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1. Introduction

In this article, I plan to give a course around certain highlights in the theory
of algorithmic randomness. At least, these will be some highlights as I see
them.

I will try not to cover too much of the material already covered in
my notes [15]. However, since I plan to make these notes relatively self-
contained I will by necessity need to include some introductory material
concerning the basics of Martin-Löf randomness and Kolmogorov complex-
ity.

There will also be a certain intersection with the articles Downey,
Hirschfeldt, Nies and Terwijn [24] and Downey [14].

I will not be able to cover the background computability theory needed,
and here refer the reader to Soare [81] and Odifreddi [71,72]. While I plan
to write sketches of proofs within these notes, full details can be found
in the forthcoming monograph Downey and Hirschfeldt [19]. Other work
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on algorithmic randomness can be found in well-known sources such as
Calude [5] and Li-Vitanyi [50].

The subject of algorithmic randomness is a vast one, and has been the
under intense development in the last few years. With only five lectures
I could not hope to cover all that has happened, nor even report on the
history. Here I certainly recommend the reader look at the surveys Downey,
Hirschfeldt, Nies and Terwijn [24] and Downey [14].

Probably the most brutal omission is the work on triviality and low-
ness, which has its roots in Solovay’s [84], and its first modern incarnation
in Kučera-Terwijn [42] and Downey, Hirschfeldt, Nies, and Stephan [23].
This work is of central importance as has been shown especially through
the powerful results of (Hirschfeldt and) Nies [67–69], and subsequently
Hirschfeldt, Stephan (e.g. [32]), Slaman and others. The reason for this
lamentable omission is that I don’t think it is possible to give a fair treat-
ment to Martin-Löf lowness and triviality, as well as other important trivi-
ality lowness notions for Schnorr and computable randomness, in even one
or two lectures. They could have five to themselves! A short account can
be found in Downey, Hirschfeldt, Nies, Terwijn [24], and a full account is,
or will be soon, found in Downey and Hirschfeldt [19].

Finally these notes will certainly contain more material than I could
possibly cover in any set of lectures in the hope that the extra material will
help the participants of the meeting Computational Prospects of Infinity.
This is especially true of the many results I won’t have time to prove in the
lectures, but whose proofs I have included.

In these notes in Section 2, I will first develop the basic material on
Kolmogorov Complexity. Whilst this approach does not follow the historical
development of the subject, it does make logical sense. I will include proofs
of the fundamental results including Kraft-Chaitin, the Coding Theorem,
and Symmetry of Information.

In Section 3, I will discuss the background material on the three basic
approaches to randomness, via measure theory, prediction, and compres-
sion. Here I will also include the exciting recent results of Miller and Yu
classifying 1-randomness in terms of plain complexity.

In Section 4, I will look at some classic theorems concerning random-
ness for general classes of reals. This material will include the Kučera-Gács
Theorem and other results of Kučera. Other central results treated will be
van Lambalgen’s Theorem, effective 0-1 laws, and results on PA and FPF
degrees. We also introduce n-randomness and variations and look at the ex-
citing recent work showing that 2-randomness is the same as Kolmogorov
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randomness.
In Section 5, I will look at various methods of calibrating randomness

using initial segment methods. This will include the Slaman-Kučera The-
orem and other work on computably enumerable reals, and the work of
Solovay, and Miller-Yu on van Lambalgen reducibility and its relationship
with ≤K and ≤C .

Finally, in Section 6, I plan to give sketches of proofs of the poorly known
results of Stuart Kurtz from his thesis [45], and some refinements later by
Steven Kautz [34]. None of this work has ever been published aside from
the presentations in these theses. The techniques, whose origins go back to
work of Paris and of Martin, are powerful and are extremely interesting.

We remark that throughout these notes we will be working over the al-
phabet {0, 1}, and hence will be looking at 2<ω, and 2ω for “reals”meaning
members of Cantor Space. This sapce will be equipped with the basis of
clopen sets [σ] = {α : σ ≺ α}, and comes with the usual Lebesgue measure
µ([σ]) = 2−|σ|. The whole development can also be done over other alpha-
bets with little change. Most notation is drawn from Soare [81]. We will use
λ to denote the empty string.

2. Lecture 1 : Kolmogorov complexity basics

This section is devoted to the analysis of the Kolmogorov complexity (or,
rather complexities) of finite strings. The fundamental idea idea is well-
known, and that is a random string should be one that it hard to compress.
The compression devices used will generate different kinds of complexities,
and we discuss some of these here. We begin with the most basic notion
(plain complexity) first articulated by the seminal paper of Kolmogorov [35].

2.1. Plain Complexity

Thus we can imagine a Turing machine M which acts as a transducer and
takes an input string τ and, should it halt, produces an output string σ.
Then M(τ) = σ. We say that τ is an M -description of σ. Since we are
interested in the extent that σ can be compressed, we can then define the
M -complexity as CM (σ) is the length of the shortest τ such that M(τ) = σ.
If no such τ exists, then we regard CM (σ) = ∞. We can enumerate all
Turing machines {Me : e ∈ N}, and hence we can define

C(σ) = min{CMe(σ) + e + 1 : e ∈ N},
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to be the Kolmogorov complexity of σ. Notice that we could implement C

via machine U where, on input 0e1τ , U emulates the action of Me(τ). Note
that we would have that for any machine M , C(σ) ≤ CM (σ)+O(1). Hence
we may define a notion of compression up to a constant. There will be a
unique string z of length C(σ) such that

(i) U(z)[s] = σ,
(ii) s is the first stage where there is a string of length C(σ) and (i)

holds.
(iii) z is the lexicographically least such string.

Then we will denote z by σ∗. (Strictly speaking, we should use σ∗C , to
indicate that we are using C, since later there will be other measures of
complexity. However, we anticipate that things will be clear from context.)
The reader will note that x∗ contains a lot of information. If I am given x∗

then I can generate x (by running U) and C(x) by looking at x∗’s length.
For a pair 〈x, y〉 we denote by

(i) C(x, y) the Kolmogorov complexity of the pair 〈x, y〉, that is
C(〈x, y〉) and

(ii) C(x|y) the Kolmogorov complexity of the string x, given the string
y. (Here we have machines M which take as input the pair p, q and
calculate C(p) given the information q as an oracle. We call C(x|y)
the conditional Kolmogorov complexity of x given y.) Notice that
C(x) = C(x|λ) + O(1), where λ denotes the empty string.

Then the observations above show that the following is true.

Proposition 2.1:

(i) C(x,C(x)) = C(x∗) + O(1).
(i) C(x|x∗) = O(1)

(iii) C(x,C(x)|x∗) = C(x∗|C(x), x) = O(1).
(iv) C(xy) ≤ C(x, y) + O(1) where xy denotes the concatenation of x

and y.

The basic theory of plain Kolmogorov complexity is based upon the
following straightforward counting result.

Theorem 2.1: (Kolmogorov [35])

(i) C(x) ≤ |x|+ c

(ii) |{x : |x| = n ∧ C(x) ≤ n + c− j}| = O(2n−j).
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Definition 2.1: (Kolmogorov [35]) We say that a string x is (C-)random
iff C(x) ≥ |x|.

We emphasize that Theorem 2.1 is a combinatorial fact, which only has
an interpretation in algorithmic information theory. Thus we may define
the following.

Definition 2.2: (Nies, Stephan and Terwijn [70]) We say that F : Σ∗ → Σ∗

is a compression function if for all x |F (x)| ≤ C(x) and F is 1-1.

Using any compression function, we can define CF , the “Kolmogorov
complexity” relative to F as CF (x) = |F (x)|. Clearly, the Theorem 2.1
holds for any compression function, by the same counting argument. This
observation will proves very useful later when we meet the results of Nies,
Stephan and Terwijn [70] and of Miller [56] Here is an easy application of
the use of compression functions. We begin with a simple observation.

Proposition 2.2: (Folklore)

(i) Consider the “C-overgraph”

MC = {〈x, y〉 : C(x) < y}.
Then CM is weak truth table complete. Indeed RC , the collection
of non-C-random strings, is wtt-complete.

(ii) The collection of C-random strings is immune.

Proof: (i) To define a reduction, for each n computably pick a length g(n),
so that g is 1-1, and g(n) > n0 is sufficiently large to make the following
work. At each stage s, we will have a fixed string σ(n, s) of length g(n)
and the reduction will be that n ∈ ∅′ iff σ(n) = lims σ(n, s) is not random.
Initially we choose σ(n, s) to be random at stage s. Whilst n 6∈ ∅′t, should
Ct(σ(n, t)) < g(n) + c (c being the relevant constant for randomness), we
will pick a new string σ(n, t + 1) to be the next stage t random string of
length g(n). Finally, should n enter ∅′ at some stage u, then we can use the
Recursion Theorem to drop the complexity of σ(n, u) to below g(n) + c.
(This is where we would need g(n) to be large enough.)

(ii) Let A = {x : C(x) ≥ |x|
2 }. Then A is immune. A is infinite by

Theorem 2.1. Suppose that A has an infinite c.e. subset B. Let h(n) be
defined as the first element of B to occur in its enumeration of length
above n. Then

C(h(n)) ≥ |h(n)|
2

≥ n

2
, but,
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C(h(n)) ≤ C(n) +O(1) ≤ |n|+O(1).

For large enough n this is a contradiction.

Now note that that the collection of compression functions forms a Π0
1

class. The function C is easily seen to be Turing complete. (see Theorem 2.2)
However, by the Low Basis Theorem, there must be compression functions
which have low degrees and contrasts (i) above. Now note that for for such
a low F , if a string is CF -random it is certainly C-random. Thus in spite of
the fact that (ii) above says that there is no infinite c.e. set of C-randoms,
we do have an amenable class within the set of C-randoms by all of this.
To wit:

Proposition 2.3: There is a low infinite collection of C-random strings.

We will see much deeper applications of this idea when we meet the
results of Nies, Terwijn and Stephan [70] later.

We remark that there has been significant investigation of the natural
c.e. set MC , particularly by An A. Muchnik. It is relatively easy to see that
since the collection of C-randoms is immune, MC is not m-complete. Kum-
mer however, proved that the adaptive nature of the reduction in Propo-
sition 2.2 if not necessary. Kummer’s technique is interesting in that the
argument, whilst guaranteeing the existence of a tt-reduction, is nonuniform
in that we don’t know which tt-reduction works, and provably so.

Theorem 2.2: (Kummer [44]) RC is truth table complete.

Proof: (Sketch) Kummer’s proof is relatively intricate, but the idea is
straightforward enough. First, the idea of Proposition 2.2 is replaced by
using blocks of elements. That is, for each x we will attempt to define a
block of elements Si,x so that x 6∈ ∅′ iff Si,x only contains C-random reals.
Naturally enough, it is within our power to be able to drop the complexity
of one of the members of any such Si,x. But it is also within the power of
the opponent to also drop such complexity. The clever part of Kummer’s
proof is how to be able to select the Si,x so that the opponent can’t do this.
Roughly speaking, Kummer’s idea is to associate (perhaps temporarily)
a block of elements from some size n with x, and when they go bad, we
use another block, perhaps of a larger length. Different requirements can
choose the same length, things being sorted out by priorities. However, the
size of blocks are arranged so that Si,x will only be reset at most i times
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for some i ≤ 22d+2 where d is a parameter from the Recursion Theorem.
(This argument uses the pigeonhole principle.) Then in the end using the
parameter i0, the largest i which is reset infinitely often, we will be able to
argue that the tt-reduction works for that i0.

Full details can be found in Kummer [43], and Downey-Hirschfeldt [19].

Similar (and easier) methods can be used to show the following. We give
its proof as an illustrative example.

Theorem 2.3: (An. A. Muchnik [65]) The collection

M = {(x, y, n) : C(x|y) < n}
is creativea.

Proof: The construction will have a parameter d which can be worked out
in advance, and known by the recursion theorem. For our purposes think of
d in the following big enough to make everything work. We will construct
a series of (possible) m-reductions gx for x ∈ [1, 2d]. Then for each z either
we will know that z enters ∅′ computably, or there will be a unique y such
that gx(z) = (x, y, d) and x ∈ ∅′ iff gx(z) ∈ M . For some maximal x for
which we enumerate elements gx(v) into M infinitely often, this will then
give the m-reduction since on those elements which don’t computably enter
∅′, gx is (computable) and defined.
Construction For each active y ≤ s, find the least q ∈ [1, 2p] with

(q, y, d) 6∈ Ms.

(Notice that such an x needs to exist since {q : (q, y, d) ∈ M} < 2d.)
If this q is new at stage s + 1, (that is, (q′, y, d) 6∈ Ms for some q′ < q)

find the least z with z 6∈ ∅′[s + 1] and define

gq(z) = (q, y, d).

Now for any v, if v enters ∅′[s + 1], find the largest r, if any, with gr(z)
defined. If one exists, enumerate gr(z) into M . Find ŷ with gr = (r, ŷ, d).
Declare that ŷ is no longer active. (Therefore, we will do this exactly once
for any fixed ŷ so the cost is modest, and known by the Recursion Theorem.)
End of Construction

aThis proof can be made to work for any of the usual complexity measures, such as K
which we meet in the next section, and for monotone complexity.
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Note that there must a largest x ≤ 2d such that ∃∞v(gx(v) ∈ M). Call
this x. We claim that gx is the required m-reduction. Work in stages after
which gx+1 enumerates nothing into M .

Given z, since gx is defined on infinitely many arguments and they are
assigned in order,we can go to a stage s where either z has entered ∅′[s], or
gx(z) becomes defined, and gx(z) = (x, y, d) for some active y. gx(z) will
be put into M should z enter ∅′ after s. The result follows.

The reductions in these theorems are exponential (or worse) in the num-
ber of queries they use, and there has been a lot of fascinating work by
Allender and others looking at what can be efficiently reducible to sets of
random strings. This may seem strange indeed, but these questions seem
to have a lot to say about complexity classes. For instance, one open hy-
pothesis is that PSPACE is precisely the collection of computable sets in
∩V PRV

C , where RV
C denotes the collection of random strings with universal

machine V . (see Allender et. al. [1], Allender, Buhrmann, and Koucký [2].)

2.2. Symmetry of Information

We would like that C(xy) ≤ C(x)+C(y)+O(1). This, however, is not true
in general. The problem is how to combine x∗ and y∗. In fact, for sufficiently
long strings, we always have compressible initial segments.

Lemma 2.1: (Martin-Löf [54]) Let k be given. Suppose that z is suffi-
ciently long. The there is an initial segment x of z whose complexity is
below |x| − k. Hence if z is C-random and we write z = xy,

C(z) > C(x) + C(y).

Proof: Take some initial segment q of z. This string is the r-th string
of 2<ω under the standard length/lex ordering. Let x denote the initial
segment of z of length |q| + r. Note that C(x) ≤ r + O(1), since to figure
out x we need only input the final segment m of x following q, read its
length which is r, use that to resurrect q and then output qm = x. It is
easy to arrange q so that r < |x| − k.

The following powerful theorem gives the precise relationships between
C(xy) and C(x) and C(y). The information content of a string y in a string
x is defined as

I(x : y) = C(y)− C(y|x).
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Theorem 2.4: (Symmetry of Information, Levin and Kolmogorov [102])

I(x : y) = I(y : x)±O(log n)

= I(y : x)±O(log C(x, y))

where n = max{|y|, |x|}.
Levin and Kolmogorov’s Symmetry of Information Theorem will follow

from the reformulation below.

Theorem 2.5: (Symmetry of Information-Restated)

C(y|x) + C(x) = C(x, y)±O(log C(x, y))

Theorem 2.4 will follow from Theorem 2.5 by the following calculation:

C(〈x, y〉) = C(y) + C(x|y)±O(log C(x, y))

= C(x) + C(y|x)±O(log C(x, y))

then C(x)− C(x|y) = C(y)− C(y|x)±O(log C(x, y))

Proof: (of Theorem 2.5) The following neat proof follows that of Li-Vitanyi
[50]. First it is easy to see that C(x, y) ≤ C(x) + C(y|x)±O(log C(x, y)),
since we can describe 〈x, y〉 via a description of x, of y given x and an
indication of where to delimit the two descriptions.

For the hard direction, that

C(〈x, y〉) ≥ C(y) + C(x|y)±O(log C(x, y)),

define two sets

A = {〈u, v〉 : C(〈u, v〉) ≤ C(〈x, y〉), and

Au = {v : 〈u, v〉 ∈ A}.
A is finite and uniformly computably enumerable given 〈x, y〉, as is

Au for each u. Hence, one can describe y given x and its place in the
enumeration order of Ax and given |C(x, y)|.

We take e ∈ N such that 2e+1 > card(Ax) ≥ 2e. Then

C(y|x) ≤ log card(Ax) + 2|C(〈x, y〉)|+ O(1)

≤ e + O(log C(x, y)).



July 4, 2005 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) Singapore

Five Lectures on Algorithmic Randomness 11

Now consider the set B = {u : |Au| ≥ 2e}. It is clear that x ∈ B. We
see

card(B) ≤ card(A)
2e

≤ 2C(〈x,y〉)

2e
.

This is independent of the pairing function used, provided the function is
1-1. Note that card(∪uAu) ≤ card(A).

Then, to specify x, we take C(x, y) and e we can computably enumerate
the strings which are possibilities u for x by satisfying

Au = {z : C(u, z) ≤ C(x, y)} and,

2e < card(Au).

Therefore,

C(x) ≤ |e|+ log
2C(〈x,y〉)

2e
+ O(log C(x, y))

≤ C(〈x, y〉)− e + O(log C(x, y)),

and thus

C(x) + C(y|x) ≤ C(〈x, y〉) + O(log C(x, y))

as required.

2.3. Prefix-free complexity

We would like that the information contained in the bits of x∗ encapsulates
the complexity of x. Now, Theorem 2.1, says that for C this is not so. x∗

gives |x∗| plus log |x∗| many bits of information. It was Levin [51], [102] who
finally figured out how to define complexity so that this formal relationship
held. He did do using monotone machines (which ask that if σ ≺ τ , then
M(σ) ¹ M(τ), should they both halt), and later both he and Chaitin [9]
used the notion of a prefix-free machine. Recall that a set of strings S is
called prefix-free if whenever σ ∈ S and σ ≺ τ , then τ 6∈ S. Then we may
define prefix-free Kolmogorov complexity as the same as C except that only
prefix-free machines, that is ones with prefix-free domains, are allowed. Note
that the same proof shows that there are universal prefix-free machines. We
let K denote prefix-free complexity.

Prefix-free machines and prefix-free Kolmogorov complexity will play a
central role in our story. Note that if a machine M has prefix-free domain,
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then its domain has (Lebesgue) measure. That is, for σ ∈ 2<ω, we recall
that µ([σ]) = 2−|σ|, we note that by prefix-freeness a prefix-free machine’s
domain has measure, called its halting probability.

µ(M) =
∑

M(σ)↓
2−|σ|.

The following result gives an implicit way of constructing prefix-free ma-
chines and will be used extensively in the rest of these notes. The result
says, roughly, if the lengths needed for some prefix-free machine work out,
then there is such a machine.

Theorem 2.6: (Kraft [36], Kraft-Chaitin [9, 11]) Let d1, d2, · · · be a col-
lection of lengths, possibly with repetitions, Then Σ2−di ≤ 1 iff there is a
prefix-free set A with members σi and σi has length di. Furthermore from
the sequence di we can effectively compute the set A.

The result as stated here first appears in Chaitin [9], where the result
is attributed to Pippinger.

Proof: Consider the correspondence ∆ : [σ] 7→ [0.σ, 0.σ+2−|σ|) taking the
string σ to an interval of size 2−|σ|, gives a correspondence between a set
of disjoint intervals in [0, 1) and a prefix-free set.

Consider first the following non-effective proof of the result. We are
given the lengths {di : i ∈ N} in some random order. But suppose that we
re-arrange these lengths in increasing order, say l1 ≤ l2 ≤ . . . . Then we can
easily choose disjoint intervals Ij , with the right end-point of In as the left
endpoint of In+1 and the length of In+1 being 2−ln+1 . Then we can again
use the correspondence by setting [σn] = ∆−1(In).

Now in the case that the intervals are not presented in increasing order,
how to effectivize this process? The following organizational device for the
Chaitin [9] proof was suggested by Joe Miller. We will be given the strings
d0, d1, . . . , dn with dn given at stage n. The idea is that, at each stage n,
we have a mapping di 7→ [σi], |σi| = di, together with a binary string
x[n] = .x1x2 . . . xm representing the length 1−∑

j≤n 2−dj , and ask that for
each 1 in the string x[n] that there is a string of precisely that length in
2<ω − {σj : j ≤ n}.

To continue the induction, at stage n+1, when a new length dn+1 enters,
if position xdn+1 is a 1, then we can find the corresponding string τdn+1 in
2<ω−{σj : j ≤ n} and set σn+1 = τdn+1 . Then of course we make xdn+1 = 0
in x[n + 1].
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If position xdn+1 is a 0, find the largest j < dn+1 with xj = 1, find the
lexicographically least string τ extending τj of length dn+1, let σn+1 = τ ,
and let x[n + 1] = x[n]− .ν where ν is the string which is zero except for 1
in position dn+1.

Notice that nothing changes in x[n + 1] from x[n] except in positions j

to dn+1, and these all change to 1, with the exception of xj which changes
to 0. Since τ was chosen as the lexicographically least string in the cone
[τj ], there will be corresponding strings in [τj ] of lengths j− 1, . . . , dn+1, as
required to complete the induction.

In the proofs in the literature, we often refer to the requests “I would
like a string of length m mapping to a string σ” as KC-axioms, written
as 〈m,σ〉 or sometimes 〈2−m, σ〉. For a c.e. set of such requests, the result
above says that they can be met provided that their measure request is
possible; that is provided the sum of the first coordinates is ≤ 1.

What about K-randomness? The counting for C shows that C(x) ≤
|x|+ c for all x. However, for K we have the following.

Lemma 2.2: (Chaitin [9, 11], Levin [46]) Let f : Σ∗ → N. Suppose that∑
σ 2−f(σ) diverges. (The prototype here is f(x) = log x.)

Then K(σ) > |σ|+ f(σ) infinitely often.

Proof: Suppose that for all x, K(x) ≤ |x|+ f(x). Then
∑

σ∈2<ω 2−K(σ) ≥∑
σ 2−(|σ|+f(σ)) ≥ ∑

n

∑
|σ|=n 2−(n+f(n))≥ ∑

n 2n(2−(n+f(n))) ≥∑
n 2−f(n) = ∞, a contradiction, since

∑
σ 2−K(σ) ≤ 1, as the machine

is prefix free.

The analog of C(x) ≤ |x|+ O(1) is given by the following basic result.

Theorem 2.7: (Counting Theorem, Chaitin [9])

(i) K(x) ≤ |x|+ K(|x|) +O(1).
(ii) For all n,

max{K(x) : |x| = n} = n + K(n) +O(1).

(iii) For any k,

|{σ : |σ| = n ∧K(σ) ≤ n + K(n)− k}| ≤ 2n−k+O(1).

Proof: (i) Let U be the universal prefix-free machine. Consider the special
prefix-free machine M , which will halt only on strings of the form zσ,
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provided that on input U(z) = |σ|. For such a string zσ, M outputs σ.
Then KM (σ) = |(|σ|∗)|+ |σ|+O(1). Hence K(σ) ≤ |σ|+ K(|σ|) +O(1).

For the proof of (ii), we will use the “semimeasure” method which
originates with the work of Gács and Levin, and is cleverly exploited by
Chaitin [11]. Chaitin defined an information content measure as a partial
function K̂ : 2<ω → N such that

(i)
∑

σ∈2<ω 2− bK(σ) ≤ 1, and,

(ii) {〈σ, k〉 : K̂(σ) ≤ k} is c.e..

Chaitin’s information content measures are more or less the same as the
computably enumerable discrete semimeasures introduced by Gács [27]
and Levin [47].

Definition 2.3: (Discrete semimeasure) A discrete semimeasure is a func-
tion m : 2<ω → R+ ∪ {0} such that

∑

σ∈2<ω

m(σ) ≤ 1.

Here a function g is computably enumerable iff there is a computable
function h(·, ·) such that h is nondecreasing in both variables, and g(n) =
lims h(n, s) for all n, so that it is a special kind of ∆0

2 function. For instance,
the binary expansion of a halting probability of a prefix-free Turing machine
gives a c.e. function f(n) which is the value of the first n bits of this
expansion.

An equivalent way to think of a discrete semimeasure is to identify
2<ω with N and think of N as being our measure space. Notice that un-
der this identification, all strings are incompatible. Clearly, the standard
Lebesgue measure we have looked at so far is not a discrete semimea-
sure. The standard Lebesgue measure is a continuous measure. (Contin-
uous semi-measures give rise to yet another concept of randomness and
relate to semimartingales, as we later see.) The discrete Lebesgue measure
is λ(σ) = 2−2|σ|−1. There is a computable enumeration {K̂k : k ∈ N}
of all information content measures (and similarly one of all computably
enumerable discrete semimeasures). Thus, there is a universal minimal one:

K̂(x) = min
k≥0

{K̂k(x) + k + 1}.

Information content measures and prefix-free machines, are essentially the
same. Using Kraft-Chaitin, build a prefix-free machine M which emulates
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precisely the information content measure K̂; namely for all σ, there is a
τ ∈ domM , such that M(τ) = σ and K(σ) = |τ | − O(1), and conversely.
(Namely, at stage s, if we see Ks(σ) = k and Ks+1(σ) = k′ < k enumerate
a Kraft-Chaitin axiom 〈2−(k′+1), σ〉 to describe M , and hence generate K̂ =
KM . Thus we see that K̂ is within a constant of K, and is thus prefix-free
Kolmogorov complexity. Henceforth we will identify K with K̂, without
further comment.

Another restatement of all of this is obtained by letting m denote the
minimal universal discrete semimeasure. We have the following.

Lemma 2.3: K(σ) = − log m(σ) + O(1).

Proof: (ii) and (iii) Now for the proof of (iii), from which (ii) follows. We
note that ∑

n∈Σ∗
2−K(n) =

∑

n∈Σ∗

∑

|σ|=n

2−K(σ).

(Recall, that we are identifying a string with a unique number.)
Thus, as − log(

∑
|σ|=n 2−K(σ)) is an information content measure (using

− log(
∑
|σ|=n 2−|σ|) as a dyadic real and letting K̂(n) as the first nonzero

entry in this expansion.) Then as K is minimal, we have

2−K(n)+O(1) ≥
∑

|σ|=n

2−K(σ).

Now for the sake of a contradiction suppose that there are more than
2n−k+c strings of length n with K(σ) < n + K(n)− k. Let F = {σ : |σ| =
n ∧K(σ) < n + K(n)− k}. Suppose that |F | = (1 + ε)2n−k+c. Then

2−K(n)+c ≥
∑

|σ|=n

2−K(σ) ≥

∑

σ 6∈F

2−K(σ) +
∑

σ∈F

2−K(σ) > (1 + ε)2n−k+c2n−K(n)−k > 2−K(n)+c,

a contradiction.

2.4. The Coding Theorem

We have already seen that K(σ) = − log m(σ) up to a constant. There are
of course many measures we can put on strings. A particularly useful one
is the following.

Definition 2.4: Given a prefix-free machine D, let QD(σ) = µ(D−1(σ))
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QD(σ) is the probability that D outputs σ. The following is an impor-
tant and useful basic theorem.

Theorem 2.8: (Coding Theorem) − log m(σ) = − log Q(σ) + O(1) =
K(σ) + O(1).

Proof: We note that Q(σ) ≥ 2−K(σ) = 2−|σ
∗|, since D(σ∗) = σ. Therefore

− log Q(σ) ≤ K(σ). But,
∑

2−logQ(σ) ≤ ∑
σ Q(σ) ≤ 1. Hence, by mini-

mality of K, Q(σ) ≤ K(σ) + O(1) and hence Q(σ) = K(σ) + O(1), as
required.

From this proof, − log Q(σ) is a measure of complexity, and hence, by
the minimality of K among measures of complexity, we know that 2−K(σ) ≤
Q(σ). By Theorem 2.8, we know that for some constant d,

2−K(σ) ≤ Q(σ) ≤ d2−K(σ).

Thus we can often replace usage of K by Q.

2.5. Prefix-free symmetry of information

Because of its close approximation to information content, prefix-free Kol-
mogorov complexity can be more pliable than its plain cousin. For instance,
we can attach one prefix-free machine M1 to another M2 and make a (prefix-
free) machine M whose action is M(στ) = M1(σ)M2(τ). This means that

K(xy) ≤ K(x) + K(y) + O(1).

Additionally Symmetry of Information is more aligned to our intuition in
the prefix-free case. We define the K-information content as

I(x : y) = K(y)−K(y|x).

(Here, we are using K(y|x) in the same way as for C, meaning the condi-
tional prefix-free complexity of x given y. Similar comments hold for the
use of x∗ = x∗K , for instance, in this context.)

Theorem 2.9: (Symmetry of Information, Levin and Gács [27], Chaitin
[9]) I(〈x,K(x)〉 : y) = I(〈y, K(y)〉 : x) + O(1).

Note that, given the relationship K(z,K(z)) = K(z∗)+O(1), the Sym-
metry of Information Theorem for prefix-free complexity may be neatly
rewritten as

I(x∗ : y) = I(y∗ : x) + O(1).
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As with the C case, Levin’s Symmetry of Information Theorem follows from
a reformulation:

Theorem 2.10: (Symmetry of Information, Levin and Gács [27], Chaitin
[9]) K(x, y) = K(x) + K(y|x,K(x)) + O(1) = K(x) + K(y|x∗) + O(1).

Proof: To prove Theorem 2.9 from Theorem 2.10, by Theorem 2.10, we
have K(x, y) = K(x)+K(y|x,K(x))+O(1) = K(y)+K(x|y, K(y))+O(1),
and hence,

K(y)−K(y|x,K(x)) = K(x)−K(x|y, K(y)) + O(1),

and Theorem 2.9 follows.
Now we turn to the proof of Theorem 2.10.
First we prove that

K(x, y) ≤ K(x) + K(y|x, K(x)) + O(1).

Given x∗ and z = K∗(y|x,K(x)), we can construct a prefix-free machine
M which, upon input x∗z, will compute x and K(x) = |x∗|. It will then
compute y from x and K(x) and z

To finish we need to prove that

K(x, y) ≥ K(x) + K(y|x, K(x)) + O(1).

To achieve this, we prove that

K(y|x∗) ≤ K(x, y)−K(x) + O(1).

We run the computation of U assuming that exactly one string halts at
each stage. Call this ps at stage s. Then, at each stage s, compute 〈xs, ys〉
with

U(ps) = 〈xs, ys〉.
By the Coding Theorem, Theorem 2.8, there is a constant c such that

2K(x)−c(
∑

y

Q(〈x, y〉)) ≤ 1,

for all x. (To see this, imagine we are building a machine V which, each time
we see U(p) ↓= 〈x, y〉, declares a Kraft-Chaitin axiom 〈|p|, x〉. Then, relative
to V , QV (x) =

∑
y QU (〈x, y〉), meaning that

∑
y Q(〈x, y〉) ≤ Q(x)+O(1).)

We will now define a new conditional machine M using Kraft-Chaitin.
With z on the oracle tape, M tries to compute z′ with U(z) = z′, and hence
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with x∗ on the tape, computes x. M then simulates the machine Mx with
the Kraft-Chaitin set

〈|pt| − |x∗|+ c, yt〉,
for each pt of the form 〈x, yt〉. Let W denote the computably enumerable
collection of such requirements.

Notice that
∑

t∈W 2−(|pt|−|x∗|+c) ≤ 2K(x)−c(
∑

y Q(〈x, y〉)) ≤ 1, and
hence Kraft-Chaitin can be applied to Mx.

For each p with U(p) = 〈x, y〉, there is a p̂ with U(p̂|x∗) = Mx(p̂) = y,
and with |p̂| = |p| −K(x) + c. This shows that

K(y|x∗) ≤ K(x, y)−K(x) + O(1).

Another way to express Theorem 2.10 is

Corollary 2.1: K(x, y) = K(x) + K(y|x∗) + O(1).

2.6. Prefix-free randomness

Note that now there are really two possibilities for defining prefix-free ran-
domness for strings. First we might think that a string should be random
iff its shortest description is at least as long as it is. This gives what is
described, perhaps nonstandardly, in [19] as being weakly Chaitin random.
That is, σ is weakly Chaitin random iff K(σ) > |σ|. On the other hand,
a string could be thought of as being random if it has maximum possible
K-complexity, meaning that to describe the string you need K(|x|) for the
prefix-free-ness and |x| many bits for the string: to wit, we will say that x

is strongly Chaitin random iff K(x) > |x|+ K(|x|).
The following implications hold between the concepts.

Theorem 2.11: (Solovay [84])

(i) x is strongly Chaitin randomb implies x is Kolmogorov random,
but not conversely.

(ii) x is Kolmogorov random implies x is weakly Chaitin random, but
not conversely.

bStrictly speaking this theorem is happening up to fixed constants. In Downey and
Hirschfeldt [19], we refer to the “up to constant” behaviour as “essentially” behaviour.
That is, for a fixed c, having C(x) > |x|−c is to be “essentially Kolmogorov random,”for
instance.
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The first part of (ii) is immediate since each prefix-free machine is also a
plain machine. We will not prove the “but not conversely” statements here
since they involve relatively intricate constructions, and simply refer the
reader to Downey and Hirschfeldt [19]. We will give a proof of (i)’s state-
ment that every strongly Chaitin random string is Kolmogorov random, as
it give the reader some insight into the methods used.

For the proof, the following concepts are useful. We define the ran-
domness deficiencies as follows. Let cC and cK denote the relevant coding
constants.

mC(σ) = |σ|+ cc − C(σ), and,

mK(σ) = |σ|+ K(|σ|) + cK −K(σ).

Lemma 2.4: (Solovay [84]) For a string x, we have mK(x) ≥ mC(x) −
O(log mC(x) + 2).

Assuming the Lemma, we can get (i) by observing that if x is strongly
Chaitin random then for some constant c, mK(x) ≤ c. By the Lemma, we
see that mC(x) − O(log mC(x) + 2) ≤ c′ for some fixed constant c′ and
hence mC(x) ≤ c′′ for some fixed c′′.

Proof: (of Lemma 2.4) We know C(x) = |x| + cC − mC(x). Thus,
K(C(x)) = K(|x| + cC −mC(x)) ≤ K(|x|) + K(cC −mC(x)) ≤ K(|x|) +
O(log mC(x) + 2). Next we prove the following claim.

K(x) ≤ C(x) + K(C(x)) + O(1).

To see this Let U be a universal prefix-free machine and V a universal
machine. We will define a prefix-free machine D via the following.

On input z, D first attempts to simulate U . Hence if z = z1z2, then
C will first simulate U(z1). It will then read exactly U(z1) further bits of
input, if possible. These further bits of input will be some word z3. D will
then compute V (z3), and gives this as its output.

Notice that D is prefix-free because firstly U is, and if C halts on z,
then z = z1z2 with U(z1) ↓, and |z| = |z1|+ |U(z1)|. Thus all extensions of
z1 upon which D halts have the same length, and hence cannot be prefixes
of other such strings. Let πD be the coding constant of D in U .

Let y3 be a minimal Kolmogorov program for x, and y1 a minimal
prefix-free program for |y3|. Then U(πDy1y3) = C(y1y3) = V (y3) = x.

hence K(x) ≤ C(x) + K(C(x)) + |πD|. This establishes the claim.
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To finish the proof, using the claim we get the following calculation.

K(x) ≤ |x|+ K(|x|) + O(1) + O(log mC(x) + 2)−mC(x).

Thus 0 ≤ mK(x) + O(log mC(x) + 2)−mC(x). Hence,

mK(x) ≥ mC(x)−O(log mC(x) + 2).

Actually the relationships between C and K are very complex. The
following definitive results were obtained by Solovay [84].

Theorem 2.12: (Solovay [84])

K(x) = C(x) + C(2)(x) + O(C(3)(x)). (1)

and

C(x) = K(x)−K(2)(x) + O(K(3)(x)). (2)

Solovay [84] showed that (1) and (2) above are sharp! That is, for in-
stance,

K(x) = C(x) + C(2)(x) + C(3)(x) + O(C(4)(x))

is not true in general. The proof can be found in Downey and Hirschfeldt [19]
and is, as you would expect, highly combinatorial.

2.7. The overgraph functions

Notice that, again, we can look at the “overgraph” functions. Now we con-
sider

MK = {〈x, y〉 : K(x) < y},
and the conditional case

M ′
K = {〈x, y, z〉 : K(x|y) < z},

and finally

RK = {x : K(x) ≥ |x|+ K(|x|)− c}.
Using exactly the same proof, Muchnik proved that M ′

K is m-complete. He
also considered MK . We remark that RK is a tricky object to deal with.
The point is that both sides of the definition vary in time. Ever since the
manuscript of Solovay it has been open whether {x : K(x) < |x|+K(|x|)−c}
is computably enumerable. This was finally solved by Joe Miller in early
2005.

Theorem 2.13: (Miller [60,61])
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(i) Fix c ≥ 0 and let B = {v : K(v) < |v|+ K(|v|)− c}. If A contains
B and has property (*) below, then A is not a c.e. set.

(*) For all n,

|A ∩ 2n| < 2n.

(ii) Hence for all sufficiently large c, B = {v : K(v) < |v|+ K(|v|)− c}
is not Σ0

1.

We remark that it is not known whether RK can be tt-complete. Here I say
can be since Muchnik prove the following remarkable result which demon-
strates that for prefix-complexity things can become machine dependent.
Let MQ

K denote set of strings that are not weakly Chaitin random relative
to the universal machine Q, and similarly R

Q

K .

Theorem 2.14: (Muchnik, An. A. [65]) There exist universal prefix-free
machines V and U such that

(i) MV
K is tt-complete.

(ii) MU
K (and hence R

U

K) is not tt-complete.

The proof of (ii) is fairly remarkable. In the construction we will be
building a universal machine U and a set B diagonalizing against tt-
reductions Γe making sure that ΓMU

K
e 6= B. To do this, we would pick some

follower n and put n into B if there was some way to make ΓMU
K

e (n) = 0

and otherwise try to force ΓMU
K

e (n) = 1 and keep n out of B. The problem
is that at any stage s, U and hence MU

K are only in a state of formation. It
is within the opponent’s power to be able to drop the complexity of some
string x and hence add some 〈x, y〉 into MU

K . This might change the value

of ΓMU
K

e (n). We are in control of some part of U (about half in the actual
construction) and it would be then in our power to possibly change some

complexity to perhaps restore ΓMU
K

e (n) to its previous value.
Muchnik’s idea is to view this as a game played on a finite directed

graph, with (〈x, y〉, 〈x, y′〉) an edge representing the dropping of the com-
plexity of x from y to y′. Then, the whole thing can be viewed as a game
played on a finite graph determining the value of ΓMU

K
e (n), by moves alter-

natively by the opponent then us. There is a computable strategy for such
finite games, and this strategy will determine what value to set B(n) to be.

The details are a bit messy, but this is the fundamental idea. We refer the
reader to either Muchnik and Positelsky [65] or Downey and Hirschfeldt [19].
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3. Lecture 2: Randomness for reals

3.1. Martin-Löf randomness

It is a fascinating problem to give mathematical content to our intuition
that the real 1111 . . . and any other real α are equally likely in terms of
measure theory yet our intuition would be that the real of all 1’s is not ran-
dom. The first real attempt to address this question occurs in a remarkable
paper by von Mises [94]. Von Mises was a probabilist, and suggested that
a stochastic approach to “defining” randomness. To wit, he suggested that
given a real α = a1a2 . . . , if we were to “select” some subsequence assuming
“acceptable” selection rules, say we choose positions f(1), f(2) . . . , then we
should have that the limit as n went to infinity of the number of af(i) = 1
divided by those with af(i) = 0 for i ≤ n should be 1. That is, in the
limit, we should select equal numbers of 0’s and 1’s. This approach can be
viewed as a generalization of the law of large numbers. Von Mises had no
canonical way to formulate the notion of acceptable rule, but did observe
that countable collections of selection rules could be dealt with. It remained
until the clarification of the notion of a computable function for reasonable
classes of f ’s to be suggested. For instance, we might suggest that some-
thing is stochastically random iff it defeats any computable selection rule.
With a little care this gives rise to notions like Church randomness. As we
will see later, von Mises approach has a lot to say about current research.
However, in even the computable formulation of von Mises basic notion,
the approach had several drawbacks. These are thoroughly discussed in
van Lambalgen’s thesis [92]. The first widely acceptable definition of ran-
domness came from the fundamental work of Martin-Löf in 1966 in [54].
Martin-Löf’s fundamental observation was that we can think of effective
statistical tests as being effective null sets of reals. Thus a real should be
random if it avoids all effective null sets. A computably enumerable open
set would be a collection W = {[σ] : σ ∈ We} for some e.

Definition 3.1: (Martin-Löf, [54]) We say that a real is Martin-Löf random
or 1- random iff for all computable collections of c.e. open sets {Un : n ∈ ω},
with µ(Un) ≤ 2−n, x 6∈ ∩nUn.

We call a computable collection of c.e. open sets a test since it cor-
responds to a statistical test, and ones with µ(Un) ≤ 2−n for all n, a
Martin-Löf test. The usual terminology is to say that a real is Martin-Löf
random if it passes all Martin-Löf tests meaning that it is not in the in-
tersection. Since there are only countably many such tests, almost all reals
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are Martin-Löf random.
Using the enumeration of all c.e. sets, we can enumerate all c.e. tests,

{We,j,s : e, j, s ∈ N} and stops the enumeration of one if the measure
µ(We,j,s) threatens to exceed 2−(j+1) at any stage s of the simultaneous
enumeration. Then we can let

Un = ∪e∈NWe,n+e+1.

Then we note that Un is a Martin-Löf test, and moreover, a real A passes
all Martin-Löf tests iff A 6∈ ∩n∈NUn. We have established the following.

Theorem 3.1: (Martin-Löf [54]) There exist universal Martin-Löf tests:
That is there is a Martin-Löf test {Un : n ∈ N} such that, for any Martin-
Löf test {Vn : n ∈ N}, x ∈ ∩n∈NVn implies x ∈ ∩n∈NUn.

The reader should note the following alternative version of Definition
3.1.

A real is Solovay random iff for all computably enumerable collections
of intervals In = [σn] : n ∈ ω, if

∑
n |In| < ∞, then x ∈ In for at most

finitely many n.
The following is an easy exercise.

Theorem 3.2: (Solovay [84]) A real x is Martin-Löf random iff x is Solovay
random.

3.2. Schnorr’s Theorem and the computational paradigm

When we looked at strings, our approach to randomness centered around
the computational/incompressibility paradigm. This approach for reals was
pioneered by Levin [46,102] using monotone and prefix-free complexity, the
latter also used by Chaitin [9]. We have seen that the plain complexity of
sufficiently long strings will always drop, and this can be formalized for
reals into the following.

Theorem 3.3: (Li-Vitanyi [50], also Staiger [85]) Let f : N → N be any
total computable function. Suppose that

∑∞
n=1 2−f(n) = ∞. Then for any

real α, C(α ¹ n|n) ≤ n− f(n) infinitely often.

Corollary 3.1: (Li-Vitanyi [50], after Martin-Löf [55]) Let f : N → N
be any total computable function, such that

∑∞
n=1 2−f(n) = ∞, and such

that, for all n, C(n|n− f(n)) = O(1). Then C(α ¹ n) ≤ n− f(n) infinitely
often.
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The prototypical application of Corollary 3.1 is f(n) = log n allowing us
to conclude that C(α ¹ n) ≤ n− log n infinitely often. Again we note that
if we use a complexity whose interpretation is equivalent to bit complex-
ity, then we remove the oscillations below n. This allows for the following
definition.

Definition 3.2: (Levin(-Gács-Chaitin)) A real α is Levin-Gács-Chaitin
random if for all n

K(A ¹ n) ≥ n−O(1).

The following fundamental theorem shows that the two notions of ran-
domness coincide.

Theorem 3.4: (Schnorr) A real x is Levin-Gács-Chaitin random iff it is
Martin-Löf random.

Proof: (→) Suppose that x is Martin-Löf random. Let

Uk = {y : ∃nK(y ¹ n) ≤ n− k}.
Since the universal machine is prefix-free, we can estimate the size of Uk.

µ(Uk) =
∑

{2−|σ| : K(σ) ≤ n− k}

≤
∑

n∈N
2−(n+k) = 2−k.

Hence the sets {Uk : k ∈ N} form a Martin-Löf test, and if x is Martin-Löf
random x 6∈ ∩nUn. Thus there is a k such that, for all n, K(x ¹ n) > n− k.

For the converse direction, recall from Lecture 1 that K is a minimal
information content measure so that for all σ, K(σ) ≤ Kk(σ) +O(1). Now
suppose that x is not Martin-Löf random, and hence x ∈ ∩Un with {Un :
n ∈ N} the universal Martin-Löf test (so that µ(Un) ≤ 2−n). We note that∑

n≥3 2−n2+n ≤ 1. We use Kraft-Chaitin to build a machine M . Whenever
we see some [σ] occur in Un2 for n ≥ 3, we enumerate an axiom for M of the
form |σ| − n. The total cost of the M -axioms is found by the calculation:

∑

n≥3

∑

σ∈Un2

2−(|σ|−n) ≤
∑

n≥3

2nµ(Un2) ≤
∑

n≥3

2−n2+n ≤ 1.

Thus, if c is the coding constant for M in U , we have for all σ ∈ Un2 and
n ≥ 3,

K(σ) ≤ |σ| − n + c.
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Therefore, as x ∈ ∩Un2 for all n ≥ 3 we see that K(x ¹ m) ≤ m−n+c, and
hence it drops arbitrarily away from k. Hence, x is not Levin-Gács-Chaitin
random.

We can use Schnorr’s Theorem to prove that there are many strings
that are (weakly) Chaitin random yet are not Kolmogorov random.

Corollary 3.2: There are infinitely many n and strings x of length n such
that

(i) K(x) ≥ n and
(ii) C(x) ≤ n− log n.

Proof: Let α be Martin-Löf random. Then by Schnorr’s Theorem, Theo-
rem 3.4, for all n, K(α ¹ n) ≥ n−O(1). But by Corollary 3.1, for infinitely
many n, C(α ¹ n) ≤ n− log n.

Schnorr’s Theorem also allows us to define some specific kinds of random
reals. For instance, the class

R = ∪cRc where Rc = {A : ∀n(K(A ¹ n) ≥ n− c},
is the Σ0

2 class of all Martin-Löf random reals. From some c onwards, the
classes Rc are nonempty Π0

1 classes of reals. By the Low Basis Theorem
and Hyperimmunne-free Basis Theorem we have the following.

Theorem 3.5: (Kučera and others)

(i) There are low Martin-Löf random reals.
(ii) There are Martin-Löf random reals of hyperimmune-free degrees.

Actually, we can come up with a specific Martin-Löf random real. This
is the famous example of Chaitin.

Theorem 3.6: (Chaitin [10], Chaitin’s Ω) Let U be a universal prefix-free
machine. Then Ω, the halting probability below, is Martin-Löf random.

Ω =
∑

U(σ)↓
2−|σ|.

Proof: We build a machine M and it has coding constant e given by the
recursion theorem. (This means that if we put σ in dom(M), U later puts
something of length |σ| + e into dom(U).) Let Ωs =

∑
M(σ)↓[s]∧|σ|≤s 2−|σ|.

For n ≤ s, if we see Ks(Ωs ¹ n) < n − e, find some σ of Ks(Ωs ¹ n with
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Us(σ) 7→ Ωs ¹ n. Declare Ms(σ) ↓, which causes Ωs ¹ n 6= Ω ¹ n. Note we
cannot put more into the domain of M than U has in its domain and hence
we may apply Kraft-Chaitin to build M .

Solovay was the first to look at other computability-theoretical aspects
of Ω. For instance, consider Dn = {x : |x| ≤ n ∧ U(x) ↓}. Solovay proved
that K(Dn) = n + O(1), where K(Dn) is the K-complexity for an index
for Dn. Solovay also proved the following basic relationships between Dn

and Ω ¹ n.

Theorem 3.7: (Solovay [84])

(i) K(Dn|Ω ¹ n) = O(1). (Indeed Dn ≤wtt Ω ¹ n via a weak truth
table reduction with identity use.)

(ii) K(Ω ¹ n|Dn+K(n)) = O(1).

Proof: (i) is easy. We simply wait till we have a stage s where Ωs =def∑
U(σ)↓[s] 2

−|σ| is correct on its first n bits. Then we can compute Dn.

The proof of (ii) is more involved. We follow Solovay [84]. Let D̂ =
Dn+K(n). Note that K(n + K(n)|D̂) = O(1). We can simply compute from
D̂, K(j) for all j ≤ n + K(n), by looking for the length of the least x ∈ Dn

with U(x) = j. Hence we can find the least j such that j+K(j) = n+K(n).
Then we claim that j − n = O(1). To see this note that

K(j)−K(n)| ≤ K(|j − n|) + O(1).

Hence, |j−n| ≤ K(|j−n|)+O(1) ≤ 2 log |j−n|+O(1). Therefore |j−n| =
O(1). Also this means K(j|D̂) = O(1), and hence K(n|D̂) = O(1).

We prove that there is a q such that K(Ω ¹ n− q|D̂)O(1). We construct
a machine M that does the following. M(xy) is defined if

(i) U(x) = n.
(ii) |y| = n.
(iii) Ω ≥ y

2n .

Here of course we are interpreting y ∈ {0, . . . , 2n − 1}. Now we can find q

such that, for all n,

|ΠM |+ K(n− q) + n− q ≤ n + K(n).

But then,

Ω ≥ y

2n−q
iff ΠM (n− q)∗y ∈ Dn+K(n).
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Therefore K(Ω ¹ n − q|D̂) = O(1), since K(n|D̂) = O(1). Clearly, K(Ω ¹
n|Ω ¹ n− q) = O(1). Thus K(Ω ¹ n|D̂) = O(1), as claimed.

In the light of Schnorr’s Theorem, Solovay had asked whether
lim infs K(Ω ¹ n)−n →∞. This was solved affirmatively by Chaitin. How-
ever, there is a very attractive generalization of this due to Miller and Yu
who show that the complexity of a random real must be above n eventually
by “quite a bit.”

Theorem 3.8: (Ample Excess Lemma, Miller and Yu [63]) A real α is
random iff

∑

n∈N
2n−K(α¹n) < ∞.

Proof: One direction is easy. Suppose that α is not 1-random. Then we
know that for all c, for infinitely many n, K(α ¹ n) < n − c. That means
that

∑
n∈N 2n−K(α¹n) = ∞.

Now for the nontrivial direction. For the other direction, note that, for
any m ∈ N,

∑
σ∈2m

∑

n≤m

2n−K(σ¹n) =
∑

σ∈2m

∑
τ≺σ

2|τ |−K(τ)

=
∑

τ∈2≤m

2m−|τ |2|τ |−K(τ) = 2m
∑

τ∈2≤m

2−K(τ) ≤ 2m,

by Kraft’s inequality. Therefore, for any p ∈ N, there are at most 2m/p

strings σ ∈ 2m for which
∑

n≤m 2n−K(σ¹n) ≥ p. This implies that
µ({α ∈ 2ω :

∑
n≤m 2n−K(α¹n) ≥ p}) ≤ 1/p. Define Ip = {α ∈ 2ω :∑

n∈N 2n−K(α¹n) ≥ p}. We can express Ip as a nested union
⋃

m∈N{α ∈
2ω | ∑

n≤m 2n−K(α¹n) ≥ p}. Each member of the nested union has mea-
sure at most 1/p, so µ(Ip) ≤ 1/p. Also note that Ip is a Σ0

1 class. There-
fore, I =

⋂
k∈N I2k is a Martin-Löf test. Finally, note that α ∈ I iff∑

n∈N 2n−K(α¹n) = ∞. Now assume that α ∈ 2ω is 1-random. Then α /∈ I,
because it misses all Martin-Löf tests, so

∑
n∈N 2n−K(α¹n) is finite.

The following corollary was proven for f computable by Solovay.

Corollary 3.3: (Miller and Yu [64]) Suppose that f is an arbitrary function
with

∑
m∈N 2−f(m) = ∞. Suppose that α is 1-random. Then there are

infinitely many m with K(α ¹ m) > m + f(m).
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To finish this section we remark that it was a longstanding question
whether there was a plain complexity characterization of 1-randomness.
This was also solved by Miller and Yu, having been open for 40 years.

Definition 3.3: (Miller and Yu [63]) Define a computable function G : ω →
ω by

G(n) =

{
Ks+1(t), if n = 2〈s,t〉 and Ks+1(t) 6= Ks(t)

n, otherwise.

Theorem 3.9: (Miller and Yu [63]) For x ∈ 2ω, the following are equiva-
lent:

(i) x is 1-random.
(ii) (∀n) C(x ¹ n) ≥ n−K(n)±O(1).
(iii) (∀n) C(x ¹ n) ≥ n − g(n) ± O(1), for every computable g : ω → ω

such that
∑

n∈ω 2−g(n) is finite.
(iv) (∀n) C(x ¹ n) ≥ n−G(n)±O(1).

3.3. Martingales and the prediction paradigm

The very earliest work on randomness was by von Mises [94] and involved
selection, as we have already mentioned. This encapsulates the general view
that random reals should be “unpredictable.” Using computable functions,
attempts were made to give a definition of randomness in terms of com-
putable or partial computable selection procedures. This gives rise to no-
tions of computable or partial computable stochasticity. It turned out that
the correct way to formalize this notion of effective prediction was in terms
of betting strategies.

Definition 3.4: (Levy [49]) A martingale is a function f : 2<ω → R+∪{0}
such that for all σ,

f(σ) =
f(σ0) + f(σ1)

2
.

We say that the martingale succeeds on a real α if lim supn F (α ¹ n) = ∞.

Definition 3.5:

(i) A supermartingale is a function f : 2<ω → R+ ∪ {0} such that for
all σ,

f(σ) ≥ f(σ0) + f(σ1)
2

.
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We say that the supermartingale succeeds on a real α if
lim supn F (α ¹ n) = ∞.

(ii) Similarly we can define a submartingale and its success if we ask
that

f(σ) ≤ f(σ0) + f(σ1)
2

.

Ville [95] proved that null sets correspond to success sets for martingales.
They were used extensively by Doob in the study of stochastic processes.

The principal tool for using martingales is the classical result below. It
says that the distribution of capital must be fair level by level.

Theorem 3.10: (Kolmogorov’s inequality, see Ville [95])

(i) Let f be a (super-) martingale. For any string σ and prefix-free set
X ⊆ {x : ν ¹ x},

2−|ν|f(ν) ≥
∑

x∈X

2−|x|f(x).

(ii) Let Sk(f) = {σ : f(σ) ≥ k}, then

µ(Sk(f)) ≤ f(λ)
1
k

.

Schnorr showed that Martin-Löf randomness corresponded to effective
(super-)martingales failing to succeed.

Definition 3.6: (Schnorr [78]) We will define a (super-, sub-)martingale
f as being effective or computably enumerable if f(σ) is a c.e. real, and
at every stage we have effective approximations to f in the sense that
f(σ) = lims fs(σ), with fs(σ) a computable increasing sequence of rationals.

Theorem 3.11: (Schnorr [78]) A real α is Martin-Löf random iff no effec-
tive (super-)martingale succeeds on α.

Proof: We show that test sets and martingales are essentially the same.
This effectivizes Ville’s work. Firstly suppose that f is an effective (super-
)martingale. Define open sets

Vn = ∪{β : f(β) ≥ 2n}.
Then Vn is clearly a c.e. open set. Furthermore, µ(Vn) ≤ 2−n by Kol-
mogorov’s inequality. Thus {Vn : n ∈ N} is a Martin-Löf test. Moreover,
α ∈ ∩nVn iff lim supn f(α ¹ n) = ∞, by construction. Hence f succeeds on
α iff it fails the derived Martin-Löf test.
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For the other direction, we show how to build a martingale from a
Martin-Löf test. Let {Un : n ∈ N} be a Martin-Löf test. We represent
Un by extensions of a prefix-free set of strings σ, and whenever such a
σ is enumerated into ∪n,sU

s
n, increase F (σ)[s] by one. To maintain the

martingale nature of F , we also increase F by 1 on all extensions of σ, and
by 2−t on the substring of σ of length (|σ| − t).

Corollary 3.4: (Levin [46,102], Schnorr [78])There is a universal effective
martingale. That is there is an effective martingale f , such that for all
martingales g, and reals α, f succeeds on α implies g succeeds on α.

Proof: Apply the proof above to the universal Martin-Löf test.

Notice that any constant multiple of a martingale will succeed on a set
exactly if the martingale does. The following strengthens Corollary 3.4 and
is an analog to saying that K is a minimal information content measure.

Theorem 3.12: (Schnorr [78]) There is a multiplicatively optimal super-
martingale. That is there is an effective supermartingale f such that for all
effective supermartingales g, there is a constant c such that, for all σ,

cf(σ) ≥ g(σ).

Proof: It is easy to construct a computable enumeration of all effective
supermartingales, gi for i ∈ N. (Stop the enumeration when it threatens to
fail the supermartingale condition.) Then we can define

f(σ) =
∑

i∈N
2−igi(σ).

3.4. Supermartingales and continuous semimeasures

In [48], Levin constructed a universal continuous semi-measure. This can
be interpreted as Schnorr’s result, as we now see.

Definition 3.7: A continuous semimeasure is a function δ : [2<ω] → R+ ∪
{0} satisfying

(i) δ([λ]) ≤ 1, and
(ii) δ([σ]) ≥ δ([σ0]) + δ([σ1]).

This would seem an appropriate effective analog of normal Lebesgue
measure treating the space as 2ω rather than 2<ω.
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Levin [48] directly constructed an optimal minimal semimeasure. How-
ever, for any supermartingale F , we can define

δ([σ]) = 2−|σ|F (σ),

and conversely. Then Schnorr’s optimal supermartingale is equivalent to
Levin’s optimal semimeasure. We can also associate a version of Kol-
mogorov complexity to a semimeasure.

KM(σ) = − log δ([σ]),

where δ is the optimal semimeasure. Notice that

KM(σ) = − log F (σ) + |σ|+ O(1),

where F is an optimal supermartingale.
A cornerstone of algorithmic information theory is the Coding Theorem

as we have already seen. This directly shows that the probability a string is
output is essentially the same as K. In the case of continuous semimeasures,
it is natural to ask for a similar result.

It turns out that the relevant complexity measure is monotone complex-
ity. The idea is that attempt to give a real itself a complexity. Thus since
we are thinking of our space as 2ω we are covering the segments of a real
by rather than strings. Thus we can imagine a computable real as being
output from a machine V in segments. (Here the machines can now have
infinite output.) We ask that for all σ, τ if σ ¹ τ and M(σ) ↓, M(τ) ↓,
then M(σ) ¹ M(τ). Now we can again develop Kolmogorov complexity
using monotone machine and the resulting measure is called Km. Clearly
all prefix-free machines are monotone machines. Levin showed that a real
α is random iff for all n,

Km(α ¹ n) = n + O(1).

Levin [48] conjectured that the analogous Coding Theorem held for KM

vs Km. That is, that Km(σ) = KM(σ) + O(1) for all σ.
This attractive conjecture fails.

Theorem 3.13: (Gács [28])

(i) There exists a function f with lims f(s) = ∞, such that for in-
finitely many σ,

Km(σ)−KM(σ) ≥ f(|σ|).
(ii) Indeed, we may choose f to be the inverse of Ackermann’s function.
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Gács proof is very difficult, and it would be nice to have an accessible
proof.

3.5. Schnorr and Computable Randomness

Schnorr argued that Theorem 3.11 showed a flaw in the definition of Martin-
Löf randomness. He argued that randomness should be concerned with
defeating computable strategies rather than computably enumerable strate-
gies, since the latter are fundamentally asymmetric, in the same way that
a computably enumerable set is semi-decidable rather than decidable. He
proposed two variants of the notion of Martin-Löf randomness.

Definition 3.8: (Schnorr randomness, Schnorr [78])

(i) We say that a Martin-Löf test {Vn : n ∈ N} is a Schnorr test iff for
all n,

µ(Vn) = 2−n.

(ii) We say that a real α is Schnorr random iff for all Schnorr tests,
α 6∈ ∩nVn.

Note here 2−n can easily be replaced by any uniformly computable
sequence of computable reals effectively converging to 0.

Definition 3.9: (Schnorr [78])

(i) A martingale f is called computable iff f : 2<ω → R+ ∪ {0} is a
computable function with f(σ) (the index of functions representing
the effective convergence of) a computable real. (That is, we will
be given indices for a computable sequence of rationals {qi : i ∈ N}
so that f(σ) = lims qs and |f(σ)− qs| < 2−s.)

(ii) A real α is called computably random iff for no computable mar-
tingale succeeds on α.

It is possible to give machine characterizations of both of the notions
above. The one for computable randomness is a little untidy, but Downey
and Griffiths [17] gave a nice characterization of Schnorr randomness in
terms of computable machines. Here we say that a machine M is computable
if the measure of its domain is a computable real. Recall here that a real
is called computable iff its dyadic expansion is computable. The domains
of prefix-free machines are, in general, only computably enumerable or left
computable in the sense that they are limits of computable nondecreasing
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sequences of rations. (For example Ω = lims Ωs =
∑

U(σ)↓[s] 2
−|σ|.) Com-

putably enumerable reals play the same role in this theory as computably
enumerable set do in classical computability theory, and will be deal with
in more detail later.)

Theorem 3.14: (Downey and Griffiths [17]) A real α is Schnorr random
iff for all computable machines M , there is a constant c such that, for all
n, KM (α ¹ n) ≥ n− c.

Proof: (sketch) Begin by showing that Kraft-Chaitin works to give a com-
putable machine if the measure of the requirements happens to be a com-
putable real. Then run through the translations of tests to machines and
conversely to make sure that things work.

Incidentally, it is possible to look at time bounded variations here and to
look at, say, polynomial time computable prefix-free complexity. (Random-
ness in polynomial time tends to be studied by martingales.) Kraft-Chaitin
in this setting would seem to be related to things like P, NP, PSPACE,

but this remains unexplored.
There is one other related notion of randomness we should mention. We

define a Kurtz test to be a a Σ0
1 class of measure 1. Then a real A is called

weakly random or Kurtz randomc iff it passes all Kurtz tests. That is A ∈ U

for all such U . There is an easy equivalent notion in terms of null tests,
implicit in Kurtz’s Thesis [45], and explicit in Wang’s.

Definition 3.10: (Wang [96]) A Kurtz null test is a collection {Vn : n ∈ N}
of c.e. open sets, such that

(i) µ(Vn) ≤ 2−n, and
(ii) There is a computable function f : N → (Σ∗)<ω such that f(n) is

a canonical index for a finite set of σ’s, say, σ1, . . . , σn and Vn =
{[σ1], . . . , [σn]}.

Theorem 3.15: (Wang [96], after Kurtz [45]) A real α is Kurtz random
iff it passes all Kurtz null tests.

Proof: We show how measure 1 open sets correspond to Kurtz null tests.
Let U be a c.e. open set with µ(U) = 1. We define Vn in stages. To define

cNow it could be argued that weak randomness is not really a randomness notion at all,
but rather a genericity notion. As we will see, the higher level version is highly relevant
to our story.
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V1, enumerate U until a stage s is found with µ(Us) > 2−1. The let V1 = Us.

Note that V1 is of the correct form, to be able to define f . Of course for Vn

we enumerate enough of U to have µ(Usn
) > 2−n. For the converse reverse

the reasoning.

There are nice martingale characterizations of both Kurtz and Schnorr
randomness.

Theorem 3.16: (Wang [96]) A real α is Kurtz random iff there is no
computable martingale F and nondecreasing computable function h, such
that for almost all n,

F (α ¹ n) > h(n).

Definition 3.11: We say that a computable martingale strongly succeeds
on a real x iff there is a computable unbounded nondecreasing function
h : N→ N such that F (x ¹ n) ≥ h(n) infinitely often.

Theorem 3.17: (Schnorr [78]) A real x is Schnorr random iff no com-
putable martingale strongly succeeds on x.

Finally, Downey, Griffiths and Reid [18] gave a machine characterization
of Kurtz randomness in terms of “computably layered” machines. It is not
hard to see that amongst randomness notions, Martin-Löf implies com-
putable implies Schnorr implies Kurtz. Building on earlier work of Schnorr,
Wang, Downey, LaForte, Reid etc, a complete determination of when degree
had reals of the various kinds of which were not of others. Nies, Stephan
and Terwijn established the following definitive result.

Theorem 3.18: (Nies, Stephan and Terwijn [70]) For every set A, the
following are equivalent.

(I) A is high (i.e. A′′ ≥T ∅′′).
(II) ∃B ≡T A, B is computably random but not Martin-Löf random.

(III) ∃C ≡T A, C is Schnorr random but not computably random.

Outside the high degrees, things collapse.

Theorem 3.19: (Nies, Stephan and Terwijn [70]) Suppose that a set A

is Schnorr random and does not have high degree. Then A is Martin-Löf
random.
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Proof: Suppose that A is not of high degree and covered by the Martin-
Löf test A ⊂ ∩iUi. Let f be the function that computes on argument n the
stage by which Un has enumerated a [σ] ∈ Un,s with A ∈ [σ]. Note that f

is A-computable, and hence computable relative to an oracle which is not
high. It follows that there is a computable function g such that g(n) > f(n)
for infinitely many n. Then consider the test {Vi : i ∈ N}, found by setting
Vi = Ui,g(i). The ∪iVi is a Schnorr-Solovay test (that is, a Solovay test
whose measure is a computable real), and hence A is not Schnorr random.

Finally we remark that for some degrees all the randomness notions
coincide.

Theorem 3.20: (Nies, Stephan, Terwijn [70]) Suppose that A is of
hyperimmune-free degree. Then A is Kurtz random iff A is Martin-Löf
randomd.

Proof: Suppose that A has hyperimmune free degree, and A is Kurtz ran-
dom. Suppose that A is not Martin-Löf random. Then there is a Martin-Löf
test {Vn : n ∈ N}, such that A ∈ ∩nVn. Using A we can compute A-
computably compute a stage g(n) such that A ∈ Vg(n), and without loss of
generality we can suppose that Vg(n+1) ⊇ Vg(n). But as A has hyperimmune
free degree, we can choose a computable function f so that f(n) > g(n)
for all n. Then if we define Wn = Vf(n), being a Kurtz null test such that
A ∈ ∩nWn, a contradiction.

We remark that there has been a lot of work trying to see if there
is a a possible refutation of Schnorr’s criticism by looking at computable
supermartingales, where now, we are allowed to bet on the bits of the
real, but nonmonotonically. We refer the reader to the paper of Merkle et.
al. [58] and [66], the latter being where Muchnik, An. A., A. Semenov, and
V. Uspensky introduced the notion of nonmonotonic betting.

4. Lecture 3: Randomness in General

4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem,

and Sacks’ Theorem

The first relationship of measure theory and computability theory was dis-
covered by de Leeuw, Moore, Shannon, and Shapiro [13] in 1956. Its proof

dActually, Yu Liang observed that the same proof shows that A is Kurtz random iff A
is weakly 2-random, a notion we meet in the next lecture.
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uses an important method called the “majority vote” technique. Recall that
an index e (such as the standard construction of ∅′) is universal if for all
indices f and all sets S, there is a finite string σf such that

WS
f = W

σfbS
e .

Definition 4.1: Define the enumeration probability of A as

P (A) = µ({X ∈ 2ω : WX
e = A}.

Theorem 4.1: (de Leeuw, Moore, Shannon, and Shapiro, [13]) If P (A) > 0
then A is computably enumerable.

Proof: If P (A) > 0 then for some e, De = {X : A = WX
e } has positive

measure. By the Lebesgue Density Theorem, there is a string σ such that
the relative measure of De above σ is greater than 1

2 . If we let the oracles
extending σ vote on membership in De, then we get the right answer.
That is, enumerate n into A whenever more than half (by measure) of the
extensions X of σ put n into WX

e .

Corollary 4.1: (Sacks) If A is noncomputable, then

A≤T =def {B : A ≤T B},
has measure 0.

Solovay [84] examined the relationship between P (A) > 0 and the least
index for Wi = A. Let

H(A) = d− log P (A)e and,

I(A) = min{K(i) : Wi = A}.
Theorem 4.2: (Solovay [84])

I(A) ≤ 3H(A) + K(H(A)) + O(1).

The proof is combinatorial, definitely nontrivial, and uses a clever lemma
of Martin. It is unknown if the constant 3 can be improved. The point here
is that the original proof using majority vote relies on the Lebesgue Density
Theorem, and hence is highly noneffective in obtaining the index for A.

There have been a lot of extensions of the results above. For instance,
the same technique can be used to prove the following.

Theorem 4.3: (Stillwell [89]) Suppose that µ({C : D ≤T A ⊕ C}) > 0.

Then C ≤T A.



July 4, 2005 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) Singapore

Five Lectures on Algorithmic Randomness 37

At this stage a good exercise to test your understanding is to prove this
result. An easy corollary to this result is the following.

Corollary 4.2: (Stillwell [89]) For any a,b, (a∪b)∩(a∪c) = a, for almost
all c.

Proof: Take D ≤T A⊕B. Then by Theorem 4.3, if D ≤T A⊕C for more
than a measure 0 set of C, D ≤T A. Hence for almost all C,

D ≤T A⊕B ∧D ≤T A⊕ C → D ≤T A.

Similarly it can be shown that almost all degrees obey

a′ = a ∪ 0′,

That is, almost all degrees are GL1. Indeed (Stillwell), for almost all b,
(a ∪ b)′ = a′ ∪ b, and a(n) = a ∪ 0(n). Similarly, for almost all a and b,
a ∩ b = 0. These kind of arguments can be assembled into a nice result of
John Stillwell.

Theorem 4.4: The “almost all” theory of degrees is decidable.

Here, variables a,b, c, . . . vary over arbitrary degrees. Terms are built
from ′ (jump), ∪,∩. An atomic formula is one of the form t1 ≤ t2 for terms
t1, t2, and formulae in general are built from atomic ones and ∧, and the
quantifier ∀ interpreted to mean “for almost all.’

The proof is not difficult. For instance, the Corollary above allows us
to compute the meet of two terms of the form a1 ∪ a2 ∪ · · · ∪ 0(f) and
a1∪b2∪· · ·∪0(k) as c1∪c2∪· · ·∪0(min{f ,k}), where ci are variables common
to both terms. For example (a1∪a3∪0(4))∩(a1∪a5∪a7∪0(6)) = a1∪0(4).

These allow for giving normal forms for formulae, with Fubini’s Theorem
handling nested quantifiers. We refer to Stillwell [89] of Downey-Hirschfeldt
[19] for full details.

4.2. Coding into randoms

The results above might lead us to suspect that it is not possible to code
into random reals, in general. As we will see, this is not the case.

We begin with a famous result often attributed only to Gács [29], but
whose first proof was by Kučera [37].

Theorem 4.5: (Kučera [37], Gács [29]) Every set is wtt reducible to a
Martin-Löf random set.
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It is by no means clear that this should be true. The problem is that a
random real should not have information easily decodable, or else it would
not be random. For instance, we could not expect that the reduction would
be, say, an m-reduction. The most attractive proof of this result known to
the author is due to Merkle and Mihailovic [57]. The following lemma is the
key. It says that for any martingale d and any interval of length k, there
are at least k paths extending v of length `(δ, k) where d cannot increase
its capital more than a factor of δ while betting on I, no matter how d

behaves.

Lemma 4.1: (Folklore, see Merkle and Mihailovic [57]) Given a rational
δ > 1 and k ∈ Z+, we can compute a length `(δ, k), such that for any
martingale d, and any word w,

|{w ∈ 2`(δ,k) : d(vw) ≤ δd(v)}| ≥ k.

Proof: For any martingale d word w, and k we have

d(v) = 2−k
∑

|u|=k

d(vu).

By Kolmogorov’s inequality, for any given ` and v the average of d(vw) over
words of length ` is d(v). Thus we have

|{|w| = ` : d(vw) > δd(v)}|
2`

<
1
δ
.

Since δ > 1, 1 − δ−1 > 0 and hence it will suffice to have `(δ, k) ≥
log k

1−δ−1 = log k + log δ − log(δ − 1).

Now we prove the Kučera-Gács Theorem. This proof is due to Merkle
and Mihailovic [57]. Let r0 > r1 > . . . be a collection of positive rationals
where the sequence βi i ∈ N converges, where

βi = Πj≤irj .

Let `s = `(rs, 2). Partition N into intervals {Is : s ∈ N} with Is of size `s.
The by Lemma 4.1, there for any word v, and any martingale d, there are
at least two words w of length `s with d(vw) ≤ rsd(v).

We will construct a language R to which a given set X is wtt reducible.
At step s we will specify R on Is. Let d be a universal c.e. martingale. We
say that w of length Is is admissible if s = 0 and d(w) ≤ β0, and for s > 0,
if

d(vw) ≤ βs where v = R ¹ (I0 ∪ · · · ∪ Is−1)
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We can argue that at every step there are at least 2 admissible extensions.
This is easily seen by induction and the choice of the βi as the product of
the rj for j < i. Now to specify R, armed with R ¹ (I0 ∪ · · · ∪ Is−1), we
will choose the lexicographically least admissible extension if s 6∈ X and
the lexicographically greatest one if s ∈ X. That ends the proof.

4.3. Kučera Coding

Using similar coding with blocks, Kučera was able to prove the following.

Theorem 4.6: (Kučera [37]) Suppose that a ≥ 0′. Then a is Martin-Löf
random.

There are several proofs of this result. The first is to derive it as a direct
corollary of the Kučera-Gács Theorem.

Proof: (First proof) To derive this result from the proof of the Kučera-
Gács Theorem. The point is that in that proof, if ∅′ ≤T X, then X can figure
out R, by calculating the leftmost and rightmost paths. Hence X ≡T R.

We will also give Kučera’s original proof which is interesting and useful
in its own right.

Kučera’s proof uses an auxiliary construction of a universal Martin-Löf
test which particularly Kučera has found ingenious applications of.

Kučera’s Construction of a universal Martin-Löf test: Given
n ∈ N, consider all indices e > n. For each such e, enumerate all elements
of W{e}(e) into Un (where we understand that W{e}(e) is empty if {e}(e) is
undefined) as long as the condition

∑

w∈W{e}(e)

2|w| < 2−e

is satisfied. Then
∑

w∈Un

2|w| ≤
∑
e>n

2−e = 2−n.

It is not difficult to show that this is indeed a universal Martin-Löf test.
The key ingredient in the proof of Theorem 4.6 is a fact about intersections
of fat classes which resembles that used in the proof of the Kučera-Gács
Theorem.

Lemma 4.2: Let Pn denote the complement of the n-th set of the uni-
versal Martin-Löf test constructed above. If A is Π0

1, then there exists a
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computable function γ : Σ∗ × N→ Q>0 such that for any w ∈ Σ∗ and any
n ∈ N then

Pn ∩A ∩ [w] 6= ∅ → µ(A ∩ [w]) ≥ γ(w, n).

The critical thing, again, is that the function γ is computable. Hence,
bound the measure of A ∩ [w] effectively from below.

The proof of Theorem 4.6 resembles the proof of the Friedberg Cupping
Theorem. We construct a perfect tree T ≤T ∅′ such that [T ] ⊆ U0 and
every path codes a set B ⊆ N. This coding will be effective due to the
preceding lemma, which allows us to compute an effective lower bound for
the measure of U0.

We B into an infinite path of U0. Set T (ε) = ε. Assume now for n ∈ N,
T (σ) where σ = B ¹ n has been constructed, such that T (σ) ≺ U0. To
define T (B ¹ n + 1), compute (computably from ∅′) the smallest number
nσ such that the leftmost and the rightmost path of [T (σ)]∩U0 differ (such
an nσ has to exist since a path in U0 cannot be isolated). Let these be
Lσ and Rσ, respectively. Choose T (B ¹ n + 1) = Lσ ¹ nσ if B(n) = 0,
T (B ¹ n + 1) = Rσ ¹ nσ, otherwise.

Suppose B ≥T ∅′. Claim B ≡T T (B). B ≥T T (B) follows immediately
from the construction, which is computable from ∅′. To show B ≤T T (B),
we employ Lemma 4.2. For instance, to compute B(0), Lemma 4.2 gives us
a lower bound on µ(U0), say 2−b0 , b0 ∈ N. We know then that the leftmost
and the rightmost path of U0 ¹ b0 must differ (the tree must branch because
its measure is too large). Given T (B) ¹ b0 we compute U0 till it turns out
to be the left- or rightmost path. Obviously, using Lemma 4.2, this decision
procedure can be continued inductively to decide B(n) for any n ∈ N. That
concludes the proof of Theorem 4.6.

The reader will immediately notice the similar use of left and right blocks
as in the proof of Kučera-Gács. By the generalized low basis theorem, it can
be seen that since the class of random is perfect, there are random reals of
all jumps. Below 0′ this is still true but requires more elaborate methods.

Theorem 4.7: (Kučera [39], Downey and Miller [25]e) If P is a Π0
1 class

such that µ(P) > 0, then S ≥T ∅′ is Σ0
2 implies that there is a ∆0

2 real
A ∈ P such that A′ ≡T S.

eThis results was stated without proof in Kučera [39], where he had constructed a high
incomplete 1-random real.
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Frank Stephan has shown that these random reals above 0′ are in essence
the only computationally powerful reals.

Theorem 4.8: (Stephan [88]) Suppose that a is PA and 1-random. Then
0′ ≤T a.

4.4. n-randomness

In the same way that the arithmetical hierarchy provides a calibration of
computational power, we can analogously calibrate randomness.

Definition 4.2:

(i) A Σ0
n test is a computable collection {Vn : n ∈ N} of Σ0

n classes
such that µ(Vk) ≤ 2−k.

(ii) A real α is Σ0
n-random or n-random iff it passes all Σ0

n tests.
(iii) One can similarly define Π0

n, ∆0
n etc tests and randomness.

(iv) A real α is called arithmetically random iff for any n, α is n-
random.

We warn the reader that whilst we can use open sets to define Martin-
Löf randomness, we apparently need to be careful to use classes for higher
levels. For example, take the Σ0

2 class consisting of reals that are always
zero from some point onwards. This Σ0

2 class is not equivalent to one of the
form {[σ] : σ ∈ W} for some Σ0

2 set W . However for n-randomness, this
apparent difference is illusory.

Open sets can be resurrected in the n > 1 cases also, as we now see.

Lemma 4.3: (Kurtz [45]) Let q ∈ Q. The predicate

“µ(S) > q′′

is uniformly Σ0
n where S is a Σ0

n class. The predicate

“µ(S) < q′′

is uniformly Σ0
n where S is a Π0

n class.

This Lemma allows for the following, which says that we are able to use
open sets and Σ∅

(n)

1 open classes in place of Σ0
n+1 classes.

Theorem 4.9: (Kurtz [45], Kautz [34]) Let q ∈ Q.

(i) For S a Σ0
n class, we can uniformly (i.e. uniformly in q and a Σ0

n

index for S) computably compute the index of a Σ∅
(n−1)

1 class which
is also an open Σ0

n class U ⊇ S and µ(U)− µ(S) < q.
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(ii) For T a Π0
n class T , we can uniformly computably compute the

index of a Π∅
(n−1)

1 class which is also a closed Π0
n class V ⊆ T and

µ(T )− µ(V ) < q.

(iii) For each Σ0
n class S we can uniformly in ∅(n) compute a closed

Π0
n−1 class V ⊆ S such that µ(S)− µ(V ) < q. Moreover, if µ(S) is

a real computable from ∅(n−1) then the index for V can be found
computably from ∅(n−1).

(iv) For a Π0
n class T we can computably from ∅(n) obtain an open

Σ0
n−1 class U ⊇ T such that µ(U)− µ(T ) < q. Moreover, if µ(S) is

a real computable from ∅(n−1) then the index for U can be found
computably from ∅(n−1).

The upshot is that a real is n + 1-random iff it is 1-random relative
to ∅(n). We remark that at least for 2-randomness, this characterization is
implicit in Solovay’s notes [84], where he passes from randomness relativized
to ∅′, and 2-randomness without comment.

With other randomness notions care is needed. Similar relativization
will work with Schnorr and computable randomness, but if we define a set
to be weakly n-random iff it is in each Σ0

n class of measure 1, this is not
the same as being Kurtz random relative to ∅(n−1), which is a genericity
notion. The best we can do is the following.

Lemma 4.4: (Kurtz [45], Kautz [34]) Let n ≥ 2.

(i) Then for any Σ0
n class C we can uniformly and computably obtain

the index of a Σ∅
(n−2)

2 -class Ĉ ⊆ C with µ(Ĉ) = µ(C).
(ii) For any Π0

n class V we can uniformly and computably obtain the
index of a Π∅

(n−2)

2 -class V̂ ⊇ V with µ(V̂ ) = µ(V ).
(iii) Thus, for n ≥ 2, α is Kurtz n-random iff α is in every Σ∅

(n−2)

2 -class
of measure 1.

Note that Kurtz 2-randomness is very natural. A real is weakly 2-
random iff it avoids all Π0

2 nullsets. This means that it is not in ∩nUn

for any computable collection of c.e. open sets with Un → 0. These are
just Martin-Löf tests without the radius of convergence being effective.
Similarly, α is Kurtz n-random iff for every ∅(n) computable sequence of
open Σ∅

(n−2)

1 classes {Si : i ∈ N}, with µ(Si) ≤ 2−i, α 6∈ ∩iSi. Weak
2-randomness was first studied by Gaifman and Snir [30].

The following is more or less immediate.

Theorem 4.10: (Kurtz [45])
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(i) Every n-random real is Kurtz n-random.
(ii) Every Kurtz n + 1-random real is n-random.

None of these implications can be reversed even for degrees. (Kurtz [45],
Kautz [34]) The most difficult non-containment can be shown by construct-
ing for each CEA(∅(n)) degree a > 0(n) a weakly n+1-random real X com-
putably enumerable in (∅(n), with X ⊕ ∅(n) of degree a. But then any such
n + 1 random real Y must have Y ⊕ ∅(n) of degree 0(n+1). This method is
due to Downey and Hirschfeldt [19], and is not a relativization of the fact
that one can have Kurtz random c.e. reals in every nonzero c.e. degree, but
rather a finite injury argument over 0(n) argument.

4.5. Notes on 2-randoms

Before we turn to the general theory, and 0-1 laws I would like to mention
some beautiful results of Nies-Stephan-Terwijn and Miller relating “natu-
ral” randomness notions to 2-randomness. I should remark that Veronica
Becher and Santiago Figueira have examples of somewhat natural n-random
sets, along the lines of Post’s Theorem for classical computability. But our
concern in the present section are for some completely unexpected results
relating plain complexity to 2-randomness.

We have seen that Martin-Löf showed that no real can have C(α ¹
n) ≥ n−d for all n, due to complexity oscillations. But it might be possible
that some other natural C-condition might guarantee randomness. We have
already met one in Theorem 3.9. There was, however, an earlier natural
condition which had been analysed in this context. We need the following
definitions.

Definition 4.3: We say that a real α is strongly Chaitin random iff

∃∞n[(K(α ¹ n) > n + K(n)−O(1)].

Definition 4.4: We say that α is Kolmogorov randomf iff ∃∞n[(C(α ¹
n) > n−O(1)].

fThere are some problems with terminology here. Kolmogorov did not actually con-
struct or even name such reals, but he was the first more or less to define randomness
for strings via initial segment plain complexity. The first person to actually construct
what we are calling Kolmogorov random strings was Martin-Löf, whose name is already
associated with 1-randomness. Schnorr was the first person to show that the notions of
Kolmogorov randomness and Martin-Löf randomness were distinct. Again we can’t use
Schnorr randomness since Schnorr’s name is associated with a randomness notion us-
ing tests of computable measure. Similar problems occur with our definition of strongly
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We have seen that, should they exist, every strongly Chaitin random real
is Kolmogorov random. This follows by Solovay’s Theorem 2.11. Strongly
Chaitin random reals do exist.

Lemma 4.5: (Yu, Ding, Downey [100], after Solovay [84])

(i) Suppose that α is 3-random. Then

∃∞n(K(α ¹ n) = n + K(n) + O(1).

(ii) Suppose that α is 3-random. Then

∃∞n(C(α ¹ n) = n + O(1).

Proof: Consider the test Vc = {α : ∃m∀n(n > m → K(α ¹ n) ≤
n + K(n) − c)}. Now K ≤T ∅′, and hence Vc is Σ∅

′′
1 , and hence Σ0

3.

Now we estimate the size of Vc. We show in fact µ(Vc) ≤ O(2−c). Let
Uc,n = {x| (∀m ≥ n)K(y ¹ m) ≤ m + K(n) − c}. It suffices to get
an estimate µ(Uc,n) = O(2−c) uniform in n since Vc ⊆ ∪n∈ωUc,n. But
µ(Uc,n) ≤ 2−m|{σ : |σ| = m &K(σ) ≤ m + K(n) − c} for any m > n

and by the Counting Theorem this last expression is O(2−c). Thus this is
a 3-Martin-Löf test. Hence (i) and thus (ii) follow.

Now contrary to claims in the literature, no ∆0
2 real is Kolmogorov ran-

dom. (Yu, Ding, Downey [100]) The following clever argument generalized
the technique of [100], and proved something much stronger.

Theorem 4.11: (Nies, Stephan and Terwijn [70]) Suppose that α is Kol-
mogorov random. Then α is 2-random.

Proof: Recall that our universal prefix-free machines are prefix-free rela-
tive to all oracles. Suppose that α is not 2-random. Let K ′ denote K∅′ . Then
for all c, ∃∞n(K ′(α ¹ n) < n − c. Let σ denote the string witnessing this,

Chaitin random reals. These were never defined by Chaitin, nor constructed by him. They
were first constructed by Solovay who has yet another well-known notion of randomness
associated with him which is equivalent to 1-randomness. Indeed, Chaitin did have a
notion of strongly Chaitin random reals, which is the same as 1-randomness, and is not
widely quoted. However, again Chaitin did look at the associated notion for finite strings,
where he proved the fundamental lemma that K(σ) ≤ n + K(|σ|) + O(1) which allows
for the definition of the reals. It is also known that Loveland in his 1969 ACM paper pro-
posed equivalent notions via uniform Kolmogorov complexity. Again, Loveland’s name
is commonly associated with yet another notion of complexity : Kolmogorov-Loveland
stochasticity.
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so that U∅′(σ) = α ¹ n. Let s be sufficiently large that U∅′(σ) ↓ [s], with ∅′
correct use. Then consider the plain machine M which runs as follows. M

looks at the input ν and attempts to parse it as σ′τ , where it runs U with
oracle ∅′[t] for t steps, where t = |τ | steps, and for all such simulations, and
σ if it gets a result it outputs U∅′(σ′)[t]τ. Then for inputs with t > s, we
have M(στ) = α ¹ n + t, and hence α is not Kolmogorov random.

Notice that the machine we construct above actually runs (or at least)
can run in time polynomial in the size of the input. This then gives to
following useful and somewhat remarkable result.

Corollary 4.3: (Nies, Stephan and Terwijn [70]) A real α is 2-random iff
for all computable g, with g(n) > n2, ∃∞n(Cg(α ¹ n) ≥ n − O(1)), where
Cg denotes the plain complexity with time bound g(n) for computations of
length n.

Proof: Use the proof above, noting that the plain machine runs in linear
time. For the other direction, we lose a quantifier because of the time bound
g.

Miller, then somewhat later, Nies, Stephan and Terwijn were able to
prove the following equally remarkable result.

Theorem 4.12: (Miller [56], Nies, Stephan and Terwijn [70]) A real α is
2-random iff α is Kolmogorov random.

The point here is that there is no a priori reason that Kolmogorov ran-
domness (defined totally in terms of plain complexity) should coincide with
anything involving K, especially given the complex relationships between
these two complexities. We recall in Definition 2.2, we defined a compres-
sion function which was a function emulating U−1, was 1− 1 and for all x

|F (x)| ≤ C(x). This notion was invented by Nies, Stephan, and Terwijn for
the theorem we are now considering. (The Miller proof was different, and
more complex.) For a compression function F we can define F -Kolmogorov
complexity CF : α is F -Kolmogorov random iff ∃∞n(CF (α ¹ n) > n−O(1)).

The critical lemma was the following.

Lemma 4.6: (Nies, Stephan, and Terwijn [70]) If Z is 2-random relative
a compression function F , then Z is Kolmogorov F -random.

The final result if then obtained by using a low compression function to
same a quantifier.
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4.6. Kučera strikes again

We have seen that most random reals are not below 0′ and hence are not
PA. Thus they are computationally feeble. However, Kučera showed that
randoms do have some computational power. Kučera [39] showed that they
can compute FPF functions. Recall that this means that they can compute
a function g with g(e) 6= ϕe(e) for all e. The point, however, is that in
a construction, the ability to compute a DNC {0, 1}-valued function (i.e.
being PA) is a positive thing in that by saying what something is not we
will know what it is. In the general case, being FPF only allows us to say
what something is not. So this computational power is negative.

Kučera was able to prove a significant generalization of the fact that
random reals are FPF. We need the following definition.

Definition 4.5: (Jockusch, Lerman, Soare, and Solovay [33]) (a) We define
a relation A ∼n B as follows.

(i) A = B if n = 0.
(ii) A =∗ B if n = 1.
(iii) A(n−2) ≡T B(n−2), if n ≥ 2.

(b) A total function f is called n-fixed point free (n-FPF) iff for all x,

Wf(x) 6∼n Wx.

Kučera was able to extend his earlier result that random reals were FPF
with the following.

Theorem 4.13: (Kučera [40]) Suppose that A is n + 1 random. Then A

computes an n-FPF function.

The proof is not really difficult, but is rather clever, and involves exten-
sive use of Kučera’s construction of a universal Martin-Löf test. We refer
the reader to [40] or Downey and Hirschfeldt [19]. Strictly speaking the
proof only uses weak n + 1-randomness.

4.7. van Lambalgen’s Theorem

In this section, we will study independence results for random reals. We
begin with a central result concerning randomness, which has turned out
to play a very important role in the theory.

We begin with a simple Lemma.

Theorem 4.14: (van Lambalgen, Kurtz, Kautz)
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(i) If A⊕B is n-random so is A.
(ii) If A is n-random so is A[n], the n-th column of A.
(iii) If A⊕B is n-random, then A is n−B−random.

Proof: (i) (e.g. n = 1.) If A is not random, then A ∈ [σ] for infinitely many
[σ] in some Solovay test V . Then A⊕B would be in V̂ , where [σ ⊕ τ ] ∈ V̂

for all τ with |τ | = |σ| and σ ∈ V . The measure of V̂ is the same as V . (iii)
and (ii) are similar.

Similar methods also who that if A ⊕ B is random, then A 6≤T B and
hence there are no minimal random degrees. The most important fact is
that the converse of Theorem 4.14 is also true.

Theorem 4.15: (van Lambalgen’s Theorem [93])

(i) If A n-random and B is n−A−random, then A⊕B is n-random.
(ii) Hence, A⊕B is n-random iff A n-random and B is n−A−random.

Proof: Suppose A⊕B is not random. We have A⊕B ∈ ⋂
n Wn where Wn

is uniformly Σ0
1 with µ(Wn) ≤ 1/2n. By passing to a subsequence we may

assume that µ(Wn) ≤ 1/22n.
Put

Un = {X | µ({Y | X ⊕ Y ∈ Wn}) > 1/2n}.
Note that Un is uniformly Σ0

1. Moreover µ(Un) ≤ 1/2n for all n, because
otherwise we would have

µ(Wn) > µ(Un) · 1
2n

>
1
2n
· 1
2n

=
1

22n
,

a contradiction.
Since A is random, it follows that {n | A ∈ Un} is finite. Thus for all

but finitely many n we have A /∈ Un, i.e.,

µ({Y | A⊕ Y ∈ Wn}) ≤ 1/2n.

Put V A
n = {Y | A ⊕ Y ∈ Wn}. Then µ(V A

n ) ≤ 1/2n for all but finitely
many n, and V A

n is uniformly Σ0,A
1 . Moreover B ∈ ⋂

n V A
n , contradicting

the assumption that B is random over A.

This result will be used extensively in the next Lecture. Here is a really
pretty application of van Lambalgen’s Theorem.

Theorem 4.16: (Miller and Yu [63]) Suppose that A is random and B is
n-random. Suppose also that A ≤T B. Then A is n-random.
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Proof: (We do n = 2.) If B is 2-random, then B is 1-Ω-random (as Ω ≡T

∅′.) Hence by van Lambalgen’s Theorem, Ω ⊕ B is random. Thus, again
by van Lambalgen’s Theorem, Ω is 1-B-random. But A ≤T B. Hence, Ω is
1-A-random. Hence Ω⊕A is random, again by van Lambalgen’s Theorem.
Thus, A is 1-Ω-random. That is, A is 2-random.

For the case n + 1, there is a 1-random Z with Z ≡T ∅(n) by Kučera’s
Coding Theorem. If B is n-random then B is n-Z-random. Thus B ⊕ Z

is random. Hence Z is n-B-random. Hence Z is n-A-random, as A ≤T B.
Thus A is n-random.

Actually, Miller and Yu [63] have also proven for any (not necessarily
random Z), any random below a Z-random is itself Z-random. (Of course,
this does not use van Lambalgen.)

A nice corollary of van Lambalgen’s Theorem and Sacks’ Theorem is
the following.

Corollary 4.4: (Kautz [34]) Let n ≥ 2. Then if a and b are relatively
n-random, they form a minimal pair.

Proof: Suppose that D ≤T , A, B. Then A ∈ {E : ΦE
e = D}. By Sacks’

Theorem, this set is a ΠD
2 -nullset, and hence A is not 2-D-random, and

hence not 2-B-random.

4.8. Effective 0-1 Laws

Classically we know that any measurable class of reals closed under finite
translations has measure 0 or measure 1. Stillwell’s Theorem and other
consideration suggest that there should be refined computability-theoretical
analogs of this.

The following lemma is the real basis of these results.

Lemma 4.7: (Kučera-Kurtz, [34], Lemma IV.2.1) Let D be a real, and
n ≥ 1. Let T be a ΠD

n class of positive measure. Then T contains a member
of every n-D-random degree. Moreover, if A is any n-D-random, then there
is some string σ and real B such that A = σB and B ∈ T .

Proof: For simplicity, we do n = 1 with D computable, the general case
being analogous. We let T be a Π0

1 class of positive measure, and S = T ,

so that there is a c.e. set of strings W with S = ∪{[σ] : σ ∈ W}. Moreover
we can assume W is prefix-free.
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Choose rational r < 1 with µ(S) < r. We define tests. Let E0 = S

and Es+1 = {στ : σ ∈ Es ∧ τ ∈ W}. Then µ(Es) ≤ rs by induction on
s. Now suppose that for every B with A = σB, A ∈ S. Then A ∈ ∩sEs,
and hence A is not random. Thus for any random B, there is some σ with
σB ∈ S = T.

I remark that this can also be gotten from the lemma for Kučera Coding.
The following is an immediate Corollary to this Lemma.

Corollary 4.5: (Kurtz [45], also Kautz [34])

(i) Every degree invariant Σ0
n+1-class or Π0

n+1 either contains all n-
random sets or no n-random sets.

(ii) In fact the same is true for any such class closed under translations,
and such that for all A, if A ∈ S, then for any string σ, σA ∈ S.

Here are some examples of results proven using this fact.

Corollary 4.6: (Kurtz and others)

(i) The class {A : A has non-minimal degree } has measure 1, and
includes every 1-random set.

(ii) The class {A⊕B : A,B form a minimal pair } has measure 1, and
includes all 2-random but not every 1-random set.

(iii) The class {A : deg(A) is hyperimmune } has measure 1 and includes
all 2-random but not every 1-random set.

The proofs of (i) and (ii) are done by analyzing the proofs of almost
everywhere behaviour. For instance (i) follows since no random real has
minimal degree, and the part for 2-randoms follows by Corollary 4.4 We
will prove (iii) in Lecture 5, where we will look at measure-theoretical injury
priority arguments.

The second part of (ii) is trickier. It uses a result of Kučera.

Theorem 4.17: (Kučera [38]) If A and B are 1-random with A,B <T ∅′
then A and B do not form a minimal pair.

Proof: If a is random then we have already seen that it is DNC. Choose
a low random below 0′ and using van Lambalgen’s Theorem, get another
Turing incomparable with it Choose a low random below 0′ and using van
Lambalgen’s Theorem, get another Turing incomparable with it. It is a
consequence of Kučera’s priority free solution to Post’s Problem (in [38])
that no pair of ∆0

2 of FPF degrees form a minimal pair.
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Hirschfeldt, Nies, and Stephan [32] have shown that the degrees below
such pairs are K-trivial.

4.9. Omega operators

Unfortunately, I don’t have time to discuss the interesting results looking
at Ω, or, rather, Omegas as operators on Cantor Space. Here we push the
possible analogy that Ω looks like the halting problem. The first question
was whether it was degree invariant.

In fact there are reals A =∗ B such that ΩA and ΩB are relatively
random!

There are many other very interesting results such as the fact that
that Omega operators are lower semicontinuous but not continuous, and
moreover, that they are continuous exactly at the 1-generic reals. These
results will hopefully be presented by one of the other co-authors at this
conference, and we otherwise refer the reader to Downey, Hirschfeldt, Miller
and Nies [21] for details.

5. Lecture 4: Calibrating Randomness

Our goal is to try to calibrate levels of randomness and the vehicle we
will use is comparing initial segment complexities. The idea is that if the
initial segment complexity of a real determines whether it is random, then
it also should determine how random the relevant real is. Naturally, other
approaches suggest themselves, supermartingale growth rates, etc. More on
this later.

5.1. Measures of relative randomness and the

Kučera-Slaman Theorem

One of the operators in classical computability theory is the jump operator.
In some sense Ω, the halting probability, is a kind of analog to ∅′, the halting
set. The fact that ∅′ is computably unique is Myhill’s Theorem. Solovay
[84] realized that Ω was apparently machine dependent, and proposed an
analytic version of m-reducibility that he showed preserved randomness.

Definition 5.1: (Solovay [84]) We say that a real α is Solovay reducible
to β (or β dominates α), α ≤S β, iff there is a constant c and a partial
computable function f , so that for all q ∈ Q, with q < β,

c(β − q) > α− f(q).
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The intuition is that a sequence of rationals converging to β can be used
to generate one converging to α at the same rate up to a constant factor.
Solovay reducibility is particularly relevant to the measure-theoretical ana-
log of the computably enumerable sets, the computably enumerable reals,
which may be defined as the measures of the domains of prefix-free ma-
chines. If α ≤S β, then given a sequence of rationals converging to some
β and f we can generate a sequence converging to α. We then get the
following characterization of Solovay reducibility.

Lemma 5.1: (Calude, Hertling, Khoussainov, Wang [8]) For c.e. reals,
α ≤S β iff for all c.e. qi → β and c.e. ri → α, there exists a total computable
g, and a constant c, such that, for all m,

c(β − qm) > α− rg(m).

The proof of this result applies equally well to a β computable sequence
qi → β, and hence this lemma means that the ability to compute a close
approximation to β (say the first n bits) allows us to compute α to within
some close approximation (say 2−n+d) means that the following holds.

Proposition 5.1: (Folklore) For any reals α and β, if α ≤S β, then α ≤T

β.

Since there are only O(22d) many reals within a radius of 2−n+d of
a string representing a rational whose dyadic expansion has length n, it
follows that ≤S has the Solovay Property

Proposition 5.2: (Solovay [84]) If α ≤S β then there is a c such that, for
all n,

K(α ¹ n) ≤ K(β ¹ n) + c.

The same also holds for C in place of K.

Thus we will regard ≤S as an initial segment measure of relative ran-
domness. We can compactly write the facts expressed in Proposition 5.2
as

≤S implies ≤C , and,

≤S implies ≤K .

Notice that, by Schnorr’s Theorem, if Ω ≤S β, then β is Martin-Löf
random.
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There is a particularly nice characterization of ≤S in terms of + for c.e.
reals.

Lemma 5.2: (Downey, Hirschfeldt, Nies) α ≤S β, with α and β c.e. reals,
iff there is a constant c and a c.e. real γ such that cβ = α + γ.

The proof is fairly easy. Roughly, the proof works by synchronizing the
enumerations so that the approximation to α is “covered” by one for β,
(i.e. αs+1−αs generates a change in cα of the same order. Then we use the
amount needed for this covering for α and the excess goes into γs+1 − γs.

The formal statement of the lemma being used is the following.

Lemma 5.3: (Calude, Hertling, Khoussainov, Wang, [8]) For c.e. reals,
α ≤S β iff for all c.e. qi → β there exists a total computable g, and a
constant c, such that, for all m,

c(β − qm) > α− rg(m).

Solovay reducibility is particularly relevant to computably enumerable
reals as we soon see. Recall that such reals are the measures of the domains
of prefix-free machines. Of course, if M is prefix-free, then x = µ(dom(M))
is the limit of the following computable increasing sequence of rations.

x = lim
s

xs where xs = µ(dom(Ms)) =
∑

Ms(σ)↓
2−|σ|.

Equivalently, that is, we can define a c.e. real as the limit of a nondecreas-
ing sequence of rationals. Solovay called a real β Ω-like if β was computably
enumerable and Ω ≤S β. He remarked that he thought it was very inter-
esting that many of the properties of Ω (which seems machine dependent)
also held for Ω-like reals. The first piece of the puzzle was found by Calude,
Hertling, Khoussainov, and Wang.

Theorem 5.1: (Calude, Hertling, Khoussainov, Wang [8]) Suppose that β

is a c.e. real and that Ω ≤S β. Then β is a halting probability. That is,
there is a universal machine Û such that µ(dom(Û)) = β.

Proof: Here we use Lemma 5.3. Suppose that we are given monotone enu-
merations Ω = lims Ωs and β = lims βs, and f and c witnessing Ω ≤S β so
that for all rationals q < β, f(q) ↓< Ω and 2c(β − q) > Ω − f(q). We will
build our machine M in stages using KC-axioms.

It is not hard to use c and f to speed up the enumeration of β so that
such that for all s, 2c(βs+1 − βs) > Ωs+1 − Ωs. Then at stage s, suppose



July 4, 2005 Master Review Vol. 9in x 6in – (for Lecture Note Series, IMS, NUS) Singapore

Five Lectures on Algorithmic Randomness 53

that U(σ) ↓, so that σ enters the domain of U , and hence Ωs+1 − Ωs ≥
2−|σ|. We can assume that exactly on string enters the domain of U . Then
βs+1−βs ≥ 2−(|σ|+c). Hence we build M via the KC-axioms 〈|σ|+c, U(σ)〉.
The result follows.

The final piece of the puzzle was provided by the following lovely result
of Kučera and Slaman.

Theorem 5.2: (Kučera and Slaman [41]) Suppose that α is random and
c.e.. Then for all c.e. reals β, β ≤S α.

Proof: Suppose that α is random and β is a c.e. real. We need to show
that β ≤S α. We enumerate a Martin-Löf test Fn : n ∈ ω in stages. Let
αs → α and βs → β be a computable sequence of rationals converging to
β monotonically. We assume that βs < βs+1. At stage s if αs ∈ F s

n, do
nothing, else put (αs, αs +2−n(βs+1−βts)) into F s+1

n , where ts denotes the
last stage we put something into into Fn. One verifies that µ(Fn) < 2−n.

Thus the Fn define a Martin-Löf test. As α is random, there is a n such
that for all m ≥ n, α 6∈ Fm. This shows that β ≤S α with constant 2n.

Corollary 5.1: For c.e. reals α the following are equivalent:

(i) α is Martin-Löf random.
(ii) For all c.e. reals, β, for all n, K(β ¹ n) ≤ K(α ¹ n) + O(1).
(iii) For all c.e. reals, β, for all n, C(β ¹ n) ≤ C(α ¹ n) + O(1).
(iv) For any version of Ω, for all n, C(Ω ¹ n) ≤ C(α ¹ n) + O(1) and

K(Ω ¹ n) = K(α ¹ n) + O(1).
(v) For all c.e. reals β, β ≤S α.
(vi) α is the halting probability of some universal machine.

Whilst we know that all reals have complexity oscillations, the Kučera-
Slaman Theorem says that for c.e. random reals, they all happen in the
same places.

By all of this, if a real is both random and c.e. it must be Solovay
complete and hence Turing complete. Actually, it has to be Turing complete
in a very strong way.

Theorem 5.3: (Downey and Hirschfeldt [19]) Suppose that A is a c.e. set
and α is a 1-random c.e. real. Then A ≤wtt α, and this is true with identity
use.
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Proof: Given A and α as above we must construct Γα = A, where γ(x) =
x. Fix a universal prefix-free machine U and using Kraft-Chaitin, and the
Recursion Theorem, we will be building a part of U , so that if we enumerate
a Kraft-Chaitin axiom 〈2n, σ〉 we will know that some τ, σ enters U for some
τ of length e +n. Since α is 1-random we know that for all n, KU (α ¹ n) ≥
n− c for a fixed c, which we will know for the sake of this construction.

Let αs → α be a computable sequence converging to α and let A =
∪sAs. Initially, we will define Γαs(x) = 0 for all x, and maintain this unless
x enters As+1 − As. As usual at such a stage, we would like to change the
answer from 0 to 1. To do this we will need α ¹ x 6= αs ¹ x. Should we
see a stage t ≥ s with αt ¹ x 6= αs ¹ x then we can so change the answer.
For x > e + c + 2, we can force this to happen. We simply enumerate an
axiom 〈2x−c−e−1, αs ¹ x〉 into our machine, causing a description of αs ¹ x

of length x − c − 1 to enter U − Us, and hence α ¹ x 6= αs ¹ x. We can
simply wait for this to happen, correct Γ and move to the next stage.

Similar methods can be used to prove the following (the first being
originally established by Arslanov’s Completeness Criterion).

Theorem 5.4: (Kučera [37]) Suppose that A is a random set of c.e. degree.
Then A is Turing complete.

Theorem 5.5: (Downey and Hirschfeldt [19]) Suppose that A is a random
set of c.e. wtt-degree. Then A is wtt-complete.

Downey, Hirschfeldt and Nies [22], and Downey, Hirschfeldt and LaForte
[20] were motivated to look at the structure of c.e. reals under Solovay
reducibility. They proved several results, but the structure remains largely
unexplored.

Theorem 5.6: (Downey, Hirschfeldt and Nies [22]) The Solovay degrees
of c.e. reals forms a distributive upper semilattice, where the operation
of join is induced by +, arithmetic addition (or multiplication) (namely
[x] ∨ [y] ≡S [x + y].)

Theorem 5.7: (Downey, Hirschfeldt and Nies [22]) If [Ω] = a ∨ b then
either [Ω] = a or [Ω] = b.

Theorem 5.8: (Downey and Hirschfeldt [19]) There exist c.e. sets A and
B such that the Solovay degrees of A and B have no infimum in the (global)
Solovay degrees.
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To prove (i) note that x, y ≤S z implies there is a triple c, p, q such that
cz = x + p = y + q. So 2cz = (x + y) + (p + q). So x + y ≤S z. Clearly
x, y ≤ x + y. Similarly to prove (ii), roughly, we work as follows. Suppose
z ≤S x1 + y1. Use Lemma 5.3 to run the enumerations of and cover the
zs+1 − zs using bits of x1,s+1 − xs, ys+1 − ys.

The proof of density and join inaccessibility are significantly more in-
tricate.

5.2. The Density Theorem

Theorem 5.9: (Downey, Hirschfeldt and Nies [22]) The Solovay degrees
of c.e. reals are dense. Indeed the following hold.

(i) If a is incomplete and b <S a, then there exist a1|Sa2 such that
b < a1,a2, and a = a1 ∨ a2. That is every incomplete degree splits
over all lesser ones.

(ii) If [Ω] = a ∨ b then either [Ω] = a or [Ω] = b.

Proof: (ii) is a straightforward finite injury argument. (i) is a finite injury
argument with some quite novel features. We want to build β0 and β1 such
that

• β0, β1 ≤S α,
• β0 + β1 = α, and
• the following requirement is satisfied for each e, k ∈ ω and i < 2:

Ri,e,k : Φe total ⇒ ∃n(α− αΦe(n) ≥ k(βi − βi
n)).

There are very interesting timing problems and these can be seen with a
two requirement scenario, which we discuss below.

• R0 : Φ total ⇒ ∃n(α− αΦ(n) ≥ k(β0 − β0
n))

• R1 : Ψ total ⇒ ∃n(α− αΨ(n) ≥ l(β1 − β1
n))

We will be measuring whether Φ and Ψ are total and only work when this
appears so. Thus, without loss of generality, we will assume that Φ and Ψ
are total. The reader should imagine the construction as follows. We have

• two containers, labeled β0 and β1, and
• a large funnel, through which bits of α are being poured.

R0 and R1 fight for control of the funnel. In particular, bits of α must
go into the containers (because we want β0 + β1 = α) at the same rate as
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they go into α (because we want β0, β1 ≤S α). However, each Ri wants to
funnel enough of α into β1−i to be satisfied.

As R0 is stronger, it could potentially put all of α into β1, but that
would leave R1 unsatisfied. The trouble comes from trying to recognize
when enough of α has been put into β1 so that R0 is satisfied.

Definition 5.2: R0 is satisfied through n at stage s if Φ(n)[s] ↓ and αs −
αΦ(n) > k(β0

s − β0
n).

To achieve satisfaction, the idea is that R0 sets a quota for R1 (how
much may be funneled into β0 from that point on). If the quota is 2−m and
R0 finds that either

• it is unsatisfied or
• the least number through which it is satisfied changes,

then it sets a new quota of 2−(m+1) for how much may be funneled into β0

from that point on.

Lemma 5.4: There is an n through which R0 is eventually permanently
satisfied, that is,

∃n, s ∀t > s (αt − αΦ(n) > k(β0
t − β0

n)).

Proof: (of Lemma) Suppose not. Then R1’s quota → 0, so β0 is com-
putable. Also, ∀n, s ∃t > s [αt − αΦ(n) ≤ k(β0

t − β0
n)]. So ∀n [α − αΦ(n) <

(k + 1)(β0 − β0
n)]. Thus α ≤S β0 is computable. Contradiction.

Thus the strategy above yields a method for meeting R0. At the end
of this process, R0 is permanently satisfied, and R1 has a final quota 2−m

that it is allowed to put into β0.
Now we hit the crucial problem, precisely where we need incompleteness

for α. If R1 waits until a stage s s.t. α − αs < 2−m then it can put all of
α− αs into β0 and R1 will, in turn, be satisfied.

The problem is that R1 cannot tell when such an s arrives. If R1 is too
quick, it may find itself unsatisfied and unable to do anything about it since
it will have used all of its quota before s arrives.

The key new idea is that
R1 uses Ω as an investment advisor.
Let s be the stage at which R1’s final quota of 2−m is set. At each

stage t ≥ s, R1 puts as much of αt+1 − αt into β0 as possible so that
the total amount put into β0 since stage s does not exceed 2−mΩt. The
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total amount put into β0 after stage s is ≤ 2−mΩ < 2−m, so the quota is
respected. We finish the proof with the following Lemma

Lemma 5.5: There is a stage t after which R1 is allowed to funnel all of
α− αt into β0.

Proof: It is enough that ∃u ≥ t ≥ s ∀v > u (2−m(Ωv − Ωt) ≥ αv − αt).
Suppose not. Then ∀u ≥ t ≥ s ∃v > u [Ωv − Ωt < 2m(αv − αt)]. Thus
∀t ≥ s [Ω− Ωt ≤ 2m(α− αt)]. So there is a d s.t. ∀t [Ω− Ωt < d(α− αt)],
and hence Ω ≤S α. Contradiction.

Downey and Hirschfeldt [19] have shown that the proof can be made to
work for any Σ0

3 measure of relative randomness where + is a join, the 0
degree includes the computable reals, and the top degree is Ω.

5.3. Other measures of relative randomness

We remark that there are a number of other interesting measures of relative
randomness, aside from ≤S and the fundamental initial segment ones ≤C

and ≤K . They include

(i) A ≤sw B iff there is a c and a wtt procedure Γ with use γ(n) = n+c,
and ΓB = A. (We met this in Theorem 5.3.) If c = 0, then this is
called ssw-reducibility and is the one used by Soare and Csima in
differential geometry, such as Soare [82].

(ii) A ≤rK B means that there there is a c such that for all n,

K((A ¹ n)|(B ¹ n + c)) = O(1).

I don’t really have room to discuss all the results but will try to give
a flavour. sw-reducibility says that not only is the case that the initial
segments converge at more of less the same rate, but there is an efficient
way to convert the bits of B into those of A.

Thus in spite of the fact that the Kučera-Slaman Theorem says that all
versions of Ω are the same in terms of their S-degrees, Yu and Ding [98]
established the following.

Theorem 5.10: (Yu and Ding [98])

(i) There is no sw-complete c.e. real.
(ii) There are two c.e. reals β0 and β1 so that there is no c.e. real α

with β0 ≤sw α and β1 ≤sw α.
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The proof roughly works by picking two long intervals β0 ¹ [n, n+t], β1 ¹
[n, n+ t], to diagonalize against some α and sw reduction Γe with use n+e.
Initially the reals have βi(k) = 0 on this interval. Our procedure will work
by alternating between β0 and β1 adding 2−(n+t) each time, where time
here means “expansionary stages.”

The key observation of Yu and Ding here is that this simple procedure
can drive α to be large. This is proven by induction, the nicest proof being
due to Bamparlias and Lewis [4]. The main lemma is to show that α’s
best strategy is the obvious one of least effort (nomenclature of Bamparlias
and Lewis [4]) where α changes as far right as it can. You argue that if α′

works then so would α given by this least effort strategy. This is proven by
induction.

Here is an example which would show why the least effort strategy won’t
work.

stage 1: β0,1 = 0.001, β1,1 = 0 and α1 = 0.001
stage 2: β0,2 = 0.001, β1,2 = 0.001 and α2 = 0.010
stage 3: β0,3 = 0.010, β1,3 = 0.001 and α3 = 0.100
stage 4: β0,4 = 0.010, β1,4 = 0.010 and α4 = 0.110
stage 5: β0,5 = 0.011, β1,5 = 0.010 and α5 = 0.111
stage 6: β0,6 = 0.011, β1,6 = 0.011 and α6 = 1.000
stage 7: β0,7 = 0.100, β1,7 = 0.011 and α7 = 1.100
stage 8: β0,8 = 0.100, β1,8 = 0.100 and α8 = 10.000
Similar arguments show the following.

Theorem 5.11: (Bamparlias and Lewis [3, 4]) There is a c.e. real α such
that for any random c.e. real β, α 6≤sw β.

An argument of a different kind shows the following.

Theorem 5.12: (Hirschfeldt, unpubl) There is a real α such that for all
random reals β, α 6≤sw β.

We have seen that if W is a c.e. set the W ≤sw Ω. Also on the c.e. sets,
S and sw coincide. Little else is known about ≤sw.

The reducibility rK is implied by either of sw and S. It has many of the
best features. By unpublished work of Downey, Greenberg, Hirschfeldt, and
Miller it is not implied by ≤C even on the c.e. reals. It is an appropriate
Σ0

3 reducibility and hence it is dense on the c.e. reals. It implies ≤T . Little
else is known about ≤rK .

Other reducibilities include ≤Km, ≤KM (i.e. supermartingale reducibil-
ity), but these are more or less completely unexplored, save the fact that
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≤SM is dense on the c.e. reals.

5.4. ≤C and ≤K

Recall A ≤K B means that, for all n, K(A ¹ n) ≤ K(B ¹ n) + O(1), and
similarly ≤C .

Thanks mainly to the work of Miller and Yu, we know some basic facts
about the ≤K degrees of random reals. The first thing we discover about
≤C and ≤K is that they are not really “reducibilities” though we will
confusingly call them such.

Theorem 5.13: (Yu, Ding, Downey [100]) For Q ∈ {K, C}, {X : X ≤Q Y }
has size 2ℵ0 and has members of each degree, whenever Y is random.

The proof is relatively easy. Take a sufficiently computable sparse set
X. Then it’s complexity is eventually always well below a random real. But
any degree can be coded into a really sparse set. The replacement for this
theorem is a measure-theoretical one:

Theorem 5.14: (Yu, Ding, Downey [100]) For any real A, µ({B : B ≤K

A}) = 0. Hence there are uncountably many K degrees.

Yu and Ding improved this result to construct 2ℵ0 many K-degrees
directly ( [99]), but this can also be obtained by observing that ≤K is
Borel, and hence a theorem of Silver can be used. Using direct analysis of
the the fluctuations of initial segment complexities Yu, Ding, and Downey
obtained the following.

Theorem 5.15: (Yu, Ding, Downey [100]) For all c and n < m,

(∃∞k)
[
K(Ω(n) ¹ k) < K(Ω(m) ¹ k)− c

]
.

For n = 0,m = 1 Theorem 5.15 was proven by Solovay [84], using
totally different methods. Using van Lambalgen’s Theorem as a base. more
powerful results have recently been obtained by Miller and Yu. Recall that
van Lambalgen’s Theorem states: B n-random and A is B-n-random iff
A⊕B is n-random.

Definition 5.3: (Miller and Yu [63]) We say that α ≤vL β, α is van
Lambalgeng reducible to β if for all x ∈ 2ω, α⊕ x is random implies β ⊕ x

is random.

gThis is closely related to a relation introduced by Nies: He defined A ≤LR B if for all Z,
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Theorem 5.16: (Miller and Yu [63]) For all random α, β,

(i) α n-random and α ≤vL β implies β is n-random.
(ii) If α ⊕ β is random then α and β have no upper bound in the

vL-degrees.
(iii) If α ≤T β and α is 1-random, then β ≤vL α.
(iv) There are random α ≡vL β of different Turing degrees.
(v) There are no maximal or minimal random vL-degrees, and no join.
(vi) If α⊕ β is random then α⊕ β <vL α, β.
(vii) The Σ0

1 theory of the vL-degrees is decidable.

The proofs of most of these are relatively easy once you figure out what
to do. For instance, suppose that α n-random and α ≤vL β. Use Kučera’s
Theorem that there is a random z with z ≡T ∅(n−1). Then α⊕z is random,
and hence β⊕z is random and hence β is 1-z-random, that is β is n-random.

Furthermore, Miller and Yu show that Ω(n) and Ω(m) have no upper
bound in the vL degrees for n 6= m. This improves the Yu, Ding, Downey
(Theorem 5.15) result above.

All of this is filters through an interesting relationship between ≤vL and
≤C ,≤K .

Lemma 5.6: (Miller and Yu [63]) For random α, β,

(i) Suppose that α ≤K β. Then α ≤vL β.
(ii) Suppose that α ≤C β. Then α ≤vL β.

We state the following for ≤K but they hold equally for ≤C . (Most of
the proofs are in this area work equally well for ≤C and ≤K . There are
occasional cases where the proof needs considerably more work in the ≤C

case, such as the proof of Lemma 5.6(ii) above.)

Corollary 5.2: (Miller and Yu [63])

(i) Suppose that α ≤K β, and α is n-random and β is random. Then
β is n-random.

(ii) If α ⊕ β is 1-random, then α|Kβ and have no upper bound in the
K-degrees.

Z is 1-B-random implies Z is 1-A-random. If A and B are both random then A ≤LR B
iff B ≤LR A. Note that ≤vL is really only interesting on the randoms, but there are a
number of possible extensions which also make sense on the non-randoms. These have
yet to be explored.
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(iii) For all n 6= m, the K-degrees of Ω(n) and Ω(m) have no upper
bound.

Miller and Yu provided a natural way to demonstrate that the vL-
degree and the K-degrees differ on randoms. The following result should
be compared with Theorem 5.16 (vi).

Theorem 5.17: (Miller and Yu [63]) If α⊕β is 1-random, then α|Kα⊕β.

A simple application yields Theorem 5.14, that µ{β : β ≤K α} for
random α is zero. Namely, if β is 1-α-random, then β 6≤vL α and hence,
since µ({β : β is 1-α-random }) = 1, we get µ({β : β ≤K α}) = 0, since
≤K implies ≤vL .

Using new techniques and extensions of the above, Miller has proven
the following.

Theorem 5.18: (Miller [59])

(i) If α, β are random, and α ≡K β, then α′ ≡tt β′. As a consequence,
every K-degree of a random real is countable.

(ii) If α ≤K β, and α is 3-random, then β ≤T α⊕ ∅′.

Notice that (ii) implies that the cone of K-degrees above a 3-random
is countable. Miller and Yu have constructed a 1-random whose K-upper
cone is uncountable. This last result uses their method of constructing K-
comparable reals. Its proof uses the following clever lemma. The current
proof of Lemma 5.19 is quite difficult.

Theorem 5.19: (Miller and Yu) Suppose that
∑

n 2−f(n) < ∞, then there
is a 1-random Y with

K(Y ¹ n) < n + f(n),

for almost all n.

Then to get K-comparable reals, use the result taking g(n) = K(B ¹
n) − n for random B. This function is convergent by the Ample Excess
Lemma. Now we use Theorem 5.19 on some convergent function f with
g − f →∞.

We remark that Miller has also constructed an uncountable (non-
random) K-degree.

Finally Miller has shown that if α is 3-random then its often useless as
an oracle. We will call α weakly-low for K if (∃∞n)[K(n) ≤ Kα(n)+O(1)].
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Thus in a weakly-low real, the information in α is so useless that it cannot
help to compress n. The following result echoes the theme articulated by
Stephan that most random reals have little usable information in them.

Theorem 5.20: (Miller [59])

(i) If α is 3-random it is weakly-low.
(ii) If α is weakly-low, and random, then α is strongly Chaitin random

in that

(∃∞n)
[
K(α ¹ n) ≥ n + K(n)−O(1)

]
.

5.5. Outside of the randoms

Little is known about ≤C and ≤K outside of the random reals. On the c.e.
reals ≤C and ≤K are appropriate Σ0

3 measures of relative randomness, and
hence the following is true.

Theorem 5.21: (Downey and Hirschfeldt [19]) The C- and K- degrees of
c.e. reals form dense uppersemilattices.

We remark that this needs the result of Downey, Hirschfeldt, Nies, Stephan
[23] that + is a join. To see this, given x, y < z, run the enumerations, and
have one z-program if xs ¹ n stops first, and one if ys ¹ n first.

Other than this, Frank Stephan has shown that ≤C implies ≤T on the
c.e. reals. (see [19]). This generalizes earlier theorems of Loveland and of
Chaitin.

Theorem 5.22: (Loveland [51]) Suppose that for all n, C(X ¹ n|n) =
O(1). Then X is computable.

Theorem 5.23: (Chaitin [9]) A ≤C 1ω iff A is computable.

Proof: (Sketch) All of these use the “Π0
1 class method” each time. They use

the fact that a Π0
1 class with a finite number of paths has computable com-

putable paths. Take Loveland’s Theorem, for instance. Since there are only
finitely many programs to consider for the C(X ¹ n|n) = O(1). Knowing
these and the maximum hit infinitely often will allow for the construction
of the Π0

1 class.
Chaitin’s Theorem uses the same method but needs the combinatorial

fact below.

Lemma 5.7: (Chaitin [9]) |{σ : C(σ) ≤ C(n) + d ∧ |σ| = n}| = O(2d).
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Since we know that between n and 2n there are C-random lengths with
C(n) = log n, we can then apply the Lemma to construct the Π0

1 class. Fi-
nally, Stephan’s result is similar, but uses a relativization plus enumeration
argument.

5.6. ≤K and ≤T

This naturally leads us to ask whether ≤K implies ≤T for c.e. reals. As it
turns out the implication fails at the very first place it can.

Definition 5.4: We say that A is K-trivial iff there is a constant d such
that for all n, K(A ¹ n) ≤ K(n) + d. We would write A ∈ KT (d).

Theorem 5.24: (Solovay [84]) There are noncomputable K-trivial reals.

As we will see, such reals can even be c.e. sets. The reader might well
ask, “what about the Π0

1 class method?” The Π0
1 class method kind of

works, except to construct the tree, we don’t know the K-complexity of
any n, like we do for C. For C, we know “log n” is the answer in long
enough interval. (That is, between m and 2m there is a random length and
its C-complexity will be log n.) But in the prefix-free case, the tree is only
∆0

2 since ∅′ can construct it. Now the same methods work (this time using
the Coding Theorem to bound the width). We get the following.

Theorem 5.25: (Chaitin [10], Zambella [101]) There are only O(2d) mem-
bers of KT (d). They are all ∆0

2.

The reader might wonder with the nice computable bound how many
K-trivial reals there are. Let G(d) = |{X : X ∈ KT (d)}. Then there is a
crude estimate that G(d) ≤T ∅′′′. This is the best upper bound known. In
unpublished work, Downey, Miller and Yu have shown that G(d) 6≤T ∅′,
using the fact that

∑
d

G(d)
2d is convergent. This is all related to the Csima-

Montalbán functions. We say that f is a Csima-Montalbán function if f is
nondecreasing and

K(A ¹ n) ≤ K(n) + f(n) + O(1)

implies that A ¹ n is K-trivial. Such functions can be constructed from ∅′′⊕
G. We define f to be weakly Csima-Montalbán, if we weaken the hypothesis
to be that lim infn f(n) → ∞. Little is known here. It is not known if the
arithmetical complexity of f depends upon the universal machine chosen.
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Returning to our story, it is very easy to construct a K-trivial real, using
the “cost function” method. This construction has been well-reported, and
we note it below.

Let

As+1 = As ∪ {x : We,s ∩As = ∅ ∧ x ∈ We,s

∧
∑

x≤j≤s

2−K(1j)[s] < 2−(e+1)}.

Then A is noncomputable and K-trivial. Work of Nies shows that, basically,
this is the only way to construct such sets.

The K-trivial reals form a fascinating class of reals and has many un-
expected properties. The first such property to be established was the fol-
lowing.

Theorem 5.26: (Downey, Hirschfeldt, Nies, Stephan [23]) If A is K-trivial
then A is Turing incomplete.

The proof of this result is far from easy, and uses the “decanter” method.
This decanter/golden run method has been refined and elaborated through
the deep work of Nies, and Hirschfeldt-Nies, (especially [67, 69]) and later
Hirschfeldt-Nies-Stephan to establish a number of amazing results, using
“golden run” constructions. For example:

Theorem 5.27:

(i) (Nies) Every K-trivial is tt-bounded by a K-trivial c.e. set.
(ii) (Nies) Every K-low is superlow, and “traceable”.
(iii) (Nies) K-trivial = low for randomness, meaning that A-random iff

random.
(iv) (Hirschfeldt-Nies) K-trivial=low for K, meaning that KA(σ) =

K(σ) + O(1), for all σ.
(v) (Nies) K-trivials are closed under T -reducibility and form the only

known natural Σ0
3 ideal in the Turing degrees.

(vi) (Nies) They are bounded above by a low2 degree.

Hirschfeldt, Nies and Stephan [32] have shown that if A and B are ∆0
2

random then there are K-trivials are T -below both of them. I simply don’t
have time in these lectures to tell the “trivial story” which is still being
worked out.

I remark that there are many open questions about this amazing class.
Here is one of my favourites. Is there a low (necessarily non-c.e.) degree
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above all the K-trivials. The reason that this is of interest is that if such a
real could be random then it would be a genuinely new strategy for coding
into randoms, as has been pointed out by Kučera.

5.7. Hausdorff Dimension

We return to the theme of calibrating randomness. This time we will try
another approach. Consider Ω. It is random. What about a00a10 . . . where
Ω = a0a1 . . . . Then probably we’d expect it to be “half random.”

There is an an effectivization of a well-known theory that makes this
correct. A refinement of the class of measure zero sets is given by the theory
of Hausdorff Dimension. In 1919 Hausdorff [31] generalized earlier work of
Carathéodory to define a notion of an s-dimensional measure to include
non-integer values.

The basic idea is that you replace measure by a kind of generalized
measure, where µ([σ]) is replaced by 2−s|σ| where 0 < s ≤ 1. With s = 1
we get normal Lebesgue measure. For s < 1 we get a refinement of measure
zero. Very informally, it can be shown that there is some limsup where the
s-measure is not zero, and this is called the Hausdorff dimension of the set.
One can translate this cover version into a s-gale (a version of martingales)
definition in the same way that it is possible to frame Lebesgue measure in
terms of martingales.

In any case, for the effective version through the work of Lutz, Mayor-
domo, Hitchcock, Staiger and others we find that the notion corresponds
to lim infn

K(A¹n)
n , and can take that as a working definition of effective

Hausdorff dimension. (This sentence does not do justice to the work done
by these and other authors in this area.) With this definition, one can eas-
ily see that the thinned version of Ω above gets dimension 1

2 . Actually it is
1
2 -random in the sense of Tadaki [90].

In these lectures I don’t have the space to talk about all the nice results
developed concerning effective Hausdorff dimension (and effective packing
and box counting dimension). I simply want to point out that there are
other ways to calibrate randomness. One very nice question here is the
following. Is there a degree a which has a member of nonzero dimension,
and yet bounds no random degree?

I would like to remark that Lutz [52,53] has even developed a notion of
dimension for individual strings. Again we see that it is immediately related
to prefix-free complexity. The approach is to replace s-gales by “termgales”
which are the analogues of s-gales for terminated strings. (You have a third
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bet that you have reached the end of the string.) One of the results he has
proven is the following.

Theorem 5.28: (Lutz [52, 53]) Let d denote the discrete dimension ob-
tained using “termgales” as alluded to above. There is a constant c ∈ N
such that for all σ ∈ 2<ω,

|K(σ)− |σ| dim(σ)| ≤ c.

I refer the reader to Lutz [52, 53], Staiger [85, 86], Terwijn [91], Reimann
[75, 76], Downey, Merkle, Reimann [26], Tadaki [90], and Downey and
Hirschfeldt [19], for more details.

6. Lecture 5 : Measure-theoretical injury arguments

6.1. Risking measure

In the last section we met the effective 0-1 laws. These laws can be ex-
ploited to prove various results about random degrees by making construc-
tions which work on sets of positive measure. This basic idea goes back to
unpublished work of Martin (as we see below) and of Paris [73,74]. The idea
was beautifully exploited by Kurtz in the later chapters of his PhD The-
sis [45]. These results tend to give theorems that hold for almost all degrees.
With more care, we can calculate exactly the level needed to make the con-
structions work and deduce that they hold for all, for example, 2-random
reals, as in Kautz [34].

6.2. 2-random degrees are hyperimmune

We begin this section with the proof of Martin’s Theorem 6.1 The main
idea is called “risking measure,” in the words of Kurtz [45], and results in
a measure-theoretical version of the priority method. The idea is that if
we fail to meet some requirement then we will fail to define some object
under construction (typically, a Turing functional) on some small measure
of Cantor space. However, things are arranged that this is small enough
that we only fail on a set whose measure is bounded, and then after the
fact argue that the result holds for almost all reals by the effective 0-1 laws.

Theorem 6.1: (Martin, unpubl.) Almost every degree is a hyperimmune
degree.
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Proof: By the zero-one law it is enough to prove that µ({A : A bounds a
hyperimmune degree }) > 0. To achieve this we construct a partial com-
putable functional Ξ so that

µ({A : ΞA is total and not dominated by any computable function} ≥ 1
2
.

For this construction, it is convenient to consider Ξ as a partial computable
function from strings to strings. This will be a reduction provided that
Ξ(ν) ↓, ν ¹ ν̂ and Ξ(ν̂) ↓, then Ξ(ν) ⊆ Ξ(ν̂). We remark that it is not
necessarily true that if Ξ(ν) ↓ then Ξ(γ) ↓ for all γ ⊆ ν.

On a set of positive measure, we will meet the requirements :

Re : ϕe total → ΞA is not majorized by ϕe.

Now suppose that we knew whether ϕe was total. Then we could proceed
as follows. We could begin with λ, the empty string. If ϕ0 was not total,
then we would need to do nothing else and could proceed to treating R1.
Otherwise, we could select some witness n0, compute ϕ0(n0) and then set
Ξλ(n0) = ϕ0(n0) + 1. Then, of course, ϕ0 cannot majorize ΞA for any A.
We could then use a new witness for ϕ1, etc.

The trouble is that we cannot decide whether ϕ0 is total, and of course
even for a witness n0, we can’t decide if ϕ0(n0) ↓ [s] for some s.

The idea then is to try to implement this process in such a way that
should we fail to meet some Re then the overall cost (in terms of measure)
will be small. (Here small will be 2−(e+2).)

For the sake of R0 we will work as follows. Initially, we will devote the
string 00 to trying to force ϕ0 not to be total. By this we mean that we
first pick a witness n0 = n00

0 , for the cone [00] of strings σ extending 00.
We will not define Ξσ(n0), or indeed Ξσ at all for such σ until we see some
stage s where ϕ0(n00

0 ) ↓ [s]. At this stage we will then define

Ξ00(n0) = ϕ0(n0) + 1.

The point is that now for any strings σ extending 00, Ξσ(n0) = ϕ0(n0)+
1. (And we would make sure that Ξ00(m) is defined for all m ≤ n00

0 so as to
make Ξα total on a set of α of positive measure.) Hence R0 is met within
the cone [00] no matter how else we define Ξ, provided that it is done in a
way consistent with Ξ00.

Notice that if we fail to define Ξ00, then n00
0 is a witness to the fact that

ϕ0 is not total. R0 is therefore met globally. The cost of meeting R0 this
way is that ΞA will not be defined on a set of measure 2−|00| = 2−2.
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Now whilst we are devoting [00] to testing R0, we cannot stop Ξν being
defined for strings not extending 00. Thus, for instance, by the stage s that
we get to define Ξ00(n0) ↓ [s] = ϕ(n0) + 1, we might well have defined
Ξσ(m) for various σ extending 01.

The idea is that once we succeed for R0 in [00] we will process R0 in
the cone [01] (and then [10], then [11], always risking 2−2 each time). Thus
R1 will assert control of [01] taking control of all extensions of 01 of length
s. There will be 2s−2 such extensions ν1 . . . ν2s−2 and note that

∑

i≤i≤2s−2

2−|νi| = 2−2.

Then the idea is that R0 will pick a new (large, fresh) witness n01
0 which

will serve for all of the νi’s. Diagram 1 below might be helpful here.

ν2(s−2)

01 00

s

met

asserts
control of
[01]

R0

R0

here

11 10

ν1 ν2

Fig. 1. R0 changes to the next cone

Then if we ever see a stage t > s such that ϕ0(n01
0 ) ↓ [t], we will be free

to define Ξνi(n01
0 ) ↓ [t] = ϕ0(n01

0 ) + 1, for all νi simultaneously.
Then R0 could assert control of [10], via all strings of length t and take

a new witness for this cone, etc.
The point is that either R0 will eventually get stuck on one of

[00], [01], [10], [11] at a cost of 1
4 , or we will diagonalize ϕ0 in each cone

via the cone’s witness, in which case R0 has no effect on the measure where
Ξ is defined.

The inductive strategies are defined similarly. For Re choose the col-
lection of strings σ1, . . . , . . . , σ22+e , the antichain of strings of length e + 2
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to take the role of 00, 01, 10, 11 as above. The goal would be, first process
R − e in [σ1] then [σ2], etc. Of course we would let the priorities sort this
out. Whilst some Rj is asserting control of some [ν] ⊃ [σi] for j < e, we
would let Re assert control of the first available [σk]. In this way, we see
that at any stage each Re has exactly 2−(e+2) of measure risked because
of it, of R − e is completely met. Thus the overall measure where Ξ is not
defined is bounded by

∑
e∈N 2−(e+2) = 1

2 .

This result can also be obtained by the following elegant argument of
Nies, Stephan, and Terwijn.

Proof: (Nies, Stephan, and Terwijn [70]) Recall that in Lemma 4.3, it
is shown that A is 2-random iff for all computable time bounds g with
g(n) ≥ n2,

∃d∃∞n(Cg(A ¹ n) ≥ n− d).

Define

f(k) = µn[∃p1, . . . , pk ≤ n](Cg(A ¹ pi) ≥ pi − d).

Then f is A computable. We claim that f is not dominated by any com-
putable function. Suppose that f(k) ≤ h(k) for all k. Define the Π0

1 class

P = {Z : ∀k[∃p1, . . . , pk ≤ h(k)](Cg(Z ¹ pi) ≥ pi − d)}.
Then P 6= ∅, and every member of P is 2-random. But then there is a
2-random real that is, for instance, of low degree.

6.3. Almost every degree is CEA

We use the ideas of the Martin’s proof above to establish the following re-
markable result of Kurtz, with the observation of Kautz that 2-randomness
is enough for the proof.

Theorem 6.2: (Kurtz [45], Kautz [34]) Suppose that A is 2-random. Then
A is CEA.

Proof: As in Theorem 6.1, we satisfy things on a set of positive measure.
Here, we construct an operator Ξ so that

µ({A : Ξ(A) total and Ξ(A) 6≤T A}) ≥ 1
4
,
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and A is c.e. in Ξ(A) whenever Ξ(A) is total. The calculation that weak
2-randomness is enough comes from again analyzing the method of satis-
faction of the requirements.

To make A c.e. in Ξ(A) we will ask that n ∈ A iff 〈n, m〉 ∈ Ξ(A) for some
m. Thus, in fact A is enumeration reducible to Ξ(A). Now whilst doing this
we must meet requirements of the form

Re : A 6= ΦΞ(A)
e ,

there Γe denotes the e-Turing procedure.

Definition 6.1: We say that a string ξ is acceptable for a string σ iff

ξ(〈m,n〉) = 1 → σ(n) = 1.

Remember we are trying to make A c.e. in ΞA. Thus we will always
require that Ξσ[s] is acceptable. We will also try, whenever possible, to use
ξ to represent string in the range of Ξ[s].

The principal difficulty with this proof is that it is very difficult for us
to actually force

A 6= ΦΞ(A)
e .

The reason is that our opponent is playing Φe.
The main idea is the following. In this proof, we will inductively be

working above some string β, to which Kurtz assigns a state via a colour
bluee. This more or less indicates that we are presently happy with the
situation up to this string. Now we consider the action in the cone [β]. As
in the previous construction, we will willfully be not defining Ξ on some
cone of small measure in the cone [β]. In this case, the test string will be
β̂1e+2. We will only ever define Ξσ for σ extending β̂1e+2, should it be
possible for us to actually perform some kind of diagonalization.

For those reading the account of Kurtz [45] or Kautz [34], this testing
is signaled by assigning the string β̂1e+2 the state rede.

While we are waiting for suitable conditions for diagonalization to occur,
we will devote [ν1], . . . , [ν2(e+2)−1] (the length e + 2 extensions of β) to the
rest of the construction in this cone [β]. Note that we will only be defining Ξτ

for τ extending νi in this cone, with priority e. In Kurtz’s construction, this
part of the current inductive module satisfying Re is given the state/colour
yellowe. Diagram 2 below might be helpful here.

Now, in the background, the construction is running along, gradually
defining Ξσ for various θ extending νi in the cone [β].
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ρ = β1(e+2)

red
e

blue
e

e
yellowall

β

ν1 ν2(e+2)−1

ν2(e+2)−2

Fig. 2. Re’s basic module

Question: Under what circumstances would a string θ look bad from Re’s
point of view?
Answer: It would look bad if it looked like the initial segment of a real α

with ΦΞ(α)
e = α.

This threatening situation can be detected as by looking at strings which
might approximate such reals.

Definition 6.2: We say that a string θ is threatening a requirement Re is
there is a yellowe strings ν extending its bluee predecessor β with ν ¹ θ,
and a strings ξ acceptable to θ such that

(i) |θ| ≤ s

(ii) |ξ| = s

(iii) Ξν [s] ¹ ξ

(iv) Φξ
e(k) = ν(k) = 0[s] for some k such that |β| < k ≤ |ν|, and

(v) no initial segment of θ has colour purplee.

Item (v) is a mystery at present, but is simply a minimality condition
now to be described, and can presently be ignored. If we see a threatening
string θ, then it looks bad for us to continue to define Ξ on strings extending
θ. Thus we will do the following. In the construction we will give any string
θ which is threatening Re colour purplee. While this situation holds, we
will not define Ξ on any extension of θ.

Now it might be that above β, the measure of the strings coloured
rede (namely 2−(|β|+e+2)) plus the measure of purplee strings remains small
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enough. That is, we don’t kill too much measure above [β] by this process.
Then we would be safe to continue out construction, and Re would only
have measure-theoretically small effect. Then Re will be met, and the string
β̂1(e+2) draws attention to this fact.

What about if the amount of measure killed by threatening strings be-
comes too great. Then we risk defining Ξ only on a set of measure zero
above β. The key thing to notice is that the collection of strings νi are cho-
sen so that they each differ from 1e+2 in at least one place where they are
a 0. That is, the reader should note that item (iv) in Definition 6.2 means
that if ρ = β1e+2 denotes the unique rede extension of β at stage s, for
some k with ρ(k) = 1 we must have Φξ

e(k) = ν(k) = 0 6= ρ(k) = 1, by fact
that ρ = β1e+2. That means if we chose to define Ξα on extensions α of ρ

to emulate Ξν , then it cannot be that ΦΞα

e = α as it must be wrong on ρ.
For each purplee string θ, let θ′ denote the unique string of length |θ|

extending the rede string ρ with θ(m) = θ′(m) for all n ≥ |ρ|. The idea
is that we will be able to give these θ′ the colour greene, and bound their
density away from 0, if the density of purplee strings grows too much.

Specifically, when the density of purplee strings above the bluee string
β exceeds 2−(e+3), there must be some yellowe string ν such that the den-
sity of purplee strings above ν must also exceed 2−(e+3), by the Lebesgue
Density Theorem. Let {θ1, . . . , θn} list the purplee strings above ν, where
for definiteness ν is chosen lexicographically least. For each θi, let ξi be the
least string which witnesses the threat to Re according to Definition 6.2.

Thus,

(i) ξi is acceptable for θi,
(ii) Ξν ¹ ξi, and
(iii) Φξi

e (k) = 0 = θi(k) for some k with ρ(k) = 1.

Now we are in a position to win Re in the cone above ρ, and on a set
of large measure. In the construction, we will now define Ξ to mimic the
action of Ξ on the θi above ν, so that Ξν [s] = Ξρ[s]. The action is that

(a) Any string extending β loses its colour.
(b) β loses colour bluee.
(c) Each string θ′i is given colour greene.
(d) We define Ξθ′i = ξi, which will then force Φξi

e (k) 6= θ′(k) for some
k with |β| < k ≤ |ν|.

Notice that (d) above justifies the use of the colour greene for the strings
θ′i. Diagram 3 might be helpful here.
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Ξ

of ”large”measure
epurple

θ′1 θ′2 θ′n θ1 θ2 θn

agree

all green e
defined to
with the θi

β

η

ρ = β1(e+2)

ν(j) 6= ρ(j) = 1

here

Fig. 3. Re’s acts under purplee pressure

The reader should note that each time we are forced to use the rede

string ρ, we are guaranteed to succeed on set of measure at least 2−(e+5)

above β, and hence we will succeed on a set of positive measure. Notice also
that since we remove all colours from the purple strings then we will be able
to replicate this construction on strings extending those that have lost their
colour. Finally, we remark that the fact that we only consider acceptable
strings will mean that some subset of A is computably enumerable in ΞA.
This will be fixed via a “catch up” when we assign bluee colours. It is
also why we chose 1e+2 as the extension for β since all strings of interest
will remain acceptable, and we can always find an extension to make the
enumeration reduction work.

To see that 2-randomness is enough for the result, we have made sure
that {ΞA is total } is a Π0

2 class of positive measure and contains at least
one 2-random real. Thus by the effective 0-1 law, it contains members of
every 2-random degree.

Full details can be found in Downey and Hirschfeldt [19], and Kautz [34].

In Kautz’s Thesis [34], Kautz mistakenly claims that weak 2-randomness
is enough. His error is to assume that the effective 0-1 law holds for weak 2
randomness. In fact for hyperimmune free degrees Martin-Löf randomness
is the same as weak 2-randomness, as we have already seen.
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6.4. Variations and marginalia

Kurtz proved that almost every degree bounds a 1-generic degree. He re-
marks that this result can also be deduced from the theorem above, via the
following result which was known to several authors in the 70’s. P The proof
below is an unpublished one due to Richard Shore (also found in Soare’s
book [81], Exercise VI, 3.9).

Theorem 6.3: Suppose that A is CEA(B) with B <T A. Then A bounds
a 1-generic degree.

Proof: Let A = ∪sAs be a B-computable enumeration of A. Let c(n)
denote the computation function of A:

c(n) = µs(As ¹ n = A ¹ n).

We construct the 1-generic set G = lims Gs via a finite extension argu-
ment. Let Ve denote the e-th c.e. set of strings. At stage s we let Gs+1 = Gs

unless (for some least e) we see some extension γ ∈ Ve,c(s+1) with Gs ≺ γ.
In this latter case, let Gs+1 = γ.

Suppose that G is not 1-generic. We claim that A ≤T B. Let e such that
G does not meet Ve and every initial segment of G is extended by one in
Ve. Let s0 be a stage after which e has priority. It suffices to compute c(n)
from B, since B enumerates A. Using simultaneous induction on s and Gs,
for s > s0.

Now assume that Gs is known. Compute a minimal stage t such that
some extension γs of Gs occurs in Ve,t. The it must be that t > c(s + 1),
lest we would act for e. This allows us to compute c(s+1), and hence Gs+1.

Corollary 6.1: (Kurtz [45])Suppose that a is 2-random. Then a bounds a
1-generic degree.

Actually, Kurtz proved an even more surprising result in [45]. Recall
that we say that a class C of degrees is downward dense below a degree a
iff for all nonzero b < a there is a degree c ≤ b with c ∈ C
Theorem 6.4: (Kurtz [45]) The 1-generic degrees are downward dense
below any 2-random degree.

.
Again the methods of proof are elaborations of the measure risking ones.

Roughly speaking, a key ingredient is the de Leeuw, Moore, Shannon, and
Shapiro-Sacks result that the cone of degrees above a noncomputable real
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has measure zero. However, this time the argument is much more delicate,
since, in particular, we need to recognize when we are dealing with a com-
putable real where the de Leeuw, Moore, Shannon, and Shapiro-Sacks result
might fail. The proof of this result is beyond the scope of the present lecture
and we refer the reader to Kurtz [45] and Downey-Hirschfeldt [19].

We remark that there has been a reasonable amount of work pursuing
analogs of these results for other classes, such as the generic reals. For
instance, Yu Liang [97] has proven an analog of van Lambalgen’s Theorem:

Theorem 6.5: (Yu [97]) x ⊕ z is n-generic iff x is n-z-generic and z is
n-generic.

This allowed Yu to prove a number of interesting results about generics.
We can also ask whether reals x can be low for, say, 1-genericity meaning
that y is x-generic iff y is generic.

Theorem 6.6: (Greenberg, Miller, Yu [97]) No noncomputable real is low
for 1-genericity.

We remark that Miller and Yu have shown that there are reals low for weak
genericity. One question is whether the class of low for weakly generic reals
is the same class as the computably traceable reals.
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Gács, P., 3, 24, 37

halting probability, 12

Hausdorff, F., 64

Hertling, P., 51, 52

Hirschfeldt, D., 2, 3, 19, 43, 50, 54,
55, 58, 62

Hitchcock, J., 65

information content, 9

K, 16

prefix free, 16

information content measure, 14

investment advisor, 56

Jockusch, C., 46

Kautz, S, 46

Kautz, S., 4

KC-axiom, 13

Khoussainov, B., 51, 52

Kolmogorov, A., 2, 4, 9, 10

Kolmorogov’s Inequality, 29

Kraft, L., 12

Kummer, M., 7

Kurtz, S., 4, 74

null test, 33
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