens	50	CDC6	Saccharomyces cerevisiae	3			
Porin protein 1 gene	Neisseria	59	Growth hormone gene	Vertebrates	76			
S and HE glycoprotein genes	Murine coronavirus	60	Hemoglobin <i>b</i> -chain gene	Antarctic fishes	77			
Sigma-1 protein gene	Reovirus	3	Jingwei	Drosophila	78			
Virulence determinant gene	Yersinia	3	Prostatein peptide C3 gene	Rat	3			

Table 1. Selected examples of protein-coding genes in which positive selection was detected by using the d_N/d_S ratio

varies among genes (HIV-1 group O)

dN/dS

Example:

Example: *dN/dS* varies among species

dN/dS varies among codons

High *dN/dS* found in codons that form the antigen-recognition site

(Yang & Swanson. 2002. Mol. Biol. Evol. 19:49-57)

dN/dS varies among codons

(Sheridan, Pybus, Holmes & Klenerman. 2004. J. Virol. 78:3447-3454)

Mutation Site Frequencies

Mutation Site Frequencies

The distribution of site frequencies (the site-frequency spectrum) in a sample of sequences contains information about natural selection.

Can be analyzed using Poisson Random Field (PRF) models.

PRF models assume that polymorphic sites are unlinked (effectively on different chromosomes).

PRF models are more suitable for human genome analyses than for pathogen genome analyses.

McDonald-Kreitman Method

study species (main alignment)

sister species (outgroup alignment) Circles represent *fixation* between species. Diamonds represent *polymorphism* within species.

If there is no selection, then both fixation and polymorphism are driven by genetic drift.

The ratio of silent/replacement fixations should equal the ratio of silent/non-replacement polymorphisms.

A statistical deviation from equality suggests natural selection.

Assumes all polymorphism is neutral.

Estimating Viral Adaptation Rate

later sample (main alignment)

earlier sample (outgroup

alignment)

Can also be applied to pathogen sequences sampled through time.

 $s_{<1} = #$ silent polymorphisms (\diamondsuit)

 $r_{<1} = #$ replacement polymorphisms (\blacklozenge)

 $s_1 = #$ silent fixations (\bigcirc)

 $r_1 = #$ replacement fixations (\bigcirc)

 $a_1 = #$ positively selected fixations

If there is no selection, then, on average: $(r_1 - a_1)/r_{<1} = s_1/s_{<1}$

Rearranging, we can estimate a₁ using:

$$a_1 = r_1 \left[1 - \left(\frac{s_1}{r_1} \right) z \right], \text{ where } z = \left(\frac{r_{<1}}{s_{<1}} \right).$$

Estimating Viral Adaptation Rate

In virus populations, mutations that are highly-frequent but not yet fixed may also be adaptations.

 $s_{<0.5} = #$ silent polymorphisms with a frequency < 0.5

 $r_{<0.5}$ = # replacement polymorphisms with a frequency < 0.5

 $s_{>0.5} = #$ silent polymorphisms with a frequency > 0.5

 $r_{>0.5} = \#$ replacement polymorphisms with a frequency > 0.5

 $a_{>0.5} = #$ positively selected polymorphisms with a frequency > 0.5

• We can now estimate both a_1 and $a >_{0.5}$ using:

$$a_{1} = r_{1} \left[1 - \left(\frac{s_{1}}{r_{1}} \right) z \right], \text{ where } z = \left(\frac{r_{<0.5}}{s_{<0.5}} \right) \qquad a_{>0.5} = r_{>0.5} \left[1 - \left(\frac{s_{>0.5}}{r_{>0.5}} \right) z \right], \text{ where } z = \left(\frac{r_{<0.5}}{s_{<0.5}} \right).$$

This approach assumes that only polymorphisms with a frequency<0.5 are neutral.</p>

Accumulation of adaptations during HIV infection

(Williamson. 2003. Mol. Biol. Evol. 20:1318-1325)