The Theorem	The Requirements and Modules	Satisfying S -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		0000000		

The Major Sub-degree Theorem I: The First Strategy and the Permitting Rules

Angsheng Li

Institute of Software Chinese Academy of Sciences

Singapore, 17th July – 16th, August, 2005

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0	0	0000		00000
õ	0000	00000	000	
		00000		

Lecture I The First Strategy, and the Permitting Rules

Lecture II The Second Strategy and the General Methods

The T	heorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
		0	0000		00000
0		0000	00000		
0			00000	000	
			00000		
			000000		

The Major Sub-degree Problem

The Problem (Communicated by Lachlan in 1967, see JS (1983), and ALS (1993))

Let b < a.

We say that **b** is a *major sub-degree* (MSD) of **a**, if for any c.e. *x*,

$$\mathbf{b} \lor \mathbf{x} = \mathbf{0}' \longleftrightarrow \mathbf{a} \lor \mathbf{x} = \mathbf{0}'.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Does every c.e. b ≠ 0, 0' have a MSD?

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
•	0 0000	0000		00000
0		00000 00000 0000000	000	

Cooper 1974, ∃a ≠ 0 ∀x

$$\mathbf{a} \lor \mathbf{x} = \mathbf{0}' \leftrightarrow \mathbf{x} = \mathbf{0}'.$$

Every such **a**, called *noncuppable*, has a MSD.

- Jockusch, Shore, 1983: ∃ a high cuppable deg has a low MSD. (A corollary of the results there)
- Ambos-Spies, Lachlan, Soare, 1993: For any splitting a, b of 0', there is a c < a such that c \vee b = 0'.

 A non-uniform instance of the MSD problem, providing the first idea

- Seetapun, 1993: Every nonzero low2 c.e. deg has a MSD.
- Seetapun, 1993: A note for: for any *b*, ∃a ≥ b, ∀x, if b ∨ x = 0', then a ∨ x = 0'.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
	0000	00000	000	
•		00000	000	
		000000		

Theorem (With Cooper) Every nontrivial c.e. degree has a MSD, i.e., for every c.e. $\mathbf{b} \neq \mathbf{0}, \mathbf{0}'$, there is a c.e. **a** such that $\mathbf{a} < \mathbf{b}$, and for any c.e. **x**,

$$\mathbf{b} \lor \mathbf{x} = \mathbf{0}' \iff \mathbf{a} \lor \mathbf{x} = \mathbf{0}'.$$

In fact, the proof is uniform, giving a Turing index of **a** uniformly form one of **b**.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0	00000	0000		00000
0	0000	00000	000	
		00000		

The Requirements

We construct *A* uniformly from *B*, to satisfy: $\mathcal{T} : A \leq_{\mathrm{T}} B$ $\mathcal{R}_{e}: D = \Phi_{e}(B, X_{e}) \rightarrow B \leq_{\mathrm{T}} X_{e} \oplus A$ $\mathcal{S}_{e}: B = \Theta_{e}(A) \rightarrow B \leq_{\mathrm{T}} \emptyset$

Convention. All use functionals of given Turing functionals are:

- increasing in arguments,
- nondecreasing in stages,
- bounded by stages, and
- dominate the identity function.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0	•	0000		00000
0		00000	000	
		000000		

- The permitting method.
- For any *x*, *s*: If *x* ∈ *A*_{s+1} − *A*_s, then there is a *y* ≤ *x*, *y* ∈ *B*_{s+1} − *B*_s.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• So A is computable in B.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0	0000	0000		00000
õ		00000 00000 000000	000	

An *R*-Module

Given \mathcal{R} :

$D = \Phi(B, X) \rightarrow B \leq_{\mathrm{T}} X \oplus A$

- Define the *length* of agreement function *I* as usual. That is: $I = \max\{x \mid (\forall y < x) [\Phi(B, X; y) \downarrow = D(y)]\}.$
- Say s \mathcal{R} -expansionary, if I[s] > I[v], for all v < s.
- At *R*-expansionary stages, we build Γ via a sequence of cycles k.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0	0	0000		00000
0	•••••	00000 00000 000000	000	

Let τ be the \mathcal{R} -strategy.

- 1. Define d(k), an *agitator* of τ .
- 2. Wait for stage v at which $I(D, \Phi(B, X)) > d(k)$. Then: - define $\Gamma(X, A; k) \downarrow = B(k)$, with $\gamma(k)$ fresh.
- 3. If X has changed below $\phi(d(k))[v]$ since stage v, then $-\Gamma(X, A; k') \uparrow$, all $k' \ge k$, automatically whenever it occurs.

(日) (日) (日) (日) (日) (日) (日)

4. O.W. and *B* changes below $\phi(d(k))[v]$, then

– enumerate $\gamma(k)$ into A.

The Theorem The Requirements and M	odules Satisfying S-Requirements Below	one ${\mathcal R}$ $\ \ \ \ \ \ \ \ \ \ \ \ $
0	0000	00000
0 000	00000	
0	00000	000
	00000	
	0000000	

The Honestification

- 1. d(k) is used to measure the building of Γ .
- 2. d(k) is honest, if $\gamma(k) > \phi(d(k))$, and dishonest, O.W.
- 3. The honestification of τ 's agitators as described in steps 3 and 4 of the module ensures that

- If $\Gamma(X, A)$ is total, then $\Gamma(X, A) = B$, and
- $\Gamma(X, A)$ is total unless $\Phi(B, X)$ is partial.

The *R*-Principle

From the module above, we ensure that the following property will be satisfied:

Definition The \mathcal{R} **-Principle**. At every \mathcal{R} -expansionary stage, *s* say, every agitator of the \mathcal{R} -strategy is honest.

Definition The possible outcomes:

0 <_L 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

denoting infinite and finite actions respectively.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0	0 000•	0000		00000
0		00000	000	
		000000		

- An *S*-module in isolation is the Sacks preservation method.
- Preserve A, so that if B = Θ(A), then Θ(A) is computable, and so is B.
- However an *S*-strategy below an *R*-strategy is the main topic of this lecture.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

-	The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
	ſ	0 0000	0000		00000
	5	00000	00000	000	
			00000		

The Goal of an S-Strategy We satisfy the following:

 $\mathcal{R}, \mathcal{S}_0, \mathcal{S}_1, \cdots$

Examine a general S-strategy below the R-strategy:

- 1. τ , and α are the \mathcal{R} -, and \mathcal{S} -strategies respectively. Let $\tau^{\wedge}\langle \mathbf{0} \rangle \subseteq \alpha$.
- 2. α will try to satisfy its requirement while dealing with the injury from the Γ built by τ .
- 3. It will build f, and Δ , such that one of the following holds,

- α verifies that $\Phi(B, X)$ is partial,
- f is computable and f = B,
- $\Delta(B)$ is total and $=^{*} K$, and
- $B \neq \Theta(A)$.

The Theor	em The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Base Point and Base Markers

- For each k, τ defines $d_{\tau}^{\tau}(k)$, to measure $\Gamma(k)$.
- Define a base point of α , $n(\alpha)$ (or n) say, for Γ .
- For each k > n, define

 d^α_τ(k), the agitator of α for Γ(k).

Definition

Define the base marker $bm(\alpha)$ of α :

$$bm(\alpha) = \phi(d_{\tau}^{<\alpha} (\leq n))$$

(日) (日) (日) (日) (日) (日) (日)

If $bm(\alpha)[s]$ unbounded, then $\Phi(B, X)$ is partial.

The Theorem	The Requirements and Modules	Satisfying S -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

The Rough Outcomes

1. The rough outcomes of α by

$$b <_{
m L} -1 <_{
m L} \omega <_{
m L} 2$$

- 2. The intuition:
 - b: bm(α)[s] unbounded,
 - -1: *f* is computable, and f = B,
 - 2: $I(B, \Theta(A))[s]$ are bounded, and
 - ω: Otherwise.

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000	000	
0		00000	000	
		000000		

Definition

- 1. Given S, define $I = I(B, \Theta(A))$ as usual.
- 2. Call a stage s S-expansionary, if I[s] > I[v] for all v < s.
- 3. For k > n, the agitator $d_{\tau}^{\alpha}(k)$ is *honest*, if $\gamma(k) > \phi(d_{\tau}^{\alpha}(k))$, and *dishonest*, otherwise.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 The *S*-Principle: At any *S*-expansionary stage *s*, all agitators of *α* are honest.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Preuse of Agitators

Definition

1. Define functions g, and h by

$$g^{\alpha}(\mathbf{k}) = \max\{\phi(\mathbf{d}_{\tau}^{<\alpha}(\le \mathbf{k})), \phi(\mathbf{d}_{\tau}^{\alpha}(< \mathbf{k}))\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In this simple case, h^{α} is the same as g^{α} .

2. Call $g^{\alpha}(k)$ the preuse of $d^{\alpha}_{\tau}(k)$.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Well Ordering of Agitators

1. We have:

If $g^{\alpha}(k)[s]$ unbounded, by induction, Φ partial.

2. We need:

If $g^{\alpha}(k)[s]$ are bounded, so are $d^{\alpha}_{\tau}(k)[s]$. [One of the crucial point in this proof.]

Definition

(Well ordering) For 2, we define $\Delta(B; k)$, only if

 ${old g}^lpha({old k}) < \phi({old d}^lpha_ au({old k}))$

Th	ne Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
		0	0000		00000
0		0000	00000		
0			00000	000	
			00000		
			0000000		

Markers below $\alpha^{\hat{}}\langle b \rangle$

Definition

• Define:

$$\boldsymbol{b}^{\alpha} = \max\{\gamma_{\tau'}(\boldsymbol{y'}) \mid \tau' \supseteq \alpha^{\hat{}} \langle \boldsymbol{b} \rangle\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 α will deal with injury from markers $\gamma_{\tau'}(\mathbf{y}')$ for $\tau' \supseteq \alpha^{\hat{}} \langle \mathbf{b} \rangle$.

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
0	0	0000		00000
ō			000	
		000000		

For k > n, wait for v, at which:

- $b^lpha < \phi(d^lpha_ au(k))$
- $g^{lpha}(\mathbf{k}) < \phi(\mathbf{d}^{lpha}_{ au}(\mathbf{k}))$
- $I(D, \Phi(B, X)) > d^{\alpha}_{\tau}(k)$
- $I(B,\Theta(A)) > \phi(d^{lpha}_{ au}(k))$, then
- define $\Delta(B; k) \downarrow = K(k)$ with $\delta(k) = \theta(\phi(d_{\tau}^{\alpha}(k)))$, and
- define the valid use $\delta^*(k)$ of $\Delta(B; k)$ to be the same as $\delta(k)$.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

- The valid use may decrease in the construction.
- Δ(B; k) becomes undefined iff B changes below the valid use δ*(k) of Δ(B; k).

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Opening a Procedure for Rectifying Δ

- If ∃ x such that Δ(B; x) ↓= 0 ≠ 1 = K(x), then let k be the least such x, and we say that a cycle of rectification is started.
- Once a cycle of rectification of Δ(B; k) ↓ ≠ K(k) is started, keep it until Δ(B; k) is rectified or Δ is *reset*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
0	0	0000		00000
õ		00000	000	
		0000000		

The Choice of Agitator Algorithm

- Suppose we are rectifying $\Delta(B; k) \downarrow = 0 \neq 1 = B(k)$.
- Let v be the stage at which the $\Delta(B; k)$ was created.

Definition

The Choice of Agitator Algorithm:

Let *m* be the greatest y > n such that $\gamma(y) \le \delta(k)[v]$ holds at the current stage.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Theorem 1	The Requirements and Modules	Satisfying $\mathcal{S}\text{-}Requirements$ Below one \mathcal{R}	The Rectification Lemma	The General
0		0000		00000
0	0000	00000	000	
		00000		

Waiting for *B*-change

- 1. Let $p(\alpha) = \max\{\phi(d_{\tau}^{\alpha}(\mathbf{y}))[\mathbf{v}] \mid \gamma(\mathbf{y}) \leq \delta(\mathbf{k})[\mathbf{v}]\}.$
- 2. Let $q(\alpha) = \delta(k)[v]$.
- 3. Create a conditional restraint $\vec{r}(\alpha) = (p(\alpha), q(\alpha))$.

- 4. We are going to enumerate $d_{\tau}^{\alpha}(m)$ into *D*.
- 5. Wait for *B* changes below $p(\alpha)$.

-	The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
	-	0	0000		00000
		0000	00000	000	
	5		00000	000	
			000000		

The Choice Lemma

Our approach works, because:

Lemma

Let $d_{\tau}^{\alpha}(m)$ be defined by the CA.

1. For any y > n, if $d^{\alpha}_{\tau}(y) \downarrow$ and $\gamma(y) \leq \delta(k)[v]$, then

 $g^{lpha}(y)[v] \leq g^{lpha}(m)[v]$

2. If $m \le k$, then for any y > n, if $d_{\tau}^{\alpha}(y)$ defined, and $\gamma(y) \le \delta(k)[v]$, then

$$\phi(\mathbf{d}_{\tau}^{\leq \alpha}(\mathbf{y}))[\mathbf{v}] \leq \phi(\mathbf{d}_{\tau}^{\alpha}(\mathbf{k}))[\mathbf{v}].$$

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Proof of the Choice Lemma

1. by definition of g^{α} .

By the choice of $m, y \le m \le k$, by the well ordering at v, (1) $\phi(d_{\tau}^{\alpha}(k))[v] > g^{\alpha}(k)[v]$ By definition, if y < k, then (2) $g^{\alpha}(k)[v] \ge \phi(d_{\tau}^{\le \alpha}(y))[v]$, and (3) $g^{\alpha}(k)[v] \ge \phi(d_{\tau}^{<\alpha}(k))[v]$. By combining (1), (2) and (3):

$$\phi(\mathbf{d}_{\tau}^{\leq \alpha}(\mathbf{y}))[\mathbf{v}] \leq \phi(\mathbf{d}_{\tau}^{\alpha}(\mathbf{k}))[\mathbf{v}].$$

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

B Changes Above $g^{\alpha}(m)[v]$

From the choice lemma, if:

(i) $m \le k$,

(ii) There is a *b* with $g^{\alpha}(m)[v] < b \le \phi(d^{\alpha}_{\tau}(m))[v] \le p(\alpha)$, which enters *B* after $d^{\alpha}_{\tau}(m)$ is enumerated, then

- this B-change is above the preuse of d^α_τ(y) observed at stage v for any y ≤ m,
- there is an obvious inequality

$$\Theta(A; b)[v] \downarrow = 0 \neq 1 = B(b).$$

(日) (日) (日) (日) (日) (日) (日)

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
0	0	0000		00000
õ		00000	000	
		0000		

How to preserve the Inequality?

To preserve this inequality, we just need a minimal cost of delaying the honestification of $d_{\tau}^{\alpha}(m)$, by requiring that

if *B* does not change below $g^{\alpha}(m)[v]$, the honestification of $d^{\alpha}_{\tau}(m)$ will not enumerate $\gamma(m) \leq \delta(k)[v]$ into *A*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
0	0	0000		00000
0	0000	00000	000	
		00000		
		0000000		

Special Action

More precisely:

1. Now we say that α receives *special attention* by redefining a *conditional restraint* by

 $\vec{r}(\alpha) = (g^{\alpha}(m)[v], \delta(k)[v]).$

(日) (日) (日) (日) (日) (日) (日)

2. The choice lemma guarantees that the special action is of minimal cost, which delays no agitator higher than $d_{\tau}^{\alpha}(m)$, the lowest priority agitator of α .

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		0000		
		0000000		

Conditional Restraint $\vec{r}(\alpha)$

- 1. A conditional restraint $\vec{r}(\alpha)$ is a vector (p, q) for some p, q.
- 2. The intuition is as follows.

If $\vec{r}(\alpha) = (p, q)$, then

 there is no agitator belongs to any β ⊇ α can enumerate any γ-use less than or equal to q into A, unless B changes below p.

(日) (日) (日) (日) (日) (日) (日)

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		0000000		

Valid Use $\phi^*(d^{\beta}_{\tau}(y))$

To realize the conditional restraint $\vec{r}(\alpha)$:

- Define the valid use φ*(d^β_τ(y)) for an agitator d^β_τ(y), any β, any y.
- 2. The valid use $\phi^*(d_{\tau}^{\beta}(y))$ is defined at the stage we create $\gamma_{\tau}(y)$, to be the ϕ -use $\phi(d_{\tau}^{\beta}(y))$.

・ロト・日本・日本・日本・日本

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
0	0	0000		00000
õ		00000	000	
		0000		

Updating Valid Use

Definition Let $\vec{r}(\alpha) \downarrow = (p, q)$. Then – for any β , any y, if $\alpha \subseteq \beta$, $d_{\tau}^{\beta}(y) \downarrow$, and $\gamma_{\tau}(y) \leq q$, then define $\phi^*(d_{\tau}^{\beta}(y)) = \min\{p, \text{ old } \phi^*(d_{\tau}^{\beta}(y))\}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
-	0	0000		00000
0	0000	00000	000	
0		00000	0000	
		●000000		

Enumeration of A

To better understand the conditional restraint, look at the enumeration of *A*.

- 1. *A*, *B* enumerated at odd stages, while the tree construction at even stages.
- d^β_τ(y) requires to enumerate γ_τ(y) into A if B changes below φ^{*}(d^β_τ(y)).
- 3. A γ -marker $x = \gamma_{\tau}(y)$ is enumerated into A at stage s + 1 iff there is an agitator $d_{\tau}^{\beta}(y)$ for some β and y, which requires to enumerate $\gamma_{\tau}(y)$ into A.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Permitting Marker of a γ -Marker

Definition

1. For $x = \gamma_{\tau}(y)$, define the *permitting marker of x* by

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$m(x) = \max\{\phi^*(d_{\tau}^{\beta}(y)) \mid d_{\tau}^{\beta}(y) \downarrow\}$$

2. $x = \gamma_{\tau}(y) \in A_{s+1} - A_s$ iff
 $B_{s+1} \upharpoonright (m(x) + 1) \neq B_s \upharpoonright (m(x) + 1).$

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000	000	
0		00000	0000	
		000000		

Agitation

Let $\Delta(B; k) \downarrow \neq K(k)$, and v be the stage at which $\Delta(B; k)$ was defined.

Case 1. There is y > n, $\gamma(y) \le \delta(k)[v]$.

- let *m* be the greatest *y*, defined by the choice algorithm,
- let $p(\alpha) = \max\{\phi^*(d_{\tau}^{\leq \alpha}(y))[v], b^{\alpha}[v] \mid \gamma(y) \leq \delta(k)[v]\},\$
- define a conditional restraint by $\vec{r}(\alpha) = (p(\alpha), \delta(k)[v]),$
- if $p(\alpha) \le \phi(d^{\alpha}_{\tau}(k))[v]$, then define $g(\alpha) = g^{\alpha}(m)[v]$,

- define the valid use $\delta^*(k) = p(\alpha)$, and
- enumerate $d_{\tau}^{\alpha}(m)$ into D.

-	The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
	0	0	0000		00000
	õ		00000	000	
			00000		

Special Attention I

If there is a *b* such that

- 1. $g(\alpha) \downarrow < b \leq p(\alpha)$
- 2. b enters B, then
 - Update the conditional restraint to be $(g(\alpha), \delta(k)[v])$,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Say that α receives special attention.

The	Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
		0	0000		00000
0		0000	00000		
0			00000	000	
			00000		
			0000000		

Waiting for Response

- 1. *B* changes below $p(\alpha)$.
 - Special attention I
 - Otherwise, and *B* has changed below the most recent *p*(*α*), and then it is cancelled, and all delayed permission in this cycle of rectification are repaid.

(日) (日) (日) (日) (日) (日) (日)

- 2. While waiting for an α -expansionary stage,
 - all agitators of α honest, and $\Gamma(m)$ has been lifted.

Th	ne Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
0		0	0000		00000
õ				000	

Case 2. O.W. Then:

Note that Θ(A)[v] ↾ (φ(d^α_τ(k))[v] + 1) have been preserved since stage v,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- we define for each $x \leq \phi(d_{\tau}^{\alpha}(k))[v]$, f(x) = B(x),
- reset Δ .

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Special Attention II

- Request that for any future stage, if there is a *b* with bm(α)[v] < b ≤ b^α[v], which enters *B*, then
- α receives special attention by defining a conditional restraint as

$$\vec{r}(\alpha) = (bm(\alpha)[v], \delta(k)[v])$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$p(\alpha)[s]$ Is Decreasing

 $p(\alpha)$ is decreasing, until either

- 1. *B* changes below the most recent $p(\alpha)$, so that all lost permission of agitators of nodes $\beta \supseteq \alpha$ are repaid, or
- 2. There is no more agitator $d_{\tau}^{\alpha}(y)$ available, which means that $\Theta(A)[v] \upharpoonright (\phi(d_{\tau}^{\alpha}(k))[v] + 1)$ have been cleared of all γ -markers that α has influence, so that α starts to build f = B, and in which case, Δ is set to be totally undefined, called *reset*, or
- 3. The base marker $bm(\alpha)$ has changed, in which case, both f and Δ are reset.

[This is the reason why $b^{\alpha}[v]$ is included in the definition of $p(\alpha)$.]

(ロ) (同) (三) (三) (三) (三) (○) (○)

In any case, every inequality $\Delta(B; k) \downarrow \neq K(k)$ will be eventually rectified.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Well Ordering of $d_{\tau}^{\alpha}(m)$

Lemma

For a fixed m, $\exists s_0$ say, after which if we rectify $\Delta(B; k) \downarrow \neq K(k)$ and enumerate $d_{\tau}^{\alpha}(m)$ into D, then $m \leq k$.

(日) (日) (日) (日) (日) (日) (日)

This allows us to prove:

Lemma

• If $g^{\alpha}(m)[s]$ are bounded, then so are $d^{\alpha}_{\tau}(m)[s]$.

Proof. By the choice lemma, and the special action I.

Th	e Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
		0	0000		00000
0		0000	00000	000	
			00000		
			0000000		

Correctness of α

- 1. If the base markers $bm(\alpha)[s]$ of α unbounded, then $\Phi(B, X)$ is partial.
- 2. O.W. and f is built infinitely many times, then f = B.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

3. O.W., and $\Delta(B)$ is total, then $\Delta(B) =^{*} K$.

Analysis of Δ

Suppose that $\Delta(B)$ is partial. Let *k* be the least y > n at which Δ diverges. Then $\theta \phi(d_{\tau}^{\alpha}(k))[s]$ unbounded.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Case 1. $d_{\tau}^{\alpha}(k)[s]$ are unbounded. $g^{\alpha}(k)[s]$ unbounded. $\Phi(B, X)$ is partial.

Case 2. O.W. and $\phi(d_{\tau}^{\alpha}(k))[s]$ unbounded. $\Phi(B, X)$ is partial.

Case 3. O.W. Then $\Theta(A)$ is partial.

The Theorem	The Requirements and Modules	Satisfying S -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Possible Outcomes

- Refine the outcome *b* to approximate the least *x* such that γ(*x*)[*s*] are unbounded, to provide a well defined environment for lower priority strategies.
- Guess the least k > n such that Δ(B; k) diverges, and by property IV, refine furthermore the outcome to approximate the least x such that γ(x)[s] are unbounded, if α has verified that Φ(B, X) is partial.

(日) (日) (日) (日) (日) (日) (日)

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Suppose that for some k > n, $d_{\tau}^{\alpha}(k)[s]$ are unbounded. Let k_1 be the least k.

Can we approximate the k_1 at this level?

No!

The possible outcome is the least k > n such that $\Delta(B; k)$ diverges.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

```
Let k_0 be the least such k. It is possible that k_0 < k_1.
```

The Theorem	The Requirements and Modules	Satisfying S -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

Conditional Restraint Rules

Let *s* be a stage, and *s*⁻ be the least stage s' < s such that $p(\alpha)[t]$ is defined for all $t \in [s^-, s]$. Then we have the following rules:

- 1. $p(\alpha)$ is decreasing in stages $[s^-, s]$.
- 2. If $p(\alpha)[s+1] \neq p(\alpha)[s]$, then one of the following conditions occurs

(a) $p(\alpha)[s+1) < p(\alpha)[s],$

(b) *B* changes below $p(\alpha)[s]$ at stage s + 1.

(c) Any agitator whose honestification has been delayed by any $p(\alpha)[t]$ for any $t \in [s^-, s]$, is cancelled.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		0000000		

Valid Use of an Agitator Is Decreasing

Considering more *S*-strategies:

- 1. Given an agitator $d_{\tau}^{\beta}(y)$, the valid use may be delayed by the collection of $p(\alpha)$ for all $\alpha \subseteq \beta$. Since for each α , $p(\alpha)$ is decreasing in stage.
- By definition, the valid use φ*(d^β_τ(y))[s] is decreasing in stages.

How about the permitting marker of a γ -marker, $x = \gamma_{\tau}(y)$, say? We need:

m(x)[s] are decreasing in stages.

The Theorem	The Requirements and Modules	Satisfying $\mathcal S\text{-}Requirements$ Below one $\mathcal R$	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		0000000		

A Maxmin Lemma

Suppose that $Q_1 \supseteq Q_2 \supseteq \cdots \supseteq Q_n \supset \emptyset$ is a sequence of finite sets Q_j of nodes, $j = 1, 2, \cdots, n$, and that for every j, every node $\alpha \in Q_j$, there is a decreasing sequence $a_1^{\alpha}, a_2^{\alpha}, \cdots, a_j^{\alpha}$. For every $j = 1, 2, \cdots, n$, we define $a_j = \max\{a_j^{\alpha} \mid \alpha \in Q_j\}$. Then

$$a_1 \geq a_2 \geq \cdots \geq a_n$$
.

(日) (日) (日) (日) (日) (日) (日)

Proof. By definition.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

The Permitting Marker of a γ -Marker

Recall that:

Let $x = \gamma_{\tau}(y)$. Define the permitting marker m(x) defined by

$$m(\mathbf{x}) = \max\{\phi^*(d^\beta_\tau(\mathbf{y})) \mid d^\beta_\tau(\mathbf{y}) \downarrow\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lemma

Let $x = \gamma_{\tau}(y)$. The permitting marker m(x)[s] will be decreasing in stages.

Proof. By the maxmin lemma.

The Theorem	The Requirements and Modules	Satisfying \mathcal{S} -Requirements Below one \mathcal{R}	The Rectification Lemma	The General
	0	0000		00000
0	0000	00000		
0		00000	000	
		00000		
		000000		

New Problems for the Full Proof

- 1. The \mathcal{R} -, \mathcal{S} -principles.
- The conditional restraint rules, the principles of decreasing valid uses, and of decreasing permitting markers. Both 1 and 2 are essential, and need:
- 3. New choice algorithm and choice lemma for the S-strategy below more than one R-strategy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの