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Thanks to the IMS and the organizers!
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Yesterday vs. Today

Recall from Peter Cholak’s talk:
Definition

f : w — wis uniformly a.e. dominating if for measure-one many
X,and all g <7 X, f dominates g.

e There is a relationship between such functions and
effective randomness, the precise nature of which is not
yet known.

¢ | will consider a variation, positive-measure domination,
which has so far been easier to deal with.

¢ As a byproduct we will get a new characterization of
K-trivial reals, which does not mention randomness or
Kolmogorov complexity directly.



Turing functionals

Definition
Let ¢ be a Turing functional.

Tot(®) = {X : X is a total function in w*}.

We will only be interested in the case where Tot(®) has positive
measure.

Definition
Let ® be a Turing functional. We write

b <A

if either 1 Tot(®) = 0, or for some f <7 A,

p{X € Tot(®) : ®Xis dominated by f} > 0.



A is positive-measure dominating (PMD) if for each Turing
functional ¢, ¢ < A.
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Universal Turing functionals

Suppose ¢;, i € w are all the Turing functionals.

Recall from Peter Cholak’s talk: The functional ¥ given by
wO'X — X is universal for uniform a.e. domination.

However, ¥ < 0.
Find an example of a functional = with = £ 07



A functional = £ 0

Fix a constant c. Let =X(s) be the least stage t > s at
which X looks like it is 2-random, with constant ¢. That is,

=X(s) = (ut > s)(Vn < t K(X | n) > n— c).

= is total for positive-measure many X, all of which are
2-randoms.

If = < 0 then we get a NJ class of 2-randoms, contradiction.

This = is actually universal for positive-measure
domination.



A ¥ class

Fix = that is universal for positive-measure domination
(PMD).

A is positive-measure dominating iff = < A.

Jf <+ A, Je > 0, Vn, 3s,

u{X : =X | nis total and majorized by f, by stage s} > .

{A: Ais positive-measure dominating} is a X3 class.

By Jockusch-Soare (1972), each member computes a path
in a recursive tree without recursive paths.

Cholak-Greenberg-Miller show there is a PMD degree
which is not DNR.

Mathias and Cohen generics are not PMD.



Reducibilities

Definition (PA reducibility)

A <pa B if for each computable tree T, if A computes a path in
T then so does B.

Definition (Low-for-random reducibility)

A <,p B if each B-random is A-random.

Definition (Running time function)
pX(n) = (ps)(¥m < n)(®Z(m) |).

Definition (Positive-measure domination reducibility)
A <pup B<Z>V¢((,0<A—>(p< B)



A </g 0iff...

Theorem (Nies, Hirschfeldt, Stephan, Terwijn)

The following are equivalent for A € 2%

e A s low for random: each Martin-Lof random real is
Martin-L6f random relative to A.

A is K-trivial: 3cvnK(A [ n) < K(0 | n) + c.
Ais low for K: 3cvVnK(n) < KA(n) + c.

1Z >1 A, Z is ML-random relative to A.

A <7 0" and Q2 is ML-random relative to A

All are defined in terms of randomness or Kolmogorov
complexity, K.



Main Theorem

e Wehave A<py 0= A <pyp O.
e The only A9 degree with A <p, 0'is 0.
o What about A degrees with A <pyp 0?

Theorem (Main Theorem)

The AS degrees with A <pyp 0 are exactly the K -trivials. That
is:
A<70 & A<pup 0 A<,R0.

Moral: The K-trivials are those AJ reals that are no good at
dominating Turing functionals for positive-measure many
oracles.

Theorem
A is positive-measure dominating iff 0’ <;g A.

An earlier result with Hirschfeldt had this equivalence for
A <+ 0 onlv.



Proof deals only with the notion low for random, not the other
equivalent forms.

Except, the proof relies on the fact that low for random = Ag.
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Useful tools

Definition
M4 denotes the collection of all N? classes of positive measure.

Lemma (Kucera)

For each A € 2“, each A-random is a tail of each N (A) class.

Lemma (implicit in Dobrinen and Simpson)
Let ® be a Turing functional and B € 2“. The following are
equivalent:

e Tot(®) has a N} (B) subclass.

e v < B.



An intermediate step

Theorem

Let A, B be reals. The following are equivalent:
O A<rB
@ Each Y (A) class has a NY/(B) subclass.

© Some I (A) class consisting entirely of A-random reals
has a I (B) subclass.



More generally

Theorem
Let A, B € 2%, The following are equivalent:
e A<pASDB.
Each NY(A') class has a (A @ B) subclass.
Each N5(A) class has a NY(A & B) subclass.

Vo, if Tot(®*) has positive measure then it has a N{(Ae B)
subclass.

Vo(p? < Ad B) (A® B is PMD relative to A).

In particular with A = 0 we get the characterization of PMD
degrees in terms of randomness.



Why are A <,g 0 and A <pyp 0 equivalent for A <7 0'?

Lemma
Let A € 2“. The following are equivalent:

@ Each N (A) class has a N subclass.

® A <7 0" and for each &, if Tot(®) has a N}(A) subclass
then ¢ < 0.

(1)=>(2) uses external facts (low for random reals are AJ).
(2)=(1) uses the fact that if A <7 0’ then each M%(A) class is a
NI class and hence is Tot(¢) for some ®.



