UNIFORM ALMOST EVERYWHERE DOMINATION

PETER CHOLAK, NOAM GREENBERG, AND JOSEPH S. MILLER

ABSTRACT. We explore the interaction between Lebesgue measure anithatomg func-
tions. We show, via both a priority construction and a fagcgonstruction, that there is
a function of incomplete degree that dominates almost gtelss. This answers a ques-
tion of Dobrinen and Simpson, who showed that such functamesrelated to the proof-
theoretic strength of the regularity of Lebesgue measuré&fpsets. Our constructions
essentially settle the reverse mathematical classifitatichis principle.

1. INTRODUCTION

1.1. Domination. Fast growing functions have been investigated in mathes&dr over
90 years. Set theorists, for example, have investigatesttheturecw®/Fin and the asso-
ciated invariants of the continuum ever since Hausdorfstmcted higw, wj)-gap [];
today, this structure has a role to play in modern desceset theory.

Fast growing functions have deep connections with comgittatA famous early ex-
ample is that of Ackermann'’s function, defined in 1928 [This is a computable function
that grows faster than any primitive recursive functionisTéxample was useful in eluci-
dating the mathematical concept of computability, an ustaeiding reflected in Church’s
Thesis.

In the 1960s, computability theorists became interesteftinations that grow faster
than all computable functions.

Definition 1.1. Let f,g: w — w. The functionf majorizes gf f(n) >g(n)forallne w. If
f(n) > g(n) for all but finitely manyn, thenf dominates gThese are written a> g and
f >* g, respectively. We calf dominantif it dominates all (total) computable functions.

Dominant functions were explored in conjunction with Pegrogram. The goal of
Post’'s Program was to find a “sparseness” property of the gt of a c.e. séi that
would ensure thaf is incomplete. Yatesl[f] proved that even maximal c.e. sets, which
have the sparsest possible compliments among coninfigiteets, can be complete. This
put an end to Post’s Program, but not to the study of sparsgmeperties.

Let pa(n) be then™ element of the complement @&. Having pa dominant would
certainly imply that the complement éfis sparse. On the other hand, Tennenbaiish [
and Martin [L1] showed that ifA is maximal, thenpa is dominant. Furthermore, Martin
characterized the Turing degrees of both dominant funstaomd maximal c.e. sets. He
showed that there is dominant function of degaei a is high (i.e.,0” < &), and that
every high c.e. degree contains a maximal set. Togethesg tiesults revealed a surprising
connection between the structure of c.e. sets, the pladeeofTuring degree within the
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jump hierarchy, and domination properties of functionstekaesearch explored further
connections between domination properties, algebrajpgsties and computational power.

In this paper, we consider the interaction between Lebesgasure and domination.
Motivated by results on dominating functions in generieesions of set theory, Dobrinen
and Simpsond] introduced the notion of aniformly almost everywhefa.e) dominating
degree: a Turing degreethat computes a functiofi: w — w such that

pi{ze2?: (vgew®”)[g<rZ = g< =1

(Hereu denotes the Lebesgue measure 8r) 2Me also call such a functioh uniformly
a.e. dominating

A natural goal is to characterize those Turing degrees tieatrsformly a.e. dominating.
A function of degred) that dominates almost all degrees was first constructed Iotz Ku
[10, Theorem 4.3]. (Kurtz used this result to exhibit a differerdetween the 1-generic
and the (weakly) 2-generic degrees: the upward closuregareric degrees has measure
one [LO, Theorem 4.1], while the upward closure of the (weakly) 2eye& degrees has
measure zerol[), Corollary 4.3a].) Since the collection of uniformly a.eordinating
degrees is closed upwards, Kurtz's result implies thatyedegree> O’ is in the class.
On the other hand, a uniformly a.e. dominating function in@@ant, and so by Martin’s
result, every uniformly a.e. dominating degree is high. §obrinen and Simpson asked
whether either the class of complete degrees (degrees @)mrehe class of high degrees
is identical to the class of uniformly a.e. dominating degre

Unfortunately, the truth lies somewhere in the middle. Bini§jos-Hanssen, Lerman
and SolomonZ] showed that not every high degree is uniformly a.e. donmgabr even
a.e. dominatingan apparently weaker notion also introduced by Dobringh&impson
[3]. They gave two proofs. First, by a direct constructionytheoduced a high c.e. degree
thatis not a.e. dominating. (A similar result was indepenigeobtained by Greenberg and
Miller, although their example wetg, notc.e.)

Second, Binns et alZ] showed that ifA has a.e. dominating degree, then every set that
is 1-random oveA is 2-random. IfA is aIsoAg, then by Nies [7], @' is K-trivial over A
and soA is super-high(i.e., A’ > 0"). By an index set calculation, there is a c.e. set that
is high but notsuper-high hence not a.e. dominating. It is open whetHdsdingK -trivial
overa < 0 implies thata is (uniformly) a.e. dominating; Kjos-Hanssen has sometedla
results.

We prove that Dobrinen and Simpson’s other suggested deaization of the uni-
formly a.e. dominating degrees also fails.

Theorem 1.2. There is an incomplete (c.e.) uniformly a.e. dominatingekeg

We provide two proofs of this result, although only one proghia c.e. degree. In Sec-
tion 2 we use a priority argument to construct an incomplete cigoumly a.e. dominating
degree and in Sectiohwe present a more flexible forcing construction of an incatepl
uniformly a.e. dominating degree.

1.2. Domination and Reverse Mathematics.As observed by Dobrinen and SimpsGih [
uniformly a.e. dominating degrees play a role in deterngrtime reverse mathematical
strength of the fact that the Lebesgue measure is regularar-mtroduction to reverse
mathematics, the reader is directed to Simpsah [

Regularity means that for every measurablePstitere is aG5 setQ O P and anF, set
SC Psuchthay(S) = u(P) = u(Q), where &5 set is the intersection of countably many
open sets and aR; set is the union of countably many closed sets. Hence thewolh
principle is implied by the regularity of the Lebesgue measu
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Gs-REG. For every G set QC 2% there is a 5 set SC Q such thaiu(S) = u(Q).

Recall that th&S5 sets are exactly those that a‘t% in a real parameter (that is, boldface
I'Ig), and the~; sets are exactly th% sets. Hence we can considgs-REG as a statement
of second order arithmetic. We will see tl@&§-REG, which appears to be a natural math-
ematical statement, does not fall in line with the commordgwring systems of reverse
mathematics. In particular, we examine the chain

RCAo € DNRg C WWKLo € WKLo C ACA.

HereRCA is the standard base system that all of the other systemsde}i<Lg is RCAg
plus weak Konig’'s lemma; andlCAq is RCAq plus the scheme of arithmetic comprehen-
sion. These systems are studied extensively4h [The systemMWWKLg is somewhat less
standard. It consists ®&CAg plus “weak weak Konig’s lemma”, which is introduced in Yu
and Simpson17]. A large amount of basic measure theory can be provétl\iKLg, so
it is a natural system for us to be concerned with. The finalesgsDNRy, is less natural
from a proof-theoretic standpoint but very natural for catgbility theorists. It isSRCAg
plus the existence of a function that is diagonally non-reive; see Giusto and Simpson
[4] and Jockuschd].

Kurtz's result tha® is uniformly everywhere dominating essentially shows GgREG
follows from ACA. This relies on the following:

Theorem 1.3(Theorem 3.2 of Dobrinen and Simpsdij)[ A Turing degreea is of uni-
formly a.e. dominating degree iff for evdﬂg set QC 2% there is azg(a) set SC Q such

that u(S) = u(Q).

Dobrinen and Simpson conjectured ti&-REG and ACAq are equivalent oveRCAq
([3, Conjecture 3.1]). This is not true; in fact, there is@mmodel ofGs-REG that omits
0’ and hence is not a model 8fCA,. This was discovered by B. Kjos-Hanssen after the
circulation of the priority-method proof of Theoreh?. This proof appears to be too rigid
to allow us to obtain a version with cone avoidance, but Kjtagissen found clever way to
build the w-model without such a result. His construction is presemteédkction3.

The forcing construction is flexible enough to prove conedance and more. We can
thus improve Kjos-Hanssen'’s result by showing 8gtREG does not imply even systems
much weaker thaACAg:

Theorem 1.4. RCAg + G-REG does not impl\ONRg.

But althoughGs-REG seems to lack proof-theoretic strength, none of the tiaudi
systems belowACAg are strong enough to prove it:

Proposition 1.5(Remark 3.5 of Dobrinen and Simpsdi). WKLg does notimply G-REG.

The proposition follows easily from the fact that there is@model of WKL that
consists of low sets; by formalizing Theorén3, everyw-model ofG5-REG must include
uniformly a.e. dominating degrees, which by Martin’s résué high.

FurthermoreG5-REG seems to be “orthogonal” to the traditional systems in ttsat i
strength is insufficient to lift one such system to the systéiove it:

Theorem 1.6. WKLo+ G3-REG does notimphACAg; WWKLg+ G5-REG does notimply
WKLp.

It remains open wheth@NRg + Gs-REG impliesWWKL,.
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1.3. Notation, conventions and other technicalities.Our computability theoretic nota-
tion is not always classical or consistent, but hopefullgnpetely understandable. Thus,
(Pe) e, 1S an effective list of all Turing functionals with oraclenéwe writeq)ef (x), ¢§,5(x)l

, etc. This notation will be used when we try to diagonalizaiagt some oraclé (so
de: W® — w®). On the other hand, for domination purposes, we write Tufimctionals
as®(Z;x) andd(Z;x)[g. In fact, we only need to consider a singbe

Lemma 1.7. There is a partial computable function@: 2 — w® such that if
p{zZe2?:if d(Z)is total, thend(Z) <* f} =1,
then f is uniformly a.e. dominating.

Proof. Let (Wi);,, be an effective list of partial computable functionafs 2> w® and
defined(0'12) = W;(2). O

We assume thab has the following (standard) properties (for everg € w andZ €

29):
(1) ®(Z;n)| [g implies®(Z;n)[g] < s.
(2) ®(Z;n)| [g] implies(Ym<n) d(Z;m) ] [s].

We let dom® be the collection o such thatd(Z) is total. Forn € w, we letD, =
{Zz€2%: ®(Z;n)| }. Forastags e w, Dy[g is given the obvious meaning. FgE w<?,
let

Dm0l ={Z €27 : (vke [nm)) ®(Zk) | [9K)]},

(including the case whera = ). It follows from condition (1) that iZ € Dy, [g], then
g majorizesP(Z) on the intervaln, m).

2. A PROOF OF THEOREM 1.2 VIA A PRIORITY CONSTRUCTION

In this section we prove Theorefn2. We build f: w — w by giving a computable
sequence of approximatiof). .. Assuming the limit existsf = lim fs isAg. To ensure
that f has c.e. degree, it is enough to require thi approximated from below. Formally,
(Vn)(Vs) fs(n) < fsy1(n). This means thal = {(n,m) : f(n) < m}is ac.e. set; itis clear
thatf =1 W.

To ensure thaf is incomplete we will enumerate a c.e. Bsind meet the requirement

Re: e #B,
for eache € w. These requirements will be handled by incompletenestegies. The
same strategies are responsible for assigning valuiesibich essentially means that they
must makef large enough to be uniformly a.e. dominating. This can bemgished
if they are supplied with appropriate approximations to mheasure of do®. These
approximations are given by measure guessing strategies.

We describe the incompleteness and measure guessingjisdiest, in relative isola-
tion. Then we explain the priority tree and the full constiaic.

2.1. Incompleteness Strategy.Let o be an agent assigned the goal of ensuring:péa;té

B, for some indexe = (o). Wheno is initialized, it chooses fllower x= x(0) that has
not been used before in the construction. A typical incotepless strategy would wait
fora computationp(._f (x) | =0, preservef on the use of this computation, and enumerate
x into B. The main difference is that our incompleteness stratedjyb@iproactive: it is
permitted to change the values bfo makeqbg (x) | = 0. Indeed, only the incompleteness
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agents change the valuesfoét all, so they are not only permitted to make these changes,
it is crucial that they do so.

Three restrictions are placed ors ability to change the values df First, as already
mentioned, it cannot decrease the current valuds 8econd, higher priority agents (who
wish to preserve diagonalizing computations) imposeaestN = N(o); o is not allowed
to changef | N. The third restriction (which ensures that eventudllwill be dominat-
ing) involves a rational parameter= (o). For o to permanently protect a computation

¢g (x) | = 0 with user, it must be the case that
©) p (dom® \ Dy [ f]) <&

In other wordsg’s action (in protecting | r) preventsf from majorizing®(Z) aboveN
for no more tharg of all Z € 2%. This is the restriction that forcesto increase the values
of f.

The first two restrictions place no significant burdermiout the third is more demand-
ing. In fact,o cannot hope to meet the third restriction without help bsedtidoes not
know what don® is. To approximate it, we supply with two useful pieces of informa-
tion: a rationalg = gq(o) and a natural numbéd = M(0o) such that:

(1) < p(dom®).

(2) u(Du) <q+é/2.
In the full construction, these parameters are provided imeasure guessing agent.dif
is on the true path, then the valuesopdindM that are supplied tor will meet conditions
(1) and (2).

We are now ready to describe the behaviooofThe possible states af areactive,
meaning that it is currently imposing restraint to protecbmputatiorrpé (x), andpassive.
Wheno is initialized, it is passive and it has restraiiio) = 0. If o ever becomes active,
it will remain so unless it is reset. This happens if the exeaever moves left ofr, or if
condition (2) proves to be false for eitheror a higher priority active agent. The details of
the full construction are below.

Say thato is visited at stage € w. If either o or a higher priority agent foRe is
currently active, then there is nothing to do. Otherwissgarches for a stringje s<° that
has the following (computable) properties:

(1) 9O fsI'N;

(2) (vne[N,|g))) fs(n) < g(n);
(3) U(D,gylg]) >a—€/2;and
(4) 9es( | =0.

If there is such a string, theno lets fs;1 D gandr(o) = |g|. It enumerates into B
and declares itselfctive. If there is no sucly, theno does nothing and remaipassive.

This completes the description of the incompletenessestyatWe prove below that if
o is on the true path and it ever becomes satisfied, th¢hdglds. Because agents that are
not on the true path might also attempt to protect computatiovhat we actually prove is
stronger: if an agent ever becomesive (hence is imposing restraint), either)(holds or
the agent is eventually reinitialized (so that its restramemoved).

Remark2.1. Unlike many tree constructions, it is important that at nos node on each
level (i.e. at most one node per requirement) imposes mast&ay a node at levelensures
thatf dominates except for a set of size at mgstWe will argue thatf dominates almost
everywhere, using the fact that lim. > ¢ & = 0. If several nodes on the same leeel
were to impose restraint, thea must be counted more than once, making the calculation
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incorrect. This is why we stipulated thatdf is visited at some stageand if at the same
stage, som@’ < 0 on the same level is active, thendoes not act. Of course, we are
making use of the fact that”’s success is alsa’s.

2.2. Measure Guessing StrategyMeasure guessing agents change neitheor B and
they impose no restraint on other agents. Their only fundsao provide the values of
g andM to the incompleteness agents at the next higher level. Auneagiessing agent
T is initialized with a rational parametér= 6(1). Its primary job is to find a rationaj
that approximates the measure of d@rfrom below to withind. This is done as follows.
Divide the interval[0,1] into subintervals of lengt®. WhenT is visited at stages, it
compares, for eaah< s, the measure ddy [ with that of Dy t], wheret was the previous
stage at whiclt was visited. If the measure of sorbg has crossed the threshold from
one subinterval’ to one on its right, then (for the least suah) T guesses that = minl
approximates the measure of ddmAssume thart is visited infinitely often and mihis
the largest approximation guessed infinitely often. ThéD,) > minl for all n € w and
1 (Dn) > maxl at most finitely often. Thereforgi(domd) € 1.

We give the details. Led = [1/0]. The outcomes of will be of the form(g,M) €
Q x w, whereq € {0,9,20,...,dd}. WhenT is first initialized, its outcome ig0,0).
Say thatr is visited at stags € w and that the previous visit occurred at stages. To
provide a guess; looks forn < sandb < d such thafu(Dy|t]) < bd but 1 (Dp[s]) > bd.
For the greatest sudh (or equivalently, théb corresponding to the least suohy T lets
g = bd. Otherwise letsq= 0. Finally, T takes the leas¥l such thau(Dw|g)) < q+ 9.
Becauseu(Dp[g]) in monotone decreasing as a functiomofor all n > M we also have
H(Dnls]) < g+ 8. The outcome of at stagesis (q,M).

Remark2.2. Suppose that has outcoméq, Mo) at stagesy and outcoméq, M1 ) ats; > .
Further suppose that wheneweis visited at a stagebetweersy ands,, its outcome at
is of the form(q/,M’) with ¢ < g. ThenM; = Mo.

2.3. The Priority Tree. As usual, agents are organized on a tree, with the childrem of
agentrepresenting its potential outcomes. Waite 8 to mean thag is a proper extension
of a. Each agent comes with a linear ordering on its children. We extenet| to other
nodes as follows: say that is to the leftof 8 and writea < 3 if there arep C a and
v C B such thap andv have the same parent apd<| v. Write a < 3 if eithera 3 or
o <. B. This is the total ordering lexicographically induced oae tree by the ordering we
impose on the children of agents.df< 3, then we say thadr has higher prioritythanf3.

The even levels of the priority tree are devoted to measueesing agents and the odd
levels to incompleteness agents. A measure guessingagtletel X is supplied with the
parameted(1) = 37K/2. As described above, its outcomes have the fapm) € Q x w,
whereq is restricted to rationals of the fort (7). The outcomes are ordered first gy
and then byM, with larger numbergo the left ofsmaller numbers.

An incompleteness agewt = 17 (g,M) at level X+ 1 has parameterf o) = k and
g(g) = 37K =25(1). We also obviously sefj(g) = g andM(g) = M. The two final
parameters, the followex o) and the restrairtl(o), are determined whem is initialized.
To initialize o at stages € w, set its state tpassive, letr(o) = 0 and choose a follower
X(0) € wthat has not yet been assigned in the construction. Furtirerraet

N(o) =max{r(o’) : 0’ <_ o is active at stags}.

The children ofo arec"active < 0" passive.
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2.4. Full Construction. Let fo(n) =0 for alln € w. The construction proceeds in stages.
The preliminary phase of stagec w involves reevaluating, and possiligsetting cur-
rently active incompleteness agents. Reset agents mustriigalized the next time they
are visited. Say thatr = 77(q,M) is active at stags. If yu(Dm[s) > q+ &(0)/2, then

o acted based on a false assumption and it could be the case ih&rcing f [ r(o) to
remain prohibitively small. Therefore, we reget We also reset all previously initialized
incompleteness agents of lower priority thaufto allow them to recompute their restraints
the next time they are visited).

Remark2.3. Suppose that lies on the true path and that= 17 (q,M) is active at stage
s. Further suppose thats guess is found to be incorrectsin other wordsu(Dw|s]) >
g+ 4(1)). Then the next time thatis accessible, its new outcome lies to the lefoodind
soo is reset. It would seem that this mechanism would suffice batexplicit resetting is
unnecessary. However, unlike many tree constructions,eed o be concerned with the
restraint imposed by nodes that lie to the left of the truép&uch unwarranted restraint
may prevent from sufficiently dominating, and so needs to be reset whendancorrect.

During the main phase of stagewe execute the strategies of finitely many agents on
the priority tree, following a path of length at mastThis is done in substages< s. We
begin at substage= 0 by visiting the root noderp = A. Say that we are visiting an agent
ot at substageé. First, reset any incompleteness agemtsuch thato; < 0. (Note that if
oisresetanar < ¢’, thena; <. d’, sod’ is also reset.)

Casel: o is a measure guessing agefftthe outcome of; at stagesis (g, M), then
letai1 = a:"(g,M) and end the substage.

Case2: a; is an incompleteness agetit.o; has never been visited before or has been
reset since the last time it was visited, then it is initiediz If a; is currently active, then
end the substage and sgt ; = a;"active. Similarly, if there is a higher priority agent for
Re that is active at stagg then seto; 1 = a;” passive and end the substage. Otherwise,
execute the incompleteness strategydfoat stages. If o becomes active (so that changes
are made td andB), then end stagsentirely. Otherwise, letr,1 = a;"passive and end
the substage.

This continues until substage= s is completed or until stags is explicitly ended
because an incompleteness agent becomes active. Fimaflyatues offs,; that were
not specified during the execution of stagghould be copied fronfs. This completes the
construction.

2.5. Verification. Inductively define thérue pathto be the leftmost path visited infinitely
often. In particular:

e Theroot node\ is on the true path.
e If pis on the true path and to be the leftmost child o that is visited infinitely
often (if such exists), them is on the true path.

Itis clear that ifp is on the true path, then there is a stagew after which no agent left
of p is ever visited.

Claim 2.4. If o is an incompleteness agent on the true path, then there a&ge s w at
whicho is initialized and after which it will never be reset.

Proof. Take a stage € w large enough that no agent left afwill ever again be visited.
By induction, we may also assume thas large enough that the agertsC o have all
been initialized for the final time (and will never be resétpne of theses’ can become
active after stagg or else the execution would move left of
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Although nood’ <|_ g can become active after stagéhey can be reset in the preliminary
phase of the construction and this will reget But only active agents become reset and
only finitely manyo’ <, o are active at stage Therefore, there is a stage> t after
which no agents left ofr are ever reset.

This leaves only one way that = 7~ (g,M) can be reset at any stage>t': if g is
active at stag&” andu(Dwm[t"]) > g+ €(0)/2. Butif this is the case, thejg, M) cannot be
the outcome of after stage”, contradicting the fact that is on the true path. Therefore,
o is never reset after stagle But ¢ is visited infinitely often, so there is a stage w at
which o is initialized and after which it will never be reset. O

Claim 2.5. The true path is infinite.

Proof. We prove that there is no last node on the true path. Firsgidenan incomplete-
ness agendr on the true path. By Claird.4, there is a last stageat whichag is initialized.
After stage, 0 may become active at most once, so one of the outcomessoéventually
permanent.

Now consider a measure guessing ageah the true path. The first coordinate of the
outcome oft is taken from the finite seé® = {bo(7) : 0< b < [1/3(1)]}. Letq be the
greatest element dp that occurs as the first coordinate of the outcome infinitélgro
Assume that no greater first coordinate occurs after stage. Let (q,M) be the outcome
of T at some stage: s. By Remark2.2, if (¢/,M’) is the outcome off at some other
stage> s, then eithely’ < g or = qandM’ = M. Therefore, eithetq,M) < (¢',M’)
or (q,M) = (d/,M’), and the second case occurs infinitely often. Hericg, M) is on the
true path. O

Remarlk2.6. Let T be a measure guessing node, and suppose #radt~ (g, M) are on the
true path. Themu(Dy) > g foralln€ wandu(Du) < q+ (7). Thereforeu(domd) €

[9,9+ o(1)].

We are primarily interested in the incompleteness ageatatie eventually permanently
active. Let the set of all such agents = {0y, 01,...}, with gp < 01 < ---. The fact
that we can thus enumerderelies on the following:

Fact2.7. The collection of nodes that lie either on, or to the left of thue path that are
ever visited has order typ@ under<. This is because for each nodeon the true path,
only finitely many nodes to the left af are ever visited.

Claim 2.8. Assume that is initialized at stage € w and is never reset after stage s.
Suppose that’ < g. Then ifo’ is active at s, it remains permanently so (hetes G);
otherwise,g’ never becomes active after s (hemcet G).

Proof. First assume that’ is active at stage. If ¢’ is ever reset, then every lower priority
agent is reset, including. But this never happens, st € G.

Now suppose that’ is not active at stage It follows that o'~ passive < 0 (aso is
accessible at stagg. If 0’ becomes active at some later stage, tb€mactive would be
accessible. But this would resetbecause’"active lies to the left ofo. O

For alli € w, letN; andr; denote the final values &f(gj) andr (o), respectively.

Claim 2.9. Foralli € w:

(a) Onceo; becomes permanently active, f cannot change below r
(b) Niy1=ri.
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Proof. (a) Assume that; is permanently active after stagec w. Froms onwards,c;
imposes restraimt on weaker agents, so such agents do not change Any action by a
stronger agent is impossible after the last stage whichg; is initialized, ands < s.

(b) At stages, the agentss < g; that are active are exactlyy,...,0;_1, and their
restraints have reached their final values. ToiudefinesN; = max{rj : j <i} at stages.
Whenao; later becomes active, it imposes a permanent restiainhich is greater thah;.
It follows thatrg < ry < ---, and saNj 1 = ;. O

Claim 2.10. G is infinite.

Proof. We can enumerat@e),, in such a way that there are infinitely ma@guch that
forall t € w, for all x<t and allg € (t+1)S' we have¢d; (x) | = 0; we retroactively
assume that we used such an enumeration. We will show theafir sucte, G contains
an agent working foRe.

Pick such are and leto = 77(q,M) be the agent of lengthe2- 1 on the true path.
Assume that the final initialization @f occurs at stagee w.

Casel: Anagento’ < o for R is active at stage df o’ is ever reset, thea would
also be reset. This is impossible, gbe G.

Case2: No sucho’ exists. No 0’ < 0 becomes active after stageso as long as
o remains passive, its full strategy will be executed evangtit is visited. At stags, a
follower x is chosen and the final restraiNtis determined. By Clain2.9, f | N is fixed
after stages.

We know thatg, M) is the correct outcome a@f so(Vn) u(Dp) > g. Letv=max{N,M}.
There is ag such thatu(Dy[to]) > q— £(0)/2. For any stringy € w'** extendingf | N
such thag(n) >t forallne [N,v+ 1), we haveu(D[N,‘gD [9])) >q—¢(0)/2.

Consider a stage> max{to, x,v+ 1} at whicho is accessible. Ly = f | N~ (t)
Of coursefi(n) <t for all n, so by the assumptions @n¢g; (x) | = 0. Thusg satisfies all
the conditions that make it eligible to be picked as a nevidhiiegment off. It follows
that if o did not act before stagethen it does so and becomes permanenttive. O

v+1-N

Claim 2.11. f = limg f5 exists.

Proof. Combining Claim=.9(b) and2.1Q the intervalg [N;, ri) }icw partitioncw. Further-
more, by Claim2.9a), f is stable or{0,r;) onceo; becomes permanently active. There-
fore, lims fs(n) converges for alh € w. O

Claim 2.12. For alli, u (dom® . Dy, ) [f]) < &(a).

Proof. Assume for a contradiction that(dom® \. Dy, r,)[f]) > &(ai). Letai = 17(q, M).
Takes € w to be the stage at whiahy becomes permanently active anddet w<® be the
string that was used at that activation. 1$e- [g| andg C f. Thisimplies thaDy, (9] =
D, [ f]. But of course, dor C Dy. Thereforep (Dw ~ Dy, r;)[0]) > £(1).

By the definition of the incompleteness strategyDiy, r,)[9]) > q— £(ai)/2. Also
ri > M, soD r;)[g] € Dm. Together with the conclusion of the previous paragraph, we
haveu(Dm) > q+ €(0i)/2. But thenu(Dm[t]) > q+ €(0i)/2, for any sufficiently large
t € w. Thereforeg; would be reset at the first phase of stagehich is a contradiction. O

Claim 2.13. f is uniformly a.e. dominating.

Proof. Fix e € w. The construction ensures that at most one incompletegess at each
level can be active at a time; hence at most one can belofg fthus there is ane w
large enough thatvj > i) |oj| > 2e+ 1. Furthermorey ;- €(0j) < Skee3 K =37%1)2
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for this choice of. By Claims2.9(b) and2.10Q the intervals{ [N;,rj) } ;=i partition|[N;, o).
Therefore, ifZ € ;. Dy, r;), thenf majorizesd(Z) aboveN;. By Claim2.12,

3fe+l
u(dode\ ﬂD[Nj,r,-)[f]) <YH (dode\ D[Nj,r,-)[f]) <
j>i

=

In other words, the set af € dom® such thatf fails to dominate®(Z) has measure at
most 3°+1/2. Bute € w was arbitrary, sd is uniformly a.e. dominating. O

Claim2.14. f <7 0.

Proof. Itis sufficient to prove thaB <1 f. Fix an indexe € w.

Casel: Thereis an Ragentg; € G. Lets € w be the last stage at whiah becomes
active and lek; = x(g;)[g). By Claim2.9a), this is done vig = fs1 | ri = f | ;. Because
o is activated, we know thag € B andqbgs(xi) =0. Therefored)(._f (%) =0%#B(X).

Case2: Thereis no agent for &n G. Let 0 = 17 (q,M) be the incompleteness agent
of length 2+ 1 on the true path. Assume thatis initialized for the last time at stage
se w. Letx=x(0o)[g andN = N(o)[s]. Note thatx ¢ B, becauser does not become
active after stags (elseo € G, so we would be in Case 1). Assume, for a contradiction,
théa\ttpé (x) = 0. Takeg € w=® such thatg| > max{M,N}, gis an initial segment of,, and
¢e X) = O

53))/ Claim 2.8 ¢’ < o is active at stagsiff 0’ € G. Choosd € w such thatg;_; <
0 < 6i. In particular,N = N;. Sinceo is on the true path, we hawe C oj for all j > i.
This shows that¥] > i) |oj| > 2e+ 1. Now takem € w large enough thatm > |g|.
Then,y jcjim €(0j) < Skee3 ¢ =37¢/2. By the same argument as given in Claim3
p (dom®~ Dy, [f]) < 37¢/2. Thereforeu (dom® \ Dy g)[g]) < 378/2. We know
thaty(dom®) > g. This proves thap (D, g)[9]) > q—37°/2.

Lett > s be a stage at whiclr is accessible that is large enough so #h@t(x) | = 0.
There is nothing stopping from acting at stage which is the desired contradiction]

3. REVERSE MATHEMATICS I: AVOIDING CONE AVOIDANCE

Although the above c.e. construction (Secti)rdoes not seem to generalize to yield
a cone avoidance result, Kjos-Hanssen showed that it doeséheeverse mathematical
consequence.

Theorem 3.1 (Kjos-Hanssen) There is anw-model ofRCAg + G5-REG that does not
contain0’. Hence G-REG does not imphACAq overRCA,.

Proof. We construct an ideal of Turing degrees that (asuamodel) satisfies55-REG
but does not contaif¥. The ideal is the downward closure of an increasing sequence
a1 <hy<ay<hy<.... Weleta; = 0and leth; be the c.e. degree given by Theorér
The degred is high. In the structur&[h1,h’] we can find some, that is low(h;) and
that joins0’ to h] = 0” (Posner and Robinsorif]). Now in the structureZ(ay,&,] =
9|ap,0"], a relativized version of Theorefin?2 yields a degreé, < 0’ that is uniformly
almost everywhere dominating ovay. We cannot havé, > 0’ becauseh, > a, and
hz <0

We now repeat. Again, using a relativized version tf][ we get anag € Z[h,,0"
that is low(h,) and joins0” to 0”; and arhz € Z[a3,0") that is uniformly a.e. dominating
overaz. As beforehs is not aboved”’. But ashs > a, and0' v a, = 0" we cannot have
hz > 0. The process now repeats itself to get the rest of the sequenc O
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4. A PROOF OF THEOREM 1.2 VIA A FORCING CONSTRUCTION

In this section we introduce a forcing notion that producesiéormly a.e. dominating
function and that allows us to obtain cone avoidance and more

4.1. The notion of forcing. We approximate a functiof®. A conditionis a pair(f, &)
wheref € w<® ande¢ is a positive rational. The idea is that= (f, ¢) states thaf is an
initial segment off © and furthemp makes are-promise the collection oZ € dom® such
that f© fails to majorize®(Z) from | f| onwards has size €. Thus, an extensiog O f
respects the-promiseif

H (dom® . Dy g [g]) < €.

However, this is not a good definition of a partial orderingtbe conditions; we can
haveg keep thes-promise of(f, ) andh keep thed-promise of(g, &) but fail to respect
the e-promise of(f, ). Thus, the relation would not be transitive. A simple modifion
ensures that evetythat keeps thé-promise of(g, d) also keeps the-promise of(f, €).
We say that a conditiofg, ) extendsanother conditiordf, ) if f C g, d < € and further,
if f#£g,then

H (dom(D N DHfMgD[g]) +o<e.
Lemma 4.1. The extension relation is transitive.

Proof. Suppose thatg, ) extends(f,&) and is extended byh, y); we show thath, y)
extends f, €). If either f = gorg= h, then this is easy. Otherwise, the point is that

Dyt jhyy (0] = Dyt.1g)) (9] N Dyigy ) (D]
and so
H (dom® Dy [M]) < ¢ (dom® . Dy g1 [g]) + K (dOomP . Dyg iy [N]) <
(e=0)+(0—y)=¢e—y,
as required. O

Notation. We letP be the collection of all conditions. For a conditipn= (f, &) we write
fP = f andeP = €. We also lenP = | fP].

Lemma 4.2. For all n < w, the set{p € P : n° > n} is dense irP.
Proof. Letp € P. Letn > nP. For large enough,
U(Dp~ Dp[s]) < €P°.

Now takeg € w" extendingf such thaDn[s] C Dy ) [g] (for example, by defining(m) =
sfor m> nP). As dom®d C D, we get thajs (domad Dirp ) [g]) < &P. We can then pick
some smalb so that(g, d) extend9. O

If G C IPis generic, then we let

fe={J fP.

peG
The following is a corollary of Lemmé&.2

Corollary 4.3. If G is sufficiently generic, then®fe w®.

We now show that the-promises are kept.
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Lemma 4.4. Letp € P, and suppose that € G and that G is generic. Then
p (dom® . Dyp ) [€]) < €P.
Proof. The sequenceDmp m [fG]>m>np decreases witmand
Direwy [f%] = () Diem [F€]-
m>nP

So it is enough to prove that (dom® . Dy m) [f€]) < &P, for all m> nP. For anym,
there is aq € G extendingp such than9 > m. By the definition of our partial ordering,
p (dom® ~ Dyp oy [f9]) < €P.
BUt Djrp na) [f9] € Dy m) [f€] because® c £, which completes the proof. O
The following is immediate.
Lemma4.5. Forall € > 0, the sef{p e P : eP < g} is dense irP. O
As a corollary,
Corollary 4.6. If G C P is generic, then ¢ is uniformly almost everywhere dominating.

4.2. Cone avoidance, etcWe show that ifG is generic, then indeet® has no special
properties beyond domination. The following is the cru¢ghnical lemma. Consider
the proof that ifg is Cohen generic oveA and A is not computable, theg does not
computeA. If some conditiorr € 2<¢ forces thapd = A (and in particular is total), then
A= Ugs-r ¢J is computable because the collection of extensiorsisfcomputable. We
would like to do the same, but our partial ordering is not cataple. This difficulty is
overcome as follows: givep € P, we can make a promisg much tighter thare? and
find a rationalg sufficiently close to dor® such that every sufficiently long strirggo P
respecting the*-promise satisfiest(Dyp |g)[g]) > g and every string satisfying the latter
(computable) condition respects tb&promise. We can now imitate the diagonalization

argument (and more): f forces thatq)éG = A, then we computé by examininggg for
stringsg satisfying the middle condition above. We argue that thistngive us all ofA,

for otherwise we could extendgto keep thee*-promise and avoi«ﬁr(._fG =A
Lemma 4.7. Letp € P. Then thereis a c.e. set

Sc{f%:q<p}
and ap* < p such that{q < p* : f9 € S} is dense below*.

Proof. Find somen > nP such thatu (Dn~ dom®) < €P/2; also find a rationaf] <
p(dom®d) such thafu(dom®d) —q < €P/2. Let
S={gew®:g> fP,|g > n, andu(Dyp g)ld]) > q}
It is clear thatSis c.e. Letg € S; we show that for somg < p we havef9 =g. We
havep (Dyp g [0]) > p(dom®) —eP /2 andu(Dg) < p(dom®) + P /2; together we get
H (Dig| ~ Dy g [9]) < €P. Of course, dond C Dig and sou (dom® \. Dyp g [9]) < €P.

Next, letp* = (fP,d) whered < €P (sop* < p) andd < p(domd) — g. Suppose that
g < p*andnd > n. Then from

H (doqu AN D[np,nq) [fq]) <0
we can conclude that(Dypp o) [9]) > g, sof9 € S O
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Lemma 4.8. If G C P is generic over A, then %1 A.

Proof. LetW: w® — 2% be a Turing functional. We show that the union of
Eo={peP:¥(f°) LA} and
Er={peP: (I)(Va<p) $(fIx) 1}

is dense irP. Of course ifGN (EgUE;) # 0, thenW(fC) #£ A,

Let p € P, and takeS and p* given by Lemma4.7. If there areg,dg’ € S such that
W(g) L W(d), then one of them is incompatible with sop has an extension ikg. If
UgesW(0) is total, then itis computable, hence different frémAgain, p has an extension
in Eo.

Otherwise, for some& € w, we have¥(g,x) 1 for all g € S. This implies thap* € E;:
for all g < p*, f% has an extension i, and saW(f9,x) 1. O

Lemma 4.9. If G c P is generic, then ¢ does not have PA-degree.

Proof. Let y: w — 2 be a partial computable function that has no total competien-
sion. We show that® does not compute a total extensionyaf
Let®: w® — 2% be a Turing functional. We show that the union of

Eo={peP: (Ixedomy)O(fP x)|# Y(x)} and
Er={peP: (3)(va<p)O(f%x) 1}

is dense irP. Of course ifGN (EgUE;) # 0, then®(f®) is not a total extension ag.

Let p € P; takeSandp* given by Lemmat.7. If there is ag € Ssuch tha©®(g) L ¢,
thenp has an extension . If for somex, ©(g,x) 1 for all g € S, thenp* € E;.

One of the above must be the case; otherwise, we could corapatepletion ofy as
follows: for eachx, search for & € Ssuch that®(g,x) | . For the first sucly found, let
h(x) = ©(g,x). Thenhis computable, and must extegd O

In fact, the same proof gives us somewhat more:
Lemma 4.10. If G C PP is generic, then # does not have DNR-degree.

Proof. Let (@e) ., b€ an enumeration of all partial computable functions froto w.
LetW: w® — w® be a Turing functional. We show that the union of

Eo={peP: (Je) W(fPe)|=¢e(e)|} and
Er={peP: (@) (Va<p) W(f9x) 1}

is dense irP. Of course ifGN (EgUE;) # 0, thenW(fC) is not DNR.

Letp € P, and takeS andp* given by Lemmat.7. If there is ag € Sande € w such
thatW(g,e) | = ¢e(e) |, thenp has an extension iByp. If there is anx such that¥(g, x) 1
forall g € S, thenp* € E;.

Otherwise, define a total functidn w — w as follows: for eaclx, search forag € S
such thatV(g,x) | . Leth(x) = W(g,x) for the first suctg discovered. Thehis computable
and DNR, which is impossible. O

4.3. Relativization. LetB C w. All the results of this section relativize to working above
B. Namely, we can define a notion of forciiitg; all is exactly as above, except that instead
of Dy and dontb we use{Z : ®(B® Z,n) | } and{Z : #(Bd Z) is total}. With exactly the
same proofs, we see that a generic yields a fundtiothat is uniformly almost everywhere
dominating oveB. Lemma4.7 now becomes the following:
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Lemma 4.11. Letp € Pg. Then there is a set S, c.e. in B, such that §f% : q < p} and
somep* < p such that{q < p* : f9 € S} is dense beloyw*.

These are the analogous corollaries:

Lemma 4.12. Suppose that &t B and that GC Pg is generic over A. Then® fC %1 A.

Lemma 4.13. Suppose that B does not have PA-degree and thatXa is generic over B.
Then B f€ does not have PA-degree.

Lemma 4.14. Suppose that B is not DNR, and thatGPg is generic. Then B; f€ is not
DNR.

5. REVERSE MATHEMATICS II

The above forcing argument directly yields the results eoming the proof-theoretic
strength 0iGs-REG.

Recall from Simpson14] thatM C 2% is anw-model ofRCAy iff it forms an ideal in
the Turing degrees, and it is awmodel of WKLy iff it is a Scott systemi.e., a Turing
ideal such that for alA € M, there is aB € M of PA-degree relative té. Similarly, Yu
and Simpson17] proved that a Turing ided¥ C 2% is anw-model of WWKLy iff for all
A€ M, there is 8B € M that is sufficiently random oveX (it is enough thaB is 1-random
relative toA by a result of Kucerad]).

Proof of Theoreni.4. An ideal of Turing degrees that mode®s-REG but does not in-
clude any DNR degrees is easily built using Lemfni4 O

Proof of Theoren..6. For the first part, we can inductively constructearmodel of WKLy +
G;-REG that avoid€Y by alternatively appealing to Lemmal2and to the fact that a sim-
ilar cone avoidance lemma holds for obtaining paths thrdvegs, hence for PA-degrees
(Jockusch and Soaré&,[Theorem 2.5]).

For the second part, a similar construction yieldssamodel of WWKLg + G5-REG
that does not satisfWKL, this time using Lemmad.13and the following claim, which
essentially appears in Yu and Simpsa][

Claim 5.1. Suppose that B does not have PA-degree. If A is sufficienitjora over B,
then A® B does not have PA-degree.

Proof. This is from [L7, Page 172]. LeE andF be disjoint c.e. sets that cannot be sepa-
rated by any set computable® By relativizing a result from Jockusch and Sodik the
measure of

S={Z: BY<TZ®&B)ECYAFNY =0}
is zero. This is the collection of sefssuch thaZ & B computes a separator BfandF.

If Ais sufficiently random oveB, thenA ¢ S, meaning that it satisfies the claim. (In fact,
sinceSis azg(B)—class, it suffices foA to be (weakly) 2-random relative ®[10].) O
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