Positive-measure domination

Bjørn Kjos-Hanssen

Department of Mathematics University of Connecticut, Storrs

July 29, 2005 @ National University of Singapore

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Thanks to the IMS and the organizers!

Yesterday vs. Today

Recall from Peter Cholak's talk:

Definition

 $f: \omega \to \omega$ is *uniformly a.e. dominating* if for measure-one many *X*, and all $g \leq_T X$, *f* dominates *g*.

- There is a relationship between such functions and effective randomness, the precise nature of which is not yet known.
- I will consider a variation, positive-measure domination, which has so far been easier to deal with.
- As a byproduct we will get a new characterization of *K*-trivial reals, which does not mention randomness or Kolmogorov complexity directly.

Turing functionals

Definition

Let Φ be a Turing functional.

$$\mathsf{Tot}(\Phi) = \{ X : \Phi^X \text{ is a total function in } \omega^\omega \}.$$

We will only be interested in the case where $\text{Tot}(\Phi)$ has positive measure.

Definition

Let Φ be a Turing functional. We write

 $\Phi < A$

if either μ Tot(Φ) = 0, or for some $f \leq_T A$,

 μ { $X \in \text{Tot}(\Phi) : \Phi^X$ is dominated by f} > 0.

200

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A is positive-measure dominating (PMD) if for each Turing functional Φ , $\Phi < A$.

- Suppose Φ_i , $i \in \omega$ are all the Turing functionals.
- Recall from Peter Cholak's talk: The functional Ψ given by $\Psi^{0^i 1 X} = \Phi_i^X$ is universal for uniform a.e. domination.
- However, $\Psi < 0$.
- Find an example of a functional Ξ with $\Xi \not< 0$?

 Fix a constant c. Let \(\exists X\) (s) be the least stage t > s at which X looks like it is 2-random, with constant c. That is,

$$\Xi^X(s) = (\mu t > s) (\forall n \leq t \ extsf{K}_t^{0'_t}(X \upharpoonright n) \geq n - c).$$

- \equiv is total for positive-measure many *X*, all of which are 2-randoms.
- If $\Xi < 0$ then we get a Π_1^0 class of 2-randoms, contradiction.
- This Ξ is actually universal for positive-measure domination.

- Fix Ξ that is universal for positive-measure domination (PMD).
- A is positive-measure dominating iff $\Xi < A$.
- $\exists f \leq_T A, \exists \epsilon > 0, \forall n, \exists s,$

 μ {*X* : $\Xi^{X} \upharpoonright n$ is total and majorized by *f*, by stage *s*} > ϵ .

- {*A* : *A* is positive-measure dominating} is a Σ_3^0 class.
- By Jockusch-Soare (1972), each member computes a path in a recursive tree without recursive paths.
- Cholak-Greenberg-Miller show there is a PMD degree which is not DNR.
- Mathias and Cohen generics are not PMD.

Reducibilities

Definition (PA reducibility)

 $A \leq_{PA} B$ if for each computable tree *T*, if *A* computes a path in *T* then so does *B*.

Definition (Low-for-random reducibility)

 $A \leq_{LR} B$ if each *B*-random is *A*-random.

Definition (Running time function)

 $\varphi^{X}(n) = (\mu s)(\forall m < n)(\Phi^{X}_{s}(m) \downarrow).$

Definition (Positive-measure domination reducibility)

 $A \leq_{PMD} B \Leftrightarrow \forall \Phi(\varphi < A \rightarrow \varphi < B).$

$A \leq_{LR} 0$ iff...

Theorem (Nies, Hirschfeldt, Stephan, Terwijn)

The following are equivalent for $A \in 2^{\omega}$:

- A is low for random: each Martin-Löf random real is Martin-Löf random relative to A.
- A is K-trivial: $\exists c \forall n K(A \upharpoonright n) \leq K(\emptyset \upharpoonright n) + c$.
- A is low for K: $\exists c \forall n K(n) \leq K^{A}(n) + c$.
- $\exists Z \geq_T A$, Z is ML-random relative to A.
- $A \leq_T 0'$ and Ω is ML-random relative to A

All are defined in terms of randomness or Kolmogorov complexity, K.

Main Theorem

- We have $A \leq_{PA} 0 \Rightarrow A \leq_{PMD} 0$.
- The only Δ_2^0 degree with $A \leq_{PA} 0$ is 0.
- What about Δ_2^0 degrees with $A \leq_{PMD} 0$?

Theorem (Main Theorem)

The Δ_2^0 degrees with $A \leq_{PMD} 0$ are exactly the K-trivials. That is:

$$A \leq_T 0' \& A \leq_{PMD} 0 \Leftrightarrow A \leq_{LR} 0.$$

Moral: The *K*-trivials are those Δ_2^0 reals that are no good at dominating Turing functionals for positive-measure many oracles.

Theorem

A is positive-measure dominating iff $0' \leq_{LR} A$.

An earlier result with Hirschfeldt had this equivalence for $A <_{\tau} 0'$ only.

Proof deals only with the notion low for random, not the other equivalent forms.

Except, the proof relies on the fact that low for random $\Rightarrow \Delta_2^0$.

Definition

 Π_1^{μ} denotes the collection of all Π_1^0 classes of positive measure.

Lemma (Kučera)

For each $A \in 2^{\omega}$, each A-random is a tail of each $\Pi_1^{\mu}(A)$ class.

Lemma (implicit in Dobrinen and Simpson)

Let Φ be a Turing functional and $B \in 2^{\omega}$. The following are equivalent:

- Tot(Φ) has a $\Pi_1^{\mu}(B)$ subclass.
- *φ* < *B*.

An intermediate step

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem

Let A, B be reals. The following are equivalent:

- **2** Each $\Pi_1^{\mu}(A)$ class has a $\Pi_1^{\mu}(B)$ subclass.
- Some Π^μ₁(A) class consisting entirely of A-random reals has a Π^μ₁(B) subclass.

Theorem

Let $A, B \in 2^{\omega}$. The following are equivalent:

- $A' \leq_{LR} A \oplus B.$
- Each $\Pi_1^{\mu}(A')$ class has a $\Pi_1^{\mu}(A \oplus B)$ subclass.
- Each $\Pi_2^{\mu}(A)$ class has a $\Pi_1^{\mu}(A \oplus B)$ subclass.
- ∀Φ, if Tot(Φ^A) has positive measure then it has a Π^μ₁(A ⊕ B) subclass.
- $\forall \Phi(\varphi^A < A \oplus B) (A \oplus B \text{ is PMD relative to } A).$

In particular with A = 0 we get the characterization of PMD degrees in terms of randomness.

Lemma

Let $A \in 2^{\omega}$. The following are equivalent:

- **1** Each $\Pi_1^{\mu}(A)$ class has a Π_1^{μ} subclass.
- 2 A ≤_T 0' and for each Φ, if Tot(Φ) has a Π^μ₁(A) subclass then φ < 0.</p>

(1) \Rightarrow (2) uses external facts (low for random reals are Δ_2^0). (2) \Rightarrow (1) uses the fact that if $A \leq_T 0'$ then each $\Pi_1^0(A)$ class is a Π_2^0 class and hence is Tot(Φ) for some Φ .