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1 Computable Analysis

1.1. Motivations

One of the important contributions of recursion theory to mathematics is the

concept of computability. In the classical mathematics the computability is not

considered. Therefore there is a big gap between the mathematics and computer

science.

• Theoretical motivation: Computable analysis studies the computability of

the reals and real valued functions, etc.

Computable analysis (recursive analysis) wants to find which computations

in analysis are possible and which is not.

• Practical motivation: To provide a sound algorithmic foundation for

numerical computations.

It is a well-known problem that there are some problems in the numerical

computations applying floating-point arithmetic.
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• Example: Consider the following system of linear equations [Sch03]:{
40157959.0 · x+ 67108865.0 · y = 1

67108864.5 · x+ 112147127.0 · y = 0.

Applying the well-known formula

x =

∣∣∣∣∣ b1 a12

b2 a22

∣∣∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
=

b1a22 − b2a12

a11a22 − a21a12
, y =

∣∣∣∣∣ a11 b1

a21 b2

∣∣∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
=

b1a22 − b2a12

a11a22 − a21a12
,

the solution computed by the floating point arithmetic withdouble precision

(IEEE standard 754,53bit mantissa) is

x̃ = 112147127, ỹ = −67108864.5
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However, the correct solution is namely

x = 224294254, y = −134217729.

• The reason for this error is that the computed value fora11a22−a21a12 is 1.0

whereas the correct value is0.5.

• Increasing the size of the mantissa does not help substantially, because other

systems of linear equations remain unsolvable.

• Exact Computation: To solve such problem, a new research field ”exact

computation” has been established. a key idea is to represent the real num-

bers exactly [Yap96, Yan04].

• Computable analysis is a theoretical foundation of Exact Computation.
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1.2. History and different kinds of approaches:

Computable analysis is a new emerging subject of research. There are several

different approaches in the area.

Unlike the classical computability theory, there has not been a generally ac-

cepted definition of computability of the reals and the real functions.

• A. Turing: In [Tur36]§he gave a concise definition of computable real

numbers. In [Tur37]§he also noticed that the binary and ternary repre-

sentations of the reals are not applicable to define a reasonable definition of

computable real functions.

• Banach and S. Mazur: In [Maz63], they defined the so-called sequential

computability of real functions.

• A. Grzegorczyk [Grz55] and D. Lacombe [Lac55a] advised to “name” a real

number by a quickly converging sequence of rational numbers, and defined

that: a real functionf is computable iff there is some machine(digital com-

puter, Turing machine) which computes the name off(x) with each name

of x.
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• Based on the work of A. Grzegorczyk and D. Lacombe§M. Pour-El and

J. Richards studied a variety of problems in classical analysis and math-

ematical phyiscs. E.g., they have studied computability of Hilbert space,

Lp-spaces and more generally, arbitrary Banach spaces [PER89, PE99].

• Based on the work of A. Grzegorczyk and D. Lacombe§K. Weirauch and

C. Kreitz innovated and developed the Type-2 Theory of Effectivity, TTE for

short, which is characteristic of its representation theory and Type-2 Turing

machines [KW85, Wei00].

• Ko, Ker-I applied NP-completeness theory to study the computational com-

plexity of some basic numerical computations such as maximum and inte-

gration [Ko91, Ko98].
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• BCSS and their real-RAM [BCSS96, BCSS98].

• Domain theory: A. Edlat and other peoples [Eda95a, Eda96, Eda97].

• The Markov constructive mathematics and Markov algorithms [Kus84,

Kus99].

• Subjects related closely: Brouwer‘s intuitionist analysis [Bro75, Bro75a];

Bishop-Bridge‘s constructive analysis [BB85].

• A lot work to do: (1) many basic problems unsolved; (2) many algorithms

in numerical analysis should be reconsidered in the more sound sense of

computable analysis.
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2 Type-2 theory of effectivity

2.1. Characteristics

• It uses naming systems of computational objects to define computability

about the computational objects. Different naming systems induce accord-

ingly different types of computability.

• It applies generalized Turing machines, called Type-2 Turing machines, as

its computation models.

• It is a natural extension of the classical recursion theory.

• Therefore, it is sound and realistic.



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 10�� 53

� £

�¶w«

' 4

ò Ñ

2.2. Naming systems

• Definition TTE uses finite as well as infinite strings to name the real num-

bers, real valued functions, and so on. Therefore there are two kinds of

naming systems. LetΣ be a set of symbols including{0, 1, /,−}. Let Σ∗

resp.Σω be the set of all finite resp. infinite strings onΣ.

1. A notationof a non-empty setX is a surjective mappingν : ⊆Σ∗ → X.

2. A representationof a non-empty setX is a surjective mappingδ : ⊆
Σω → X.

Let δ be a naming system ofX. If δ(p) = x, p is called aδ-nameof x.

• Examples of Notations

1. νN : ⊆Σ∗ → N is a notation ofN using the binary expansions to name

natural numbers, whereN is the set of natural numbers.

2. νZ : ⊆ Σ∗ → Z is a notation ofZ defined byνZ(w) = νN(w) and

νZ(−w) = −νN(w), whereZ is the set of integers.

3. νQ : ⊆Σ∗ → Q is a notation ofQ defined byνQ(u/v) = νZ(u)/νZ(v),

whereQ is the set of rational numbers.
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• Examples of Representations

1. ρ : ⊆Σω → R is a representation ofR (the set of real numbers) using a

converging sequence of open intervals with rational ends to represent a

real.

2. ρ< : ⊆Σω → R is a representation ofR := R ∪ {±∞} using a converg-

ing from below sequence of rational numbers or “−∞” to represent an

extended real.

3. ρ> : ⊆Σω → R is a representation ofR using a converging from above

sequence of rational numbers or “+∞” to represent an extended real.
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2.3. Type-2 Turing machines

• TT-machine: (1) several one-way read-only input tape; (2) several two-way

working tapes; (3) a one-way write-only output tape, which means that the

output can not be revised. TT-machine can transform finite strings as well

as infinite strings.

• Finiteness property: Each prefix of the output string is determined by a

prefix of the input string.

This implies that a string function is computable only if it is continuous with

respect to the discrete topology ofΣ∗ and the Cantor topology ofΣω.
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Figure 1: A Type-2 Turing machine computingy0 = fM (y1, . . . , yk)



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 14�� 53

� £

�¶w«

' 4

ò Ñ

2.4. Computability on Σ∗ and Σω

• Computable string: (1)Every wordω ∈ Σ∗ is computable (2)A sequece

p ∈ Σω is computable if the constant functionf : () → Σω, f() = p is

computable.

• A subsetA ⊆ Σ∗ is called recursive or decidable if its characteristic function

is computable.

• A subsetA ⊆ Σ∗ is called r.e. if it is the domain of a computable function

f : Σ∗ → Σ∗.

• Computable string function:f : ⊆ X → Y , whereX, Y is Σ∗ or Σω is

computable if is is computed by a type-2 machineM .
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2.5. Computability via naming systems

LetX, Y be non-empty sets with naming systemsδ, γ respectively.

• An elementx ∈ X is said to beδ-computableif there is a computableδ-

name ofx.

• A setA ⊆ X is calledδ-r.e. if δ−1(A) is r.e.

• A function f : ⊆X → Y is said to be(δ, γ)-computableif there is a com-

putable string functiong s.t.f ◦ δ = γ ◦ g|dom(f◦δ).
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3 Computable measure theory

3.1. Motivations

• Computable measure theory studies computability of functions related to

measures. E.g.: (1) Is the measure of a measure space computable? (2)

Are the union, intersection, etc., of measurable sets computable? (3) Does a

classical theorem still holds in computable sense?

• It is intended to provide a sound theoretical foundation for the computations

related to measures in computer science.
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3.2. Contributions

• Šanin [San68] introduces computable measurable sets of real numbers as

limits of fast converging sequences of simple sets w.r.t. the pseudo-metric

d(A,B) := µ(A∆B).

• Ko [Ko91] applies this idea to define polynomial time approximable sets

and functions and studies their behavior under some operations.

• Edalat [Eda95a] applies Domain Theory to investigate dynamical systems,

measures and fractals.

• Computability on probability measures and on random variables has been

studied in the framework of TTE by M̈uller and Weihrauch [Mue99,

Wei99a].
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3.3. Our work

We studied several basic problems related to an infinite measure space(Ω,A, µ):

• How to represent the measurable sets?

• How about computability of the measure and the set operations on the mea-

surable sets?

• Show a computable version of the classical Daniell-Stone theorem.

• Besides, we have studied how to represent the measurable functions and

computability of the arithmetic operations on the measurable functions.
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4 The definition of computable mea-

sure space

4.1. Basic concepts in the classical measure theory

Let Ω be a non-empty set.

• A ring in Ω is a setR of subsets ofΩ such that

1. ∅ ∈ R,

2. A ∪B ∈ R andA−B ∈ R if A,B ∈ R.

• A σ-algebrain Ω is a setA of subsets ofΩ such that

1. Ω ∈ A,

2. Ac = Ω− A ∈ A if A ∈ A,

3.
⋃∞

i=1Ai ∈ A if A1, A2, . . . ∈ A.
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• For any systemE of subsets ofΩ let σ(E) be the smallestσ-algebra inΩ

containingE .

• LetA be aσ-algebra inΩ. A measureonA is a functionµ : A → R such

that

1. µ(∅) = 0, µ(A) ≥ 0 for A ∈ A, and

2. µ(
⋃∞

i=1An) =
∑∞

i=1 µ(An) if A1, A2, . . . ∈ A are pairwise disjoint.

A measureµ is calledfinite resp.infinite if µ(Ω) <∞ resp.µ(Ω) = ∞.

• (Ω,A, µ) is called ameasure spaceif A is a σ-algebra inΩ andµ is a

measure onA. (Ω,A, µ) is said to befinite resp. infinite if µ is finite resp.

infinite.
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4.2. Computable measure space

In order to introduce computability to measure theory, we use the concept of

computable measure space to replace the more abstract classical one.

Definition 4.1 A computable measure space(abbr. CMS) is a quintuple

(Ω,A, µ,R, α) such that

1. (Ω,A, µ) is a measure space withA = σ(R),

2.R is a countable ring of finitely measurable sets withΩ =
⋃
R,

3. α : ⊆Σ∗ → R is a notation ofR with recursive domain,

4. µ is (α, ρ)-computable and the union and the set difference are(α, α, α)-

computable.

A computable measure space is essentially the classical concept(Ω,A, µ) ex-

tended by the effective part(R, α), which provides fundamental and necessary

conditions of computability.
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4.3. Properties

These lemmas apply to show that in the computable measure space

(Ω,A, µ,R, α) the classA of the measurable sets can be approximate effec-

tively by the countable subcalssR.

Lemma 4.1A = m(R), wherem(R) is the minimal class closed under the

limits of the monotone sequence inR.

Lemma 4.2There is a(νN, α)-computable partition(Dn) of Ω.
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5 Undecidability of the measurable

sets

5.1. Undecidability of the a.e. equality and a.e. inclusion

Let (Ω,A, µ,R, α) be a CMS withµ(Ω) = ∞. Let δ be a representation ofA.

Theorem 5.1{(A,B) ∈ A × A : A = B a.e.} is not r.e. with respect to any

representation ofA.

Theorem 5.2{(A,B) ∈ A × A : A ⊂ B a.e.} is not r.e. with respect to any

representation ofA.
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5.2. Contradiction on computability of the measure and the set op-

erations

Theorem 5.3 1. If µ is (δ, ρ>)-computable onA0, then the intersection∩ is

not computable with respect toδ on{(A,B) : A,B ∈ A∞∞, A ∩B ∈ A0}.

2. If µ is (δ, ρ>)-computable onA∞, then the intersection∩ is not computable

with respect toδ on{(A,B) : A,B ∈ A∞∞, A ∩B ∈ A∞}.

Theorem 5.4 1. If µ is (δ, ρ>)-computable onA0, then the difference “−” is

not computable with respect toδ on{(A,B) : A,B ∈ A∞∞, A−B ∈ A0}.

2. If µ is (δ, ρ>)-computable onA∞, then the difference “−” is not computable

with respect toδ on{(A,B) : A,B ∈ A∞∞, A−B ∈ A∞}.
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6 Representations and computability

of the measurable sets

6.1. Problems

1. How to represent the measurable sets from a CMS with an infinite measure?

The difficulty is how to use a sequence of finitely measurable sets to approx-

imate a general measurable set.

2. What is the computability of the measure and the set operations induced by

the representations obtained?



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 26�� 53

� £

�¶w«

' 4

ò Ñ

We will introduce three different representations ofA: δT1
, δT2

andδM.

• δT1
and δT2

are defined via computable topological spaces derived from

(Ω,A, µ,R, α).

• δM is defined via a computableL∗-space derived from(Ω,A, µ,R, α).

• To define a representation instead of amulti-representation, we identify ev-

ery pair of measurable setsA,B such thatµ(A M B) = 0.



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 27�� 53

� £

�¶w«

' 4

ò Ñ

6.2. Computable topological spaces

For introducing computability to a set of continuous-typed objects, some con-

crete information about the topology should be known.

Definition 6.1 (Weihrauch)

1. An effective topological spaceis a tripleS = (M,σ, ν) whereM is a non-

empty set,σ is a countable collection of subsets ofM such that

x = y if {A ∈ σ : x ∈ A} = {A ∈ σ : y ∈ A}

andν : ⊆Σ∗ → σ is a notation ofσ.

2. A computable topological spaceis an effective topological space for which

the equivalence problem

{(u, v) : u, v ∈ dom(ν) andν(u) = ν(v)} is r.e..
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Notations:

1. letw = a1a2...an, then〈w〉 := 110a10a20 · · · 0an011.

2. w C p means thatw is a substring of the sequencep.

Definition 6.2 Let S := (M,σ, ν) be an effective topological space. Define the

standard representationδS : ⊆Σω → M of S by δS(p) := x for all x ∈ M and

p ∈ Σω such that{A ∈ σ : x ∈ A} = {ν(w) : 〈w〉C p} and{w : 〈w〉C p} ⊆
dom(ν).
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6.3. The first representation δT1

Let σ1 := {↑(E, r), ↓(E, r) : E ∈ R, r ∈ Q+} where ↑(E, r) := {A ∈ A : µ(E − A) < r}

↓(E, r) := {A ∈ A : µ(A− E) < r}.

νσ1
: ⊆Σ∗ → σ1 is defined by νσ1

(0〈u〉〈v〉) := ↑(α(u), νQ(v))

νσ1
(1〈u〉〈v〉) := ↓(α(u), νQ(v)).

We have

Proposition 6.1 (A, σ1, νσ1
) is a computable topological space.

Let T1 := (A, σ1, νσ1
), δT1

the standard representation ofT1.
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Theorem 6.11. µ is (δT1
, ρ)-computable onA0 and (δT1

, ρ<)-computable on

A∞.

2. ∪ is computable w.r.t.δT1
.

3. ∩ is computable w.r.t.δT1
on{(A,B) : A,B ∈ A0, or A∩B ∈ A∞} but not

on the complement.

4. (·)c is computable w.r.t.δT1
onA0 but not onA∞.

5. “−” is computable w.r.t.δT1
onA×A0 but not on the complement.
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6.4. The second representationδT2

Use the computable partition sequence(Dn) of Ω.

LetCn := ∪i≤nDi for all n ∈ N.

Let σ2 := {E(i) : E ∈ R, i ∈ N} where

E(i) := {A ∈ A : µ((A M E) ∩ Ci)) < 2−i}.

Defineνσ2
: ⊆Σ∗ → σ2 by

νσ2
(〈u〉〈v〉) := E(i),

whereα(u) = E andνN(v) = i.

Proposition 6.2 (A, σ2, νσ2
) is a computable topological space.

Let T2 := (A, σ2, νσ2
) and denote byδT3

the standard representation ofT2.

Theorem 6.21. ∪, ∩, (·)c and “−” are computable w.r.t.δT2
.

2. µ is (δT2
, ρ<)-computable onA but not(δT2

, ρ>)-computable onA0.
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6.5. ComputableL∗-space

Definition 6.3 A limit space (L∗-space) is a pair(X,→) whereX is a set and

“→” is a limit relation.

Definition 6.4 A computableL∗-space is a quadruplet(X,→, D, ν) such that

(X,→) is aL∗-space,D is a countable dense subset ofX andν is a notation of

D.

Definition 6.5 LetX := (X,→, D, ν) be a computableL∗-space. A functionδ

is said to be astandard representationof X , if δ is an admissible representation

of the limit space(X,→), and for eachp ∈ dom(δ), p = 〈u1, u2, · · ·〉 such that

ui ∈ dom(ν) andν(ui) → δ(p).
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6.6. The third representation δM

To construct a computableL∗-space ofA, we need to define an appropriate

limit relation onA.

An admissible limit relation should embody the topology induced by the

pseudo-metricd onA0.

Definition 6.6 The limit relation→µ:⊆ A∞ → A is defined by thatAn →µ A

if A ∈ A0 and µ(An∆A) ≤ 2−n (n ∈ N), or if A ∈ A∞, µ(An − A) ≤
2−n and µ(A ∩ Cn − An) ≤ 2−n (n ∈ N).



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 34�� 53

� £

�¶w«

' 4

ò Ñ

Proposition 6.3Let (An) be a sequence such thatAn →µ A.

1. If A ∈ A0 thenlimn µ(An∆A) = 0, whereA0 := {A ∈ A : µ(A) <∞}.

2. If A ∈ A∞ then limn µ((An∆A) ∩ Ck) = 0 for all k ∈ N, whereA∞ :=

{A ∈ A : µ(A) = ∞}.

This proposition shows that our choice of the convergence is reasonable.
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Proposition 6.4R is dense in(A,→µ).

Theorem 6.3(A,→µ,R, α) is a computableL∗-space.

We denote byδM the standard representation of(A,→µ,R, α) (Definition6.5).

Theorem 6.4 1. µ is (δM, ρ)-computable.

2. ∪ is (δM, δM, δM)-computable w.r.t.δM.

3. ∩ is (δM, δM, δM)-computable on{(A,B) : A or B ∈ A0, or A ∩B ∈ A∞}.

4.− is (δM, δM, δM)-computable on{(A,B) : A or B ∈ A0, or A−B ∈ A∞}.

5. (·)c is (δM, δM)-computable onA0 ∪ A∞∞.
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6.7. Remarks on the three representations

• By Theorem6.1and Theorem6.4, the computability of the measure and the

set operations induced byδM is more strong than that induced byδT1
.

• It can be shown directly thatδM < δT2
, namelyδM is more strong thanδT2

.

However by Theorem6.2 and Theorem6.4, the computability of the mea-

sure and the set operations induced by these two different representations

have different superiorities.
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7 Computable Daniell-Stone theorem

7.1. Motivation

• There are two ways to introduce measure and integration: first measure and

then integration or vice versa.

• As a fundamental result, these two ways are essentially equivalent (Daniell-

Stone theorem [Bau01], also of this type is Riesz representation theorem).

• For a constructive version, see [BB85].

• We show it in the computable sense that we show that computable premises

lead to computable consequences.
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7.2. The classical theorem

Let σ(F) := {{f > a} : f ∈ F , f ≥ 0, a ∈ R} be the smallestσ-algebra inΩ

such that every functionf ∈ F is measurable.

Theorem 7.1 (Daniell-Stone Theorem)Let F be a Stone vector lattice with

abstract integralI. Then there is a measureµ on σ(F) such thatf is µ-

integrable andI(f) =
∫
f dµ for all f ∈ F . Furthermore, if there is a sequence

(fi)i in F such that(∀x ∈ Ω)(∃i)[fi(x) > 0], then the measureµ is uniquely

defined.
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The theorem is shown in the following two steps:

1. Define the measure:

µ(A) := sup
n
I(fn) if A ∈ σ(F) andfn ↗ 1A,

where the1A is the characteristic function ofA andfn ↗ 1A means that the

sequence(fn) converges to1A.

2. Show that, for eachf ∈ F , f ∈ L(µ) i.e. f is µ-integrable, andI(f) =∫
f dµ.
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7.3. How to construct a “computable measure” from the Stone vec-

tor lattice F?

• How to representF?

• How to represent the measure constructively?

• How to guarantee the computability of the measure?
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• A computable pseudometric space is a quadrupletM = (M,d,A, α) such

that (M,d) is a pseudometric space,A ⊆ M is dense andα : ⊆Σ∗ → A

is a notation ofA such thatdom(α) is recursive and the restriction of the

pseudometricd toA is (α, α, ρ)-computable.

• The factorization(M,d) of the pseudometric space(M,d) is a metric space

defined canonically as follows:x := {y ∈ M | d(x, y) = 0}, M := {x |
x ∈M}, d(x, y) := d(x, y)



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 42�� 53

� £

�¶w«

' 4

ò Ñ

7.4. Solution:

• RepresentF with abstract integralI by acomputable Stone vector lattice:

(Ω,F , I,D, γ)

D is a countable subset ofF which is dense under the metricdI defined by

dI(f, g) := I(|f − g|); γ is a notation ofD.

Practically, the computable stone vector lattice is represented byD and its

notationγ.

(F , dI ,D, γ) is a computable pseudo-metric space. LetF be the factorized

space ofF under the pseudo-metric. Denote its Cauchy representation by

δF .

• Represent the measure to be constructed by a computable measure space:

(Ω,A, µ,R, α).
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• ConstructR and define its notationα.

A natural choice:

R :=
{
{f > a} : f ∈ D+, a ∈ Q+}

.

However, the measureµ will not be computable on suchR. E.g.,

-

6

Ω

R

a −
a− 1

n
−

a+ 1
n−

f : Ω → R

since{f > a} = supn

{
f > a+ 1

n

}
, µ {f > a} is approximated from be-

low by the sequence(nI(f ∧ (a+ 1
n)− f ∧ a))n.

However,{f > a} 6= infn
{
f > a− 1

n

}
. We can not obtain a sequence ap-

proximateµ {f > a} from above.
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• To solve the problem, we show that there is a(γ, ρ)-computable correspon-

denceΦ : D+ ⇒ Rc such that for eachγ-name off ∈ D+, aρ-namep of a

computable reala ∈ Φ(f) is computed such thatµ({f > a}) is computable.

Then defineR := {{f > a} : f ∈ D+, a ∈ Φ(f)}.

• Consider the relation betweenF andL(µ).

Generally speaking, a functionf ∈ F is notµ-integrable. However, we find

a computable isometric between the two pseudo metric spaces(F , dI) and

(L(µ), dµ), where

dI(f, g) := I(|f − g|) and dµ(u, v) :=

∫
|u− v|dµ.

Therefore, in a sense,F can be represented byL(µ).
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• Denote byRSF the class of therational step functionsonR, where aratio-

nal step functiononR is is of the form:

f =
n∑

i=1

ai1Ai

whereai ∈ Q andAi ∈ R for 1 ≤ i ≤ n.

It is well-known thatRSF is dense inL(µ) under the pseudo-metricdµ.

• Let νRSF be a canonical notation ofνRSF defined withνQ andα.

Then(L(µ), dµ,RSF, νRSF) is a computable pseudo-metric space.

• Let δL(µ) denote the Cauchy representation of its factorized spaceL(µ).
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7.5. The computable Daniell-Stone theorem

Theorem 7.2 (Computable Daniell-Stone, WU and Weihrauch)Let

(Ω,F , I,D, γ) be a computable Stone vector lattice with abstract integral

such that(∀x ∈ Ω)(∃i)[fi(x) > 0]. Then there exists a unique computable

measure space(Ω,A, µ,R, α) such that

1. there exists a(γ, α)-computable correspondenceφ : D ⇒ R, and

2. there exists a(δF , δL(µ))-computable isometricψ : F → L(µ) such that

I(f) =

∫
gdµ (∀f ∈ F , g ∈ ψ([f ])),

whereδF resp. δL(µ) is the Cauchy representation of the computable metric

space(F , dI ,D, γ) resp.(L(µ),RSF, dµ, νRSF).
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Remarks:

• By item 1, there is a TT-machine such that, for eachf ∈ D represented by a

γ-name, a setA ∈ R represented by anα-name can be computed, and each

set inR can be obtained this way.

• By item 2, there is a TT-machine such that, for eachf ∈ F represented by

a δF -name, the machine computes aµ-integrable functiong represented by

a δL(µ)-name such that

I(f) =

∫
gdµ.
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Thank You !
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[Kus84] B.A. Kuš. Lectures on Constructive Mathematical Analysis, volume 60. American Mathematical Society, Provi-
dence, 1984.



Computable Measure . . .

Computable Analysis

Type-2 theory of effectivity

Our Studies on . . .

Computability of the . . .

Computable Daniell- . . .

�¯Ì�

I K �

JJ II

J I

1 51�� 53

� £

�¶w«

' 4

ò Ñ
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