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JOINS AND MEETS IN THE C.E. DEGREES

(R,≤,∨) is an upper semi-lattice with least and greatest elements

(Post 1944).

• join operator ≈ effective disjoint union:

deg(A) ∨ deg(B) = deg(A⊕B)

• the question of meets is less obvious:

deg(A)∧deg(B) ≈ ’the common information content’ of A and B

Does this (always) exist?



Early results on the structure of R are on ordering and joins:

• Every countable u.s.l. is embeddable into (R,≤,∨) (Friedberg
1956, Muchnik 1956, Sacks 1963).

• (R,≤) is a dense partial ordering (Sacks 1964).

• Every nonzero c.e. degree splits (is join-reducible), i.e., is the
join of two lesser ones (Sacks 1963).

Shoenfield’s Conjecture (1965): (R,≤,∨) is a countable homo-
geneous u.s.l. with least and greatest elements. In particular, no
nontrivial meets exist:

∀ a,b ∈ R (a|b ⇒ a ∧ b ↑)



Lachlan and Yates (1966) refuted Shoenfield’s conjecture by
showing the existence of nontrivial meets:

• There are minimal pairs a, b, i.e., incomparable c.e. degrees
a, b such that a ∧ b = 0.

• There are incomparable c.e. degrees a, b such that a∧b ↓6= 0.

• There are incomparable c.e. degrees a, b such that a ∧ b ↑.

• There are incomplete nonbranching c.e. degrees, i.e., c.e. de-
grees a < 0′ which are not the meet of two greater c.e. degrees.
(Note that, by the above, 0 is branching and there are nonzero
branching degrees.)

• For c.e. degrees a, b, a∧b exists in R iff a∧b exists in D, and
if the meet of a, b exists then it agrees in R and D.



Joins vs. Meets: Domains of the operators

• a ∨ b always exists.

• a ∧ b may exist or may not exist:

• In every interval of R there are c.e. degrees a|b such that

• a ∧ b exists (Slaman 1991)

• a ∧ b does not exist (Ambos-Spies 1984)

• For every c.e. degree a 6= 0, 0′ there is a c.e. degree b such

that a ∧ b ↑; and there are c.e. degrees a 6= 0, 0′ such that,

for all c.e. degrees b incomparable with a, a∧ b ↑ (Ambos-

Spies 1984, Harrington).



Joins vs. Meets: Decomposability

• Every nonzero c.e. degree splits, i.e., is join-reducible.

• An incomplete c.e. degree may be branching (meet-reducible)

or may be nonbranching (meet-irreducible):

• In every interval of R there is a branching c.e. degree, i.e.,

the branching degrees are dense (Slaman 1991).

• In every interval of R there is a nonbranching c.e. degree,

i.e., the nonbranching degrees are dense (Fejer 1983).



GENERATORS OF R: DEFINITIONS AND BASIC FACTS

The closure CL(A) of a class A of c.e. degrees is the least class
B ⊆ R such that

(1) A ⊆ B
(2) ∀ n ≥ 0 ∀ a0, ..., an ∈ B (a0 ∨ · · · ∨ an ∈ B)
(3) ∀ n ≥ 0 ∀ a0, ..., an ∈ B (a0 ∧ · · · ∧ an ⇒ a0 ∧ · · · ∧ an ∈ B)

(1) + (2) ⇒ CLj(A) closure of A under join
(1) + (3) ⇒ CLm(A) closure of A under meet

A generates B [A generates B under join; A generates B under
meet] if B ⊆ CL(A) [B ⊆ CLj(A); B ⊆ CLm(A)].

A is a generator if A generates R− = R \ {0, 0′}.
A is a join-generator if A generates R− under join.
A is a meet-generator if A generates R− under meet.



Nontrivial (join-)generators are provided by Sacks’ splitting theo-
rem and more general splitting theorems like Robinson’s splitting
theorem (= Sacks’ splitting above a low degree).

Sacks’ Splitting Theorem. For any nonzero c.e. degree a and
for any recursive class of nonzero c.e. degrees B there are c.e.
degrees a0 and a1 such that a = a0 ∨ a1 and

(1) a0, a1 ∈ L
(2) ∀ b ∈ B (b 6≤ a0, a1)

hold.

Robinson’s Splitting Theorem. For any nonzero c.e. degree a
and for any low c.e. degree c and any recursive class of nonzero
c.e. degrees B such that c < a and ∀ b ∈ B (b 6≤ c) there are c.e.
degrees a0 and a1 such that a = a0 ∨ a1 and (1) and (2) and

(3) c ≤ a0, a1
hold.



Applications of Sacks’ Splitting Theorem:

• L is a (join-)generator.

• For any nonzero c.e. degree a, R( 6≥ a) is a (join-)generator.

• In fact, for any recursive A ⊂ R−,⋂
a∈A

R( 6≥ a) ∩ L

is a (join-)generator.

• Any dense subset A of R (or even of L) is a (join-)generator.



Examples of dense classes of c.e. degrees, hence (join-)generators:

• As mentioned before, the branching degrees are dense (Slaman) and the
nonbranching degrees are dense (Fejer). So there is a partition of R into
two definable generators.

• By density of R there are mutually disjoint dense subclasses An of R (n ≥
0). So there is a partition of R into infinitely many disjoint generators.
(But the classes An may not be definable.)

• Ambos-Spies, Hirschfeldt and Shore 2000 give a partition of R into in-
finitely many definable generators by showing that, for any k ≥ 2, the
class of the k-maximal-branching c.e. degrees is dense. Here a c.e. de-
gree a is k-maximal-branching if there are k pairwise incomparable c.e.
degrees b0, . . . ,bk−1 > a such that

∀ i < k ∃ ci > a (bi ∧ ci = a) and

∀ c,d > a (c ∧ d = a ⇒ ∃ i, j < k (c ≤ bi & d ≤ bj))



Do the duals of the above basic results on (join-)generators hold?

• Is H a (meet-)generator?

• For any incomplete c.e. degree a, is R( 6≤ a) a (meet-)generator?

• Is any dense subset A of R (or even of H) a (meet-)generator?

Results on other degree structures corresponding to the first question:

Every c.e. weak truth-table degree is the meet of two high c.e. wtt-degrees.
So, for Rwtt, the answer is positive.

Jockusch and Posner 1981 have shown that any jump class generates the
class D(≤ 0′) under join and meet.



For meet-generators the answer to the preceding questions is

negative. This is immediate by the following characterization of

meet-generators.

FACT. For any class A of c.e. degrees the following are equiva-

lent.

(1) A is a meet-generator.

(2) The class of the nonbranching c.e. degrees is contained

in A.

COROLLARY. The (dense) class of the nonbranching degrees

is the least meet-generator.



A LIMITING RESULT ON GENERATORS

THEOREM (Ambos-Spies 1985). For any c.e. degree a > 0,
R( 6≤ a) is not a generator.

COROLLARY (Ambos-Spies and Lerman 1984). The class L of
the nonlow c.e. degrees does not generate R. Hence the class
of the low degrees is the only jump class which is a generator.

The proof of the theorem uses the following notion: A c.e. degree
a is meet-inaccessible (m.i.) if a 6∈ CL(R( 6≤ a)).

FACT. If a ≤ b and a is m.i. then a 6∈ CL(R( 6≤ b)), hence R( 6≤ b)
is not a generator. So, for a proof of the theorem, it suffices to
show that any nonzero c.e. degree bounds an m.i. degree. (For
a proof of the corollary, Ambos-Spies and Lerman had shown
that the top of any embedding of the 1− 3− 1 lattice is m.i.)



The proof uses the following sufficient condition for meet inac-

cessibility:

Assume that, for any n ≥ 0 and for any degrees ai,bi, ci (i ≤ n)

such that

a = a0 ∨ · · · ∨ an

and

ai ≤ bi, ci & bi, ci 6≤ a

for all numbers i ≤ n, there is a number i ≤ n and a c.e. degree

di such that

di ≤ bi, ci & di 6≤ a.

Then a is meet-inaccessible.



Construction of a meet-inaccessible degree a (for the case n =

1):

Assume

• A = ΦX0⊕X1

• Y00, Y01, Y10, Y11 6≤T A

Build B0, B1, Γ00, Γ01, Γ10, Γ11 such that

• Bi = Γ
Xi⊕Yij
ij (for i, j ≤ 1)

• R : B0 6= ΨA
0 or B1 6= ΨA

1 (for all reductions Ψ0 and Ψ1)



Strategy for meeting R:

Reserve an infinite recursive set of R-numbers (targeted for B0, B1) and for
each R-number x reserve an infinite set of x-numbers (targeted for A). Initially

set ΓXi⊕Yij
ij (x) = 0 with use γij(x) = x for all R-numbers x.

Step 1. Pick a fresh R-number x.

Step 2. Wait for a stage s such that
• ΨA

0 (x) = ΨA
1 (x) = 0

• A(y) = ΦX0⊕X1(y) = 0 for the least x-number y with y ≥ ψ0(x), ψ1(x)
• γij(x) > ϕ(y) for i, j ≤ 1

While waiting for s start new attack with bigger R-number x′. Moreover, if
Yij � x changes, lift γij(x) to current stage.

Step 3. At stage s + 1 put y into A, restrain A � y (in order to preserve
ΨA

0 (x) = ΨA
1 (x) = 0) and wait for a stage t > s such that, for some i ≤ 1, Xi

changes below ϕs(y) (which will allow us to change ΓXi⊕Yij
ij (x)).

Step 4. If X0 � ϕs(y) has changed, then at stage t + 1 put x into B0 and

correct the values of ΓXi⊕Y0j

0j (x) for j ≤ 1. Otherwise, put x into B1 and

correct ΓXi⊕Y1j

1j (x).



The finite-injury construction of an m.i. degree - which is a vari-

ant of the nonbranching degree construction - can be easily com-

bined with other techniques. For instance the following stronger

existence results for meet-inaccessible degrees have been ob-

tained.

• Every nonzero c.e. degree splits into two m.i. degrees (Ambos-

Spies 1985).

• Every P-generic degree (in the sense of Ingrassia - Jockusch;

hence every e-generic degree in the sense of Jockusch) is m.i.

(Ding 1993).

• The m.i. degrees are dense (Ding 1993 and Zhang 1992).

OPEN PROBLEM. Is every nonbranching degree meet-inaccessible?



REMARK. Another limitation on generators gives the following

partition of R (Ambos-Spies, Jockusch, Shore, Soare 1984):

• The class NCa of the noncappable (= promptly simple =

low-cuppable) degrees is a filter.

• The class Ca of the cappable degrees is an ideal.

Hence any generator G can be partitioned into an generator

G0 ⊆ NCa of NCa and an generator G1 ⊆ Ca of Ca.



GENERATORS VS. JOIN-GENERATORS

In the following we will deal with

QUESTION (Ambos-Spies 1985) Is every generator a join-generator?

More generally: Which parts of R are generated under join by

all generators.

THEOREM (Ambos-Spies, Ding, Fejer) For any generator A, A

generates the high c.e. degrees under join.

The proof is based on a strengthening of meet - inaccessibility.



A c.e. degree a is strongly meet-inaccessible (s.m.i.) if

∀ C ⊆ R (a ∈ CL(C) ⇒ a ∈ CLj(C))

FACT. For any generator G, CLj(SMI) ⊆ CLj(G).

So, for a proof of the theorem, it suffices to show that any high

c.e. degree can be split into two s.m.i. degrees (and to show that

any generator is a join-generator it would suffice to prove that

any nonzero c.e. degree can be split into two s.m.i. degrees).

The proof of the theorem uses the following sufficient condition

for strong meet-inaccessibility.



LEMMA. Let a be a c.e. degree such that

• a > 0

• ∀ b ∈ Cu(a) ∀ c,d > b (c,d 6≤ a ⇒ ∃ e ≤ c,d (e 6≤ a)).

Then a is strongly meet-inaccessible.

Here Cu(a) = {b ≤ a : ∃ c < a (a = b ∨ c)} is the class of the

a-cuppable degrees.



Construction of a strongly meet-inaccessible degree a:

The construction resembles the construction of a meet-inaccessible degree.
There we had symmetric requirements for any splitting deg(A) = a = deg(X0⊕
X1). Now the requirements are asymmetric: the requirements for the 0-side
are unchanged. If the 0-side fails, however, we have to argue that A ≤T X1.

Assume

• A = ΦX0⊕X1

• Y00, Y01 6≤T A

Build B0, Γ00, Γ01 such that

• B0 = ΓX0⊕Y0j

0j (for j ≤ 1)

• R : B0 6= ΨA
0 or A ≤T X1 (for all reductions Ψ0)



The basic strategy for meeting a single R is the same as the one for meeting
the corresponding requirement R in the construction of a meet-inaccessible
degree; only the references to the 1-side are dropped.

Step 1. Pick a fresh R-number x.

Step 2. Wait for a stage s such that
• ΨA

0 (x) = 0
• A(y) = ΦX0⊕X1(y) = 0 for the least x-number y with y ≥ ψ0(x)
• γ0j(x) > ϕ(y) for j ≤ 1

While waiting for s start new attack with bigger R-number x′. Moreover, if
Y0j � x changes, lift γ0j(x) to current stage.

Step 3a. At stage s + 1 call y R-certified. (y will stay certified as long as
A � y (hence ΨA

0 (x) = 0) and the computation ΦX0⊕X1(y) will not change.)

Step 3b. Put y into A and restrain A � y (in order to preserve ΨA
0 (x) = 0).

Wait for a stage t > s such that, for some i ≤ 1, Xi changes below ϕs(y)

(which, in case that X0 changes, will allow us to change ΓXi⊕Y0j

0j (x)).

Step 4. If X0 � ϕs(y) has changed, then at stage t + 1 put x into B0 and

correct the values of ΓX0⊕Y0j

0j (x) for j ≤ 1.



NOTE. Note that if X0 does not have changed, then X1 has changed, hence
’knows’ that y has entered A. So if (up to a recursive set) only R-certified
numbers enter A then R is met. Moreover, if the hypothesis of R is correct
then there are infinitely many (permanently) R-certified numbers.

So R will be met, if all requirements are A-finitary, and followers targeted
for A of lower priority requirements are subject to R-certification, i.e., will
be replaced by an available R-certified number if they are not R-certified
themselves.

This certfication process is compatible with the standard nonrecursiveness
requirements and permitting. So, for instance, below any nonzero c.e. degree
there is an s.m.i. degree.

In general, however, certification is not compatible with splitting, i.e., we
cannot split every nonzero degree into two s.m.i. degrees using this technique.
If we split the degree of a c.e. set A into two degrees deg(A0) and deg(A1)
then for any number x we have a trace t(x) such that x ∈ A will be witnessed
by t(x) ∈ A0 ∪ A1. Now if R-certification requests that the current value of
t(x) is raised to a bigger R-certified number, we have to put the old position
of t(x) into A0 or A1. But the latter has to be permitted by A (in order to
keep A0 and A1 below A). This requires an ’almost everytime’ permitting
which we only get for high sets A.



THEOREM (Ambos-Spies, Lempp, Slaman) There is a genera-
tor A which is not a join-generator.

The proof is based on the following technical result.

LEMMA. There is a c.e. degree a > 0 such that for any splitting
a = x ∨ y of a into c.e. dgerees x and y one of the following
conditions holds.

1. There are c.e. degrees b, c, d, and e such that
(a) x = b ∨ c,
(b) b = d ∧ e and d, e 6≤ a, and
(c) a 6≤ c ∨ y.

2. a ≤ y.

This lemma is proved by an extension of the branching degree
technique in the style of Fejer and Slaman.



PROOF OF THE THEOREM BASED ON LEMMA. For a as in the lemma
let

G = R( 6≤ a) ∪ I

where

I = {y : ∃n (y ≤ yn)} ⊆ R(< a)

is an ideal defined by an appropriate nondecreasing sequence of degrees y0 ≤
y1 ≤ y2 ≤ . . . less than a.

By definition, CLj(G) = G and a 6∈ G. So G is not a join-generator.

In order to make G a generator, it suffices to ensure x ∈ CL(G) for all c.e.
degrees x < a.

Let 〈xn : n ≥ 0〉 be a (noneffective) enumeration of R(< a). The following
choice of yn will ensure that xn ∈ CL(G).

n = 0. Let y0 = x0.

n → n+ 1. If yn ∨ xn+1 < a then let yn+1 = yn ∨ xn+1. Otherwise apply the
lemma to x = xn+1 and y = yn, and let yn+1 = yn ∨ c.



AUTOMORPHISM BASES FOR R

An automorphism (of R) is a bijective function f : R → R pre-
serving ordering, i.e.,

∀a,b ∈ R(a ≤ b ⇐⇒ f(a) ≤ f(b)).

As one can easily show, automorphisms also preserve joins and
meets (if exist).

An automorphism base (of R) is a subclass A of R such that any
automorphism is determined by its behaviour on A: If f and g are
automorphisms such that f � A = g � A then f = g. Alternatively,
A is an automorphism base, if for any automorphism f , f �
A = id � A implies that f = id. So, to show that a class A is
an automorphism base, it suffices to show that any nontrivial
automorphism moves some element of A.



Obviously, any generator is an automorphism base, but there

also are automorphism bases which do not generate R:

THEOREM (Lerman 1977) For any c.e. degree a, the jump class

[a] = {b : b′ = a′} is an automorphism base.

PROOF. Let f be a nontrivial automorphism. Then f(c) 6= c

for some low degree c (since L is a generator, hence an auto-

morphism base). W.l.o.g. f(c) 6≤ c. By Robinson’s jump inter-

polation theorem, there is a degree b such that c ≤ b, f(c) 6≤ b

and b′ = a′.



THEOREM (Ambos-Spies 1982/ta) For any c.e. degree c > 0,

R(≤ c) is an automorphism base.

The proof follows from the following two lemmas.

LEMMA 1. For any c.e. degree c > 0 and for any nontrivial

automorphism f there is a promptly simple degree a such that

f(a) 6= a and a ∨ f(a) 6≥ c.

DEFINITION. A degree a has the downward separation property

if, for any degree b 6≤ a and for any degree c 6≤ a ∨ b, R(a, c) 6=
R(b, c).

LEMMA 2. Every promptly simple degree is the join of two

degrees with the downward separation property.



PROOF OF THE THEOREM (WITH LEMMAS 1 AND 2).

Fix c > 0 and let f be a nontrivial automorphism. We have to show, that
for some degree d ≤ c, f(d) 6= d. If f(c) 6= c then this is obvious. So in the
following w.l.o.g. we may assume that f(c) = c.

By Lemma 1 fix a promptly simple degree a such that f(a) 6= a and a∨f(a) 6≥ c.
Note that by the coincidence of the class of the promptly simple degrees with
the definable class of the noncappable degrees, f(a) is promptly simple too,
whence by symmetry we may assume that f(a) 6≤ a. Moreover, since for
any splitting of a one part of the splitting preserves the above properties, by
Lemma 2 we may assume that a has the downward separation property. It
follows (with b = f(c)) that R(a, c) 6= R(f(a), c). Since f(c) = c this implies

R(a, c) 6= R(f(a), f(c)).

So f moves a degree which is below both a and c.



LEMMA 1. For any c.e. degree c > 0 and for any nontrivial automorphism f
there is a promptly simple degree a such that f(a) 6= a and a ∨ f(a) 6≥ c.

PROOF. Fix c > 0, let f be a nontrivial automorphism and fix a such that
f(a) 6= a. By symmetry, w.l.o.g. f(a) 6≤ a. By applying splitting theorems (if
necessary) we may make the following additional assumptions (step by step):

• a is low and c 6≤ a. (If not, Sacks’ split a avoiding R(≥ c).)

• a ∨ f(a) is low and c 6≤ a ∨ f(a). (If not, Robinson split f(a) w.r.t. the low
degree a avoiding R(≥ c).)

• a is promptly simple. (If not, Robinson split 0′ over a w.r.t. a ∨ f(a)
avoiding R(≥ c). Then one part of the splitting inherits the properties of
a and, by the coincidence of low cuppability and prompt simplicity, it is
promptly simple.)



LEMMA 2. Every promptly simple degree is the join of two degrees with the
downward separation property.

PROOF (IDEA). A set with the downward separation property can be con-
structed by a variant of the nonbranching degree technique (finite injury).
The construction combines with prompt permitting and splitting a promptly
simple degree. (The technique does not go along with plain permitting:
degrees with the downward separation property are strongly nonbranching,
hence promptly simple.)

Alternatively, one can show that e-generic degrees have the downward sep-
aration property and then apply Jockusch’s result that any promptly simple
degree can be split into two e-generic degrees.



AN APPLICATION OF AUTOMORPHISMBASES

THEOREM (Cholak, Downey, Walk 2002; Downey, Lempp 1997)
Let f be a nontrivial automorphism of R. Then there is a c.e.
degree a such that f(a) and a are incomparable.

THEOREM 1 (Downey, Lempp 1997). The contiguous degrees
are definable.

THEOREM 2 (Cholak, Downey, Walk 2002). There are maximal
contiguous degrees. In fact, the class of the maximal contiguous
degrees is an automorphism base.

PROOF OF THEOREM. By Theorem 2, f has to move a max-
imal contiguous degree a. Since, by Theorem 2, maximal conti-
guity is definable, f(a) is maximal contiguous too. So f(a) and
a are incomparable.


