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‘! Computable Analysis

1 . 1 . M Otlvatl O nS Computable Measure. ..

Computable Analysis

One of the important contributions of recursion theory to mathematics is the wee2theoyofefieciviy

Our Studies on...

concept of computability. In the classical mathematics the computability iS NOt  computaiityof the...
Computable Daniell- . . .

considered. Therefore there is a big gap between the mathematics and computer
science.

e Theoretical motivation: Computable analysis studies the computability of e
the reals and real valued functions, etc. 8 R
Computable analysis (recursive analysis) wants to find which computations |
in analysis are possible and which is not. R

e Practical motivation: To provide a sound algorithmic foundation for %I
numerical computations.

2RETF

It is a well-known problem that there are some problems in the numerical

computations applying floating-point arithmetic. EET
E |



e Example: Consider the following system of linear equatiofs [ 0]:

Computable Measure. ..
40157959.0 - x 4+ 67108865.0 -y =1 Computable Analysis
67108864.5 - z + 112147127.0 -y = 0. o s
Computability of the ...
Applying the well-known formula MBI oo
b1 ais a1 by EL
. b2 a22 N b1a22 NS bQCL12 A a21 b2 N blagg S b2a12 7 5 |
ail a1 11022 — A21412 ail Q19 a11a22 — Q21412 < '»
a1 a99 a21 22 P N
the solution computed by the floating point arithmetic witbuble precision gomss |
(IEEE standard 754,53bit mantissa) is B @
7 = 112147127, = —67108864.5 Era

J'Etﬂl



However, the correct solution is namely Computable Measure ...

Computable Analysis

T = 224294254,y = —134217729. Do e e
Computability of the ...
e The reason for this error is that the computed valuefedss — asas is 1.0 computabie Danielt.
whereas the correct value(sb.
e Increasing the size of the mantissa does not help substantially, because otherLI
systems of linear equations remain unsolvable. e
. | >
e Exact Computation: To solve such problem, a new research field "exact
< >
computation” has been established. a key idea is to represent the real num-
Eom#
bers exactly | , . =
B[
e Computable analysis is a theoretical foundation of Exact Computation. cnax |

Jéliﬂl
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1.2. History and different kinds of approaches:

Computable analysis is a new emerging subject of research. There are several

different approaches in the area. T,
Unlike the classical computability theory, there has not been a generally aC- . eoeretms
cepted definition of computability of the reals and the real functions. e

e A. Turing: In [ ], he gave a concise definition of computable real =™

numbers. In | ], he also noticed that the binary and ternary repre-
sentations of the reals are not applicable to define a reasonable definition of __#@EEx |

computable real functions. L E
e Banach and S. Mazur: InV[az6], they defined the so-called sequential [
computability of real functions. el
. e 5677 453
e A. Grzegorczyk { ]and D. Lacombell }advised to “name” a real ELls

number by a quickly converging sequence of rational numbers, and defined Ee
that: a real functiory is computable iff there is some machine(digital com- NELLLE
puter, Turing machine) which computes the nam¢ @f) with each name _xm |

of z. e # |



e Based on the work of A. Grzegorczyk and D. Lacomid. Pour-El and ConpuEi DI,

Computable Analysis

J. Richards studied a variety of problems in classical analysis and math- wee-2meoryof efeciiity
Our Studies on...

ematical phyiscs. E.g., they have studied computability of Hilbert space, |compuaiiyofme. .
LP-spaces and more generally, arbitrary Banach spades { ] computable Banielt:

e Based on the work of A. Grzegorczyk and D. Lacomb€. Weirauch and

C. Kreitz innovated and developed the Type-2 Theory of Effectivity, TTE for LR
short, which is characteristic of its representation theory and Type-2 Turing =22

machines | , 1. | » ]

e Ko, Ker-1 applied NP-completeness theory to study the computational com- S

plexity of some basic numerical computations such as maximum and inte- D]
gration | , ]. 9

2REF |
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Computable Measure. ..

e BCSS and thelr reaI_RAM E y ] Computable Analysis
Type-2 theory of effectivity
Our Studies on....

e Domain theory: A. Edlat and other peoplésip95; , . Computabilty ofthe...

Computable Daniell- . . .

e The Markov constructive mathematics and Markov algorithrmssp4,

I LEL
e Subjects related closely: Brouwer's intuitionist analysisc[/5, I; Faw |
Bishop-Bridge's constructive analysisf35]. W

e A lot work to do: (1) many basic problems unsolved; (2) many algorithms <« |
in numerical analysis should be reconsidered in the more sound sense of | &7 %e |

computable analysis. 5 B

2RETF |
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2 | Type-2 theory of effectivity come s

Computability of the ...

2 . 1 . C haraCte rIStI CS Computable Daniell-.. .

e It uses naming systems of computational objects to define computability
about the computational objects. Different naming systems induce accord- _ ##x |
ingly different types of computability. L

o It applies generalized Turing machines, called Type-2 Turing machines, as 1|
its computation models.

{:

. . . . 5977 53
e It is a natural extension of the classical recursion theory.
B[

e Therefore, itis sound and realistic.
2RET |
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2.2. Naming systems

e Definition TTE uses finite as well as infinite strings to name the real num-
bers, real valued functions, and so on. Therefore there are two kinds of

naming systems. Let be a set of symbols includinf), 1, /,—}. Let ¥*

resp.X* be the set of all finite resp. infinite strings a@n

1. A notationof a non-empty seX is a surjective mapping : C>* — X.

2. A representatiorof a non-empty sefX is a surjective mapping : C
¥ — X.

Let o be a naming system of. If §(p) = z, p is called a-nameof z.

e Examples of Notations

1. vy : C¥* — Nis a notation ofN using the binary expansions to name
natural numbers, whet® is the set of natural numbers.

2.vz : C ¥* — Z is a notation ofZ defined byvz(w) = vy(w) and
vz(—w) = —vn(w), whereZ is the set of integers.

3. vg : €¥* — Qs a notation ofQ defined byvg(u/v) = vz(u)/vz(v),
whereQ is the set of rational numbers.

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .

ﬁﬁiﬁl
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Computable Measure. ..

Computable Analysis

e Examples of Representations Type-2 theory of effectivity

Our Studies on...

1.p: CX¥ — Ris arepresentation @& (the set of real numbers) using a = frreeivente.

Computable Daniell- . . .

converging sequence of open intervals with rational ends to represent a

real.
N N W E E T |
2.p. : C¥¥ — Ris arepresentation & := R U {4+o0} using a converg- |
ing from below sequence of rational numbers erx” to represent an
44 »»
extended real.
= 0O - prm—— - - ‘ >
3.p- : €X¥¥ — R is arepresentation @& using a converging from above
. #1157 #53 |
sequence of rational numbers erso” to represent an extended real.
B[
2RETF |

Jél‘ﬂl
J‘Etﬂl



Computable Measure. ..

Computable Analysis

2.3. Type-2 Turing machines Type-2 theory of efectiviy

Our Studies on...

Computability of the ...

e TT-machine: (1) several one-way read-only input tape; (2) several two-way
working tapes; (3) a one-way write-only output tape, which means that the
output can not be revised. TT-machine can transform finite strings as well' |
as infinite strings. s |

e Finiteness property. Each prefix of the output string is determined by a L » ]
prefix of the input string. ]
This implies that a string function is computable only if it is continuous with womas |
respect to the discrete topologyXf and the Cantor topology ai«.

Computable Daniell- . . .

& E
2RETF |

x H |

B i |



L
/ 8 : input taped., ..., k
17, I A A R

@ T : work tapest + 1,..., N
\ ) A A A

[ [T T T T TTTTTT 1~ outputtape (one-way)

Figure 1: A Type-2 Turing machine computing = fas(y1, - - -, Yx)




Computable Measure. ..

2.4. Computability on X* and >¢ Computable Analysis

Type-2 theory of effectivity

e Computable string: (1)Every word € X* is computable (2)A sequece — ousudeson

Computability of the ...

p € X“ is computable if the constant functigh: () — X%, f() = pis Computabe Dariel-...
computable.
o Asubsetd C T* is called recursive or decidable if its characteristic function = 8% ]
IS computable. L
e A subsetA C >* is called r.e. if it is the domain of a computable function SRR
f Y- ]
$14 7T #53
e Computable string functionf : C X — Y, whereX,Y is ¥* or ¥ is EimE]
o T B[
computable if is is computed by a type-2 machivie

x i |
B H |



Computable Measure. ..

Computable Analysis

Type-2 theory of effectivity
2.5. Computability via naming systems Our Studies on...

Computability of the ...

Computable Daniell- . . .

Let X, Y be non-empty sets with naming systems respectively.

e An elementr € X is said to bej)-computablaf there is a computablé-
name ofz.

e E T |

e AsetA C X is calleds-re.if 5-1(A)isr.e. o

e A function f : C X — Y is said to bgd, v)-computablef there is a com- RN

putable string functiog s.t. f o 6 = v © g|dom(fos)- s s |
& E
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Computable Measure. ..

Computable Analysis

= Computable measure theory ety

Computability of the ...

Computable Daniell- . . .

3.1. Motivations

e Computable measure theory studies computability of functions related to | wazx |
measures. E.g.: (1) Is the measure of a measure space computable? (2) s &= |
Are the union, intersection, etc., of measurable sets computable? (3) Does a RIS
classical theorem still holds in computable sense? RS

e Itis intended to provide a sound theoretical foundation for the computations  |#&mss|
related to measures in computer science. &

E2REET |
B |



32 Contrlbutlons Computable Measure. ..

Computable Analysis

e Sanin | } introduces computable measurable sets of real numbers as ™" e @ eEaE

limits of fast converging sequences of simple sets w.r.t. the pseudo-metric Sompuabiityofthe. .
Computable Daniell- . . .
d(A, B) := u(AAB).

e Ko [ ] applies this idea to define polynomial time approximable sets paza |

and functions and studies their behavior under some operations. san |
e Edalat | }applies Domain Theory to investigate dynamical systems, “« | »
measures and fractals. A
e Computability on probability measures and on random variables has been | #&z#s |
studied in the framework of TTE by Mler and Weihrauch I ) B @
]' 2RETF |
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Computable Measure. ..

Computable Analysis

3 3 O u r WO rk Type-2 theory of effectivity

Our Studies on...

Computability of the ...

We studied several basic problems related to an infinite measure($padeu): Computable Daniel-..

e How to represent the measurable sets?

e How about computability of the measure and the set operations on the mea- — ##9£% |

surable sets? L

e Show a computable version of the classical Daniell-Stone theorem. ELEEE
4 4
_FumHo |

Fi1s 7T £53

e Besides, we have studied how to represent the measurable functions and

computability of the arithmetic operations on the measurable functions.
B[

éﬁﬂil
x i |
B H |



4 I The definition of computable mea-

sure space

4.1. Basic concepts in the classical measure theory
Let 2 be a non-empty set.
e Aring in 2 is a setR of subsets of2 such that
1.0 eR,
22 AUBeceRandA—-BecRIf A,BeR.
e A g-algebrain 2 is a setA of subsets of? such that
1.Q e A,
2.A=Q —Aec Aif Ae A,
3. U2 A € Aif Ay, Ag, ... € A




e For any systent of subsets of2 let o(£) be the smallest-algebra in(2 CompUEBIE Measure .

Computable Analysis
CO ntal n | n gg N Type-2 theory of effectivity
Our Studies on...

Computability of the ...

e Let A be ac-algebra inQ). A measureon A is a functiony : A — R such
that

Computable Daniell- . . .

1. (@) =0, u(A) > 0for A € A, and CLEL
2. 12, An) = 50 (A, if Ay, Ay, ... € Aare pairwise disjoint. Fan |
A measureu is calledfinite resp.infiniteif 1(€2) < oo resp.u(2) = co. N

o . . . . ‘ >

e (0, A, n) is called ameasure spacé A is ac-algebra inQ2 and u is a

measure od. (2, A, 1) is said to bdinite resp. infinite if 4 is finite resp. Eeii

infinite. =8
2REF |
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4.2. Computable measure space

In order to introduce computability to measure theory, we use the concept Of computase veasure ..

computable measure space to replace the more abstract classical one.
Definition 4.1 A computable measure spa¢abbr. CMS) is a quintuple
(Q, A, 1, R, a) such that

1. (2, A, u) is a measure space wWith = o(R),
2. R is a countable ring of finitely measurable sets with- | J R,
3. a: CY* — Ris anotation ofR with recursive domain,

4. 1 is (a, p)-computable and the union and the set difference(afey, «)-
computable.

A computable measure space is essentially the classical coffeegdt ;1) ex-
tended by the effective pafR, «), which provides fundamental and necessary
conditions of computability.

Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .

e E T |
wER |
<44 142

1
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Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity

Our Studies on...

4.3. Propertles Computability of the ...

Computable Daniell- . . .

These lemmas apply to show that in the computable measure space
(Q, A, 1, R, «) the classA of the measurable sets can be approximate effec-
tively by the countable subcal%.

Lemma 4.1 A = m(R), wherem(R) is the minimal class closed under the
limits of the monotone sequencein «l»|

e E T

wER |

Lemma 4.2 There is &y, «)-computable partitior{ D,,) of (2.

F2m#tss

1

& [
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5 I Undecidability of the measurable

sets

5.1. Undecidability of the a.e. equality and a.e. inclusion

Let (2, A, 4, R, ) be a CMS withu(€2) = co. Let§ be a representation of.
Theorem 5.1{(A,B) € A x A: A= B a.e.} is notre. with respect to any
representation ofd.

Theorem 5.2{(A,B) € A x A: A C B a.e.} is notre. with respect to any
representation o#4.




5.2. Contradiction on computability of the measure and the set op-
erations

Theorem 5.3 1.1If i is (6, p~)-computable ond,, then the intersectiom is
not computable with respecttoon {(A, B) : A, B € Aww, AN B € Agy}.

2. 1f nis (6, p~)-computable o4, then the intersection is not computable
with respectt@d on{(A,B) : A,B € Ay, ANB € Ay}

Theorem 5.4 1.If pis (9, p~)-computable on4,, then the difference " is
not computable with respecttoon {(A, B) : A, B € Ay, A — B € Ap}.

2. If pis (6, p=. )-computable o4, then the difference~" is not computable
with respectt@d on{(A,B) : A,B € Ay, A — B € AL}

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .

Wﬁiﬁl
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6 I Representations and computability

of the measurable sets

6.1. Problems

1. How to represent the measurable sets from a CMS with an infinite measure
The difficulty is how to use a sequence of finitely measurable sets to approx
imate a general measurable set.

2. What is the computability of the measure and the set operations induced b
the representations obtained?




Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity

Our Studies on...

We will introduce three different representations4ifér;, oz, andi 4.

Computability of the ...

Computable Daniell- . . .

e 07, and ¢z, are defined via computable topological spaces derived from
QA 1R, ).

%Wiﬁl
tr R |
L lm
RN
_wumas |

#2677 £53

e 0, Is defined via a computablé-space derived fron2, A, 4, R, ).

e To define a representation instead ohalti-representationwe identify ev-
ery pair of measurable sets B such thaju(A A B) = 0.

& [

éﬁﬂﬁl
x H |
B |



6.2. Computable topological spaces

N 3 RN ) A Computable Measure. ..
For introducing computability to a set of continuous-typed objects, some con-  compuaie naysis

Type-2 theory of effectivity

crete information about the topology should be known. our Studics o
Definition 6.1 (Weihrauch) e
1. An effective topological spaas a tripleS = (M, o, v) whereM is a non-
empty setg is a countable collection of subsets/af such that e
r=yif{Aco:xecA}={Aco:ye A} s
44 »»
andv : CY¥* — o Is a notation ob. T
2. A computable topological spacdg an effective topological space for which g2 A |
the equivalence problem & m
2RETF
{(u,v) : u,v € dom(v) andv(u) = v(v)}isr.e. Cemer ]

Jél‘ﬂl
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Notations:
1. letw = ajas...a,, then{w) := 110a;0a50 - - - 0a,,011.

2. w < p means thatv is a substring of the sequenge

Definition 6.2 Let S := (M, o, v) be an effective topological space. Define the
standard representatiof : C>“ — M of S by ds(p) := z forall x € M and
peX?suchthafA co: z € A} = {v(w) : (w) <p}and{w : (w) <p} C
dom(v).




6.3. The first representationdr,
Leto, :={1(E,r),[(E,r): E € R,r € Q"} where

NE,r)={A€A: u(E - A) <r}
{ WE,r):={A€ A: y(A—E) <r}.
Ve, | C5* — oy is defined by
Vo, (0(u) () := T(a(u), vo(v))
{ Vo, (L) {v)) := L((w), vg(v)).

We have
Proposition 6.1 (A, 01, v, ) is @ computable topological space.

LetT; := (A, o1, v, ), 07; the standard representationf.




Theorem 6.11. p is (d7;, p)-computable ond, and (ér, p_)-computable on
Ao

2. U is computable w.r.tdz.

3. Nis computable w.r.to; on{(A,B) : A, B € Ay, or AN B € A} but not
on the complement.

4. (-)¢is computable w.r.té7; on .4, but not onA..

5. “—"is computable w.r.to5; on.A x Ay but not on the complement.




6.4. The second representationy,

Use the computable partition sequeriég,) of €.
LetC,, := U;<, D, for alln € N.
Leto, := {FE(i) : E € R,i € N} where

Bia) = {Ac A: u((A A E)QCHE Sy
Definev,, : C3¥* — o9 by

Vo, ((u)(v)) = E(i),

wherea(u) = F andvy(v) = i.
Proposition 6.2 (A, 09, v,,) IS @ computable topological space.

Let T, := (A, 09, v5,) and denote by, the standard representationf.

Theorem 6.21. U, N, (-)¢ and “—" are computable w.r.t4,.
2. 1 is (07, p-)-computable o4 but not(dz, p~ )-computable orA,.

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .
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6.5. Computable L*-space

Definition 6.3 A limit space (C*-space) is a paifX, —) whereX is a set and
“—"1is a limit relation.

Definition 6.4 A computableC*-space is a quadruplet.X, —, D, v) such that
(X, —)isaL*-spaceD is a countable dense subsetdfandv is a notation of
D.

Definition 6.5 Let X := (X, —, D, v) be a computabl€*-space. A functiod

IS said to be atandard representatioof X, if 4 is an admissible representation
of the limit spacg X, —), and for eaclp € dom(9), p = (uq, us, - - -) such that
u; € dom(v) andv(u;) — d(p).

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .
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Computable Measure. ..
Computable Analysis

Type-2 theory of effectivity

6.6. The third representation J T ——

Computability of the ...

To construct a computablé*-space ofA4, we need to define an appropriate  compuaie danietr...
limit relation on A.
An admissible limit relation should embody the topology induced by the pazn |

pseudo-metrid on Ay. L
AR
]|
_Fnm#s |

F33T7 53

Definition 6.6 The limit relation—,:C A* — A is defined by thatl,, —, A
if A e A and pu(A,AA) < 27" (n € N),orif A € A, u(4, — A) <
27" and p(ANC, —A4,) <27 (n €N).

& [
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Proposition 6.3Let (4,) be a sequence such thaf, —,, A.
1.1f A € Ay thenlim,, u(A,AA) =0, whereAd, :={A e A: u(A) < oco}.

2.1f A € A, thenlim,, u((A,AA) N Cy) = 0forall £ € N, whereA,, :=
{Ae A: p(A) = o0}

This proposition shows that our choice of the convergence is reasonable.




Computable Measure. ..

Proposition 6.4 R is dense i A, — ). Computable Analysi

Type-2 theory of effectivity

Our Studies on...

Theorem 6.3(A, —,, R, a) is a computableC*-space. I ———

Computable Daniell- . . .

We denote by ., the standard representation(of, —,, R, a) (Definition 6.5).

Theorem 6.4 1. pis (o, p)-computable. W E T

BLLEEE
2. UIS (0u, O, O0q)-cOmputable W.r.td . L E
44 »»

IR
4. —is (0rg, 00, O0)-computable o (A, B) : Aor B e Ay, or A— B € Ay} o7 25 |

3. Nis (0, O, Oaq)-computable oj (A, B) : Aor B € Ay, or AN B € Ay}

5. (-)¢is (dnm, O )-computable oy U A oo &

E2REET |
B |



Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity

Our Studies on...

6.7. Remarks on the three representations Computabily of the ...

Computable Daniell- . . .

e By Theorem6.1and Theoren®.4, the computability of the measure and the
set operations induced By, is more strong than that induced by. pazm |

e It can be shown directly that,, < d7,, namelyd( is more strong thaby; . L
However by Theoren®.2 and Theoren®t.4, the computability of the mea- “« | »
sure and the set operations induced by these two different representations ¢

have different superiorities. g m#ss |
B [E
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YV Computable Daniell-Stone theorem as

Our Studies on...

7. 1 M0t|va’[|on Computability of the ...

Computable Daniell- . . .

e There are two ways to introduce measure and integration: first measure and
then integration or vice versa. EL

e As a fundamental result, these two ways are essentially equivalent (Daniell- ]
Stone theoremt{au07, also of this type is Riesz representation theorem). EXY
< >

%Wﬁ#%l

e \We show it in the computable sense that we show that computable premises .. = |
lead to computable consequences.

éﬁﬂil
x H |
B |

e For a constructive version, seefso].



7.2. The classical theorem

Leto(F) := {{f >a}: feF, f>0ac R} be the smallest-algebra in2
such that every functiori € F is measurable.

Theorem 7.1 (Daniell-Stone Theorem)_et 7 be a Stone vector lattice with
abstract integral/. Then there is a measure on o(F) such thatf is u-
integrable and/(f) = [ f duforall f € F. Furthermore, if there is a sequence
(fi): in F such that(Vz € Q)(3i)[fi(x) > 0], then the measurg is uniquely
defined.

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .

ﬁﬁiﬁl
wER |
Law ]
]|
%%ﬁ#wl
& E
éﬁﬂﬁl
B |



The theorem is shown in the following two steps:

1. Define the measure:

p(A) :==supI(f,) it Aco(F)andf, /1a,

where thel 4 is the characteristic function of andf,, 14 means that the
sequencéf,) converges td 4.

2. Show that, for eaclf € F, f € L(u) i.e. fis p-integrable, and (f) =
J fdp.




7.3. How to construct a “computable measure” from the Stone vec-
tor lattice F7?

e How to represenf?
e How to represent the measure constructively?

e How to guarantee the computability of the measure?




Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity

Our Studies on...

e A computable pseudometric space is a quadruptet= (M, d, A, «) such Computabilty of the ...
that (M, d) is a pseudometric spacd, C M is dense andv : C % — A e
is a notation ofA such thatdom(«) is recursive and the restriction of the
pseudometrid to A is («, a, p)-computable.

Wﬁiﬁl
wER |
<44 142

e The factorization()M, d) of the pseudometric space/, d) is a metric space
defined canonically as followst := {y € M | d(z,y) = 0}, M := {7 |
z € M}, d(T,7) := d(z,y)

a1 #s3

1

& [

éﬁﬂﬁl
x H |
B |



7.4. Solution:

e Represenf with abstract integral by acomputable Stone vector lattice CoTPUEBIBEETG.

Computable Analysis

Type-2 theory of effectivity
(Q)f) I)D,"}/> Our Studies on....

Computability of the ...

Computable Daniell- . . .

D is a countable subset @ which is dense under the metrig defined by
di(f,q) = I(|f — g|); v is a notation ofD.

ﬁﬁiﬁl
Practically, the computable stone vector lattice is representdd agd its )
notation~. s
NN 44 »»
(F,d;, D, ) is a computable pseudo-metric space. Edbe the factorized e ]
]

space ofF under the pseudo-metric. Denote its Cauchy representation by

FEa2m#£s3

5.

e Represent the measure to be constructed by a computable measure space:

_Bems |
E @
sRas |
(A4, 1R, a). x|
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e ConstructR and define its notation.

A natural Ch0|ce Computable Measure. ..
Computable Analysis
Ri={{f>a}: fe D*,a e @} e
Computability of the ...
However, the measurewill not be computable on suck. E.qg., compuiatie Daniel-
R
) W E E T |
a+=
a} BLLEN
¥ “« | »
f:Q—>R
]
since{f > a} = sup, {f > a+ 1}, u{f > a} is approximated from be- o7 x|
low by the sequenc@I(f A (a+ 1) — f A a)),. N
However{f > a} # inf, {f >a — %} We can not obtain a sequence ap- NILH
proximatey { f > a} from above. x|

B |



e To solve the problem, we show that there i8yap)-computable correspon-
denced : D, = R, such that for each-name off € D., ap-namep of a
computable real € ®(f) is computed such that({ f > a}) is computable.
Then defineR := {{f >a}: f € Di,a € O(f)}.

e Consider the relation betweéfiand L ().

Generally speaking, a functighe F is notu-integrable. However, we find
a computable isometric between the two pseudo metric sgéces) and
(L(w),d,), where

di(f,g) =I(|f —¢|) and d,(u,v) := / lu — v|dp.

Therefore, in a sensé, can be represented ().

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .
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e Denote byRSF the class of theational step functionenR, where aratio-
nal step functioronR is is of the form:

f= Z a;1 4,
]

wherea; € Q andA4; € Rforl <i <n.

It is well-known thatRSF is dense inC(x) under the pseudo-metrit;,.

e Let vpsr be a canonical notation ofsr defined withvg andar.
Then(L(u), d,, RSF, vrsr) is a computable pseudo-metric space.

o Let 5@ denote the Cauchy representation of its factorized sgége

Computable Measure. ..
Computable Analysis
Type-2 theory of effectivity
Our Studies on...
Computability of the ...

Computable Daniell- . . .

ﬁﬁiﬁl
wER |
Law ]
]|
%%ﬁ#wl
& E
éﬁﬂﬁl
B |



7.5. The computable Daniell-Stone theorem

Computable Measure. ..

Computable Analysis

Theorem 7.2 (Computable Daniell-Stone, WU and Weihrauch) et Type-2 theory of effectiviy
(©,F,1,D,~) be a computable Stone vector lattice with abstract integral 2 oFEs
such that(Vz € Q)(3i)[f;(x) > 0]. Then there exists a unique computable  CompuaeDanel:...
measure spacg?, A, i, R, «) such that

1. there exists &y, «)-computable correspondenge D = R, and |

2. there exists &0+, 5m)-computable iIsometri¢y : 7 — L(u) such that <

I(f) Z/gdu Vf € F,g € v([f)]), fﬁy

where 6 resp. 5@ Is the Cauchy representation of the computable metric B

space(F,d;, D, ) resp.(L(u), RSF, d,, vrsF). sFax |
x |
E |



Computable Measure. ..
Computable Analysis

R em arks Type-2 theory of effectivity
Our Studies on...

Computability of the ...

e By item 1, there is a TT-machine such that, for egich D represented by a
~v-name, a setl € R represented by am-name can be computed, and each
set inR can be obtained this way.

Computable Daniell- . . .

W E E T |
e By item 2, there is a TT-machine such that, for egch F represented by e
adz-name, the machine computeg-antegrable functiory represented by L«
a(SW-name such that

1

I(f):/gd,u. 47 7 H 53
5 @
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Thank You!
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