
'

&

$

%

Algorithmic Randomness I

Rod Downey

Victoria University

Wellington

New Zealand

1

'

&

$

%

The Basic Refs are van Lambalgen’s
Thesis, Solovay’s unpublished notes, and
Li-Vitanyi. Also a new book “to appear”
by Downey and Hirschfeldt prelim
version on my home page.

And Calibrating Randomness (with
Hirschfeldt, Nies and Terwijn) for BSL,
soon on my web page.

Some Computability-Theoretical Aspects
of Reals and Randomness, to appear, in a
Lecture Notes in Logic volume edited by
Cholak. et. al.

Some of the papers can be found in

www.mcs.vuw.ac.nz/

research/math-pubs.shtml

Nies home page, Hirschfeldt’s home page.

2

'

&

$

%

Motivation

• What is “random”?

• How can we calibrate levels
randomness? Among randoms?,
Among non-randoms?

• How does this relate to classical
computability notions, which
calibrate levels of computational
complexity?

• Von Mises, Church, Solomonoff,
Levin, Chaitin, Kolmogorov,
Shannon, etc.

3

'

&

$

%

Notation

• Real is a member of Cantor space 2ω

with topology with basic clopen sets
[σ] = {σα : α ∈ 2ω} whose measure is
2−|σ|.

• for uniformity, a real is always
nonrational.

• Strings = members of 2<ω = {0, 1}∗.

4

'

&

$

%

Kolmogorov Complexity

• Capture the incompressibility
paradigm. Random means hard to
describe, incompressible: e.g.
1010101010.... (10000 times) would
have a short program.

• A string σ is random iff the only way
to describe it is by hardwiring it.
(Formalizing the Berry paradox)

• For a fixed machine N , we can define

• The Kolmogorov complexity C(σ) of
σ ∈ {0, 1}∗ with respect to N , is |τ |
for the shortest τ s.t. N(τ)↓= σ.
(Kolmogorov)

5

'

&

$

%

• A string σ is N -random iff
CN (σ) ≥ |σ|.

• A machine U is called weakly
universal iff for all N , there is a d

such that for all σ,
CU (σ) ≤ CN (σ) + d.

• Actually we will always use universal
machines where the e-th machine is
coded in a computable way.

• They exist (Kolmogorov). Hence
there is a notion of Kolmogorov
randomness for strings up to a
constant.

• Proof: We can enumerate the Turing
machines {Me : e ∈ N}. Define

U(1e0σ) = Me(σ).

6

'

&

$

%

This particular coding gives
C(τ) ≤ Me(τ) + e + 1.

• Thus we can define the plain
Kolmogorov complexity of a string σ

as C(σ) for a fixed universal machinei
U .

• We can similarly do an oracle version
of this and can define C(x|y) as the
Kolmogorov complexity of x given y.

• The unique string τ which first
occurs of length C(σ) is denoted by
x∗ (really x∗C).

7

'

&

$

%

• Here are some basic facts about
C-complexity:

(i) C(x, C(x)) = C(x∗).

(i) C(x|x∗) = O(1)

(iii) C(x, C(x)|x∗) = C(x∗|C(x), x) =
O(1).

(iv) C(xy) ≤ C(x, y) + O(1) where xy

denotes the concatenation of x and y

and C(x, y) denotes C(〈x, y〉).

8

'

&

$

%

Plain Counting Thm

• The following is the basic fact that
makes the theory work.

• (Plain Counting
Theorem-Kolmogorov)
|{τ : C(τ) ≤ |τ | − d}| ≤ O(1)2|τ |−d.

• Proof: pigeonhole principle.

• We say that σ is C-random iff
C(σ) ≥ |σ|.

9

'

&

$

%

Compression functions

• Thus plain complexity is a
combinatorial fact

• (Nies, Stephan Terwijn) We say that
F : Σ∗ 7→ Σ∗ is a compression
function if for all x |F (x)| ≤ C(x)
and F is 1-1.

• Note that the counting theorem
works for compression functions.

• Now we can form a Π0
1 class of

compression functions. We can apply
then various basis Theorems, for
instance, the Low Basis Theorem.

10

'

&

$

%

• There is a infinite low set of
C-random strings.

• In some sense this is the best you
could hope for. The collection of
C-random strings is easily seen to be
immune.

• To see this, let A = {x : C(x) ≥ |x|
2 }.

Then A is immune. Suppose that A

has an infinite c.e. subset B. Let
h(n) be defined as the first element of
B to occur in its enumeration of
length above n. Then

C(h(n)) ≥ |h(n)|
2

≥ n

2
, but,

C(h(n)) ≤ C(n) +O(1) ≤ |n|+ O(1).

For large enough n this is a
contradiction.

11

'

&

$

%

C-overgraphs

• We can easily see that RC , the
collection of C-randoms is wtt
complete.

• For each n, choose a length f(n) and,
at each stage s point at a string
σ(n, s) which is Ce-random.

• Should σ(n, s) become nonrandom
due to a play by our opponent RED
choose the next string of this length.
Should we see n enter ∅′ at s, we
(BLUE) drops the complexity of
σ(n, s).

12

'

&

$

%

Kummer’s Theorem

• It was a question whether RC could
be tt-complete, so that the reduction
above was non-adaptive.

• Theorem (Kummer) RC and hence
the overgraph
MC = {(x, y) : C(x) < y} is
tt-complete.

13

'

&

$

%

• The proof is tricky and nonuniform.
It used blocks instead of the σ(n, s)
above and is a conjunctive
tt-reduction. The nonuniformity
comes from the combinatorics. A
finite number of tries occur for these
blocks, but this will be bounded and
the number that occurs infinitely
often is the one.

14

'

&

$

%

Muchnik’s Theorem

• The following is easier and along the
same lines.

• Theorem (An. A. Muchnik) The
conditional overgraph
M = {(x, y, n) : C(x|y) < n} is
creative

15

'

&

$

%

• The proof. We need ∅′ ≤m M .

• Parameter d known in advance.

• Construct possible gx for x ∈ [1, 2d].

• Either we know z ∈ ∅′, or there is a
unique y such that gx(z) = (x, y, d)
and x ∈ ∅′ iff gx(z) ∈ M .

• For some maximal x which
enumerates elements infinitely often,
gx works.

16

'

&

$

%

• Construction, stage s + 1 For each
active y ≤ s, find the least q ∈ [1, 2p]
with

(q, y, d) 6∈ Ms.

(Notice that such an x needs to exist
since {q : (q, y, d) ∈ M} < 2d.)

• Now for any v, if v enters ∅′[s + 1],
find the largest r, if any, with gr(z)
defined. If one exists, enumerate
gr(z) into M . Find ŷ with
gr = (r, ŷ, d). Declare that ŷ is no
longer active.

• Let x be tha maximal r for which we
put gr(z) into M infinitely often.
(any y can only compress so many of
[1, 2d]) It works.

17

'

&

$

%

• There is a lot of very interesting work
by Allender and others about what is
efficiently reducible to RC , and this
(apparently) relates to standard
classes like PSPACE, NP, etc. The
point is that here the reductions are
big.

• For instance, Allender, Buhrmann,
Koucký look at the hypothesis

PSPACE = ∩V PRV
C

(RV
C is RC for universal V .)

18

'

&

$

%

Complexity Oscillations

• Tempting but false
C(xy) ≤ C(x) + C(y) + O(1). The
false argument says : concatenate the
machines

• The problem is where does x∗ stop
and y∗ begin.

• Martin-Löf showed that the formula
always fails for long enoug srings and
hence reals.

19

'

&

$

%

• Why? Take any α. Then, as a string
α � n corresponds to some number
which we can interpret as a string
using llex ordering: α � n is the m-th
string.

• Now consider the program that does
the following. It takes a strings ν,
interprets its length mν = |ν| as a
string, σ = σm and outputs σν.

• Apply this to the string τ whose
length is m th code of α � n.

• The output would be much longer,
and would be α � m + n, with input
having length m. Thus
C(α � m + n) < m + n−O(1).

20

'

&

$

%

• This phenomenom is fundamental in
our understanding of Kolmogorov
complexity and is called complexity
oscillations.

• There are several known ways to get
round this problem to cause only to
get the information provided by the
bits of the strings.

21

'

&

$

%

Symmetry of Information

• The information content of a string
y in a string x is defined as

I(x : y) = C(y)− C(y|x).

• (Levin-Kolmogorov)

I(x : y) = I(y : x)±O(log n)

= I(y : x)±O(log C(x, y))

where n = max{|y|, |x|}.

• (restated) C(x, y) =
C(x) + C(y|x) + O(log C(x, y))

22

'

&

$

%

Prefix free

universal computers

• Levin, Gaćs, Chaitin.

• Computers have alphabet {0, 1}.

• A computer M is prefix-free if

(M(σ)↓ ∧ σ′) σ) ⇒ M(σ′)↑ .

• A prefix-free machine is universal if
every other one is coded in it.

• They exist, same proof.

• Building them uses Kraft-Chaitin.

23

'

&

$

%

Kraft-Chaitin

• Theorem(Kraft)

(i) If A is prefix-free then∑
n∈A 2−|n| ≤ 1.

(ii) (This part is now called
Kraft-Chaitin, or Chaitin
simulation) Let d1, d2, · · · be a
collection of lengths, possibly with
repetitions, Then Σ2−di ≤ 1 iff
there is a prefix-free set A with
members σi and σi has length di.
Furthermore from the sequence di

we can effectively compute the set
A.

• Proof: On direction of Kraft-Chaitin
is clear. This is because of the

24

'

&

$

%

topological correspondence
∆ : [σ] 7→ [0.σ, 0.σ + 2−|σ|) taking the
string σ to an interval of size 2−|σ|,
gives a correspondence between a set
of disjoint intervals in [0, 1) and a
prefix-free set.

• (noneffective) Given lengths
{di : i ∈ N} in some random order.

• Arrange in increasing order, say
l1 ≤ l2 ≤

• Choose disjoint intervals Ij , with the
right end-point of In as the left
endpoint of In+1 and the length of
In+1 being 2−ln+1 . Then we can
again use the correspondence by
setting [σn] = ∆−1(In).

25

'

&

$

%

• Pippinger’s (Chaitin’s) process:
(Using a trick of Joe Miller) The idea
is that, at each stage n, we have a
mapping di 7→ [σi], |σi| = di, together
with a binary string
x[n] = .x1x2 . . . xm representing the
length 1−

∑
j≤n 2−dj .

• Ensure for 1 in the expansion that
there is a string of precisely that
length in 2<ω − {σj : j ≤ n}.

• To continue the induction, at stage
n + 1, when a new length dn+1 enters,

• position xdn+1 is a 1. Then we can
find the corresponding string τdn+1 in
2<ω − {σj : j ≤ n} and set
σn+1 = τdn+1 . Then of course we

26

'

&

$

%

make xdn+1 = 0 in x[n + 1].

• If position xdn+1 is a 0, find the
largest j < dn+1 with xj = 1, find the
lexicographically least string τ

extending τj of length dn+1, let
σn+1 = τ , and let x[n + 1] = x[n]− .ν

where ν is the string which is zero
except for 1 in position dn+1.

• Notice that nothing changes in
x[n + 1] from x[n] except in positions
j to dn+1, and these all change to 1,
with the exception of xj which
changes to 0. Since τ was chosen as
the lexicographically least string in
the cone [τj], there will be
corresponding strings in [τj] of
lengths j − 1, . . . , dn+1, as required to

27

'

&

$

%

complete the induction.

• (Restatement) Suppose that we are
effectively given a set of
“requirements” 〈nk, σk〉 for k ∈ ω

with
∑

k 2−nk ≤ 1. Then we can
(primitive recursively) build a
prefix-free machine M and a
collection of strings τk with |τk| = nk

and M(τk) = σk.

28

'

&

$

%

Prefix-free randomess

• Prefix freeness gets rid of the use of
length as extra information:
Machines concatenate!

• The prefix-free complexity K(σ) of
σ ∈ {0, 1}∗ is |τ | for the shortest τ

s.t. M(τ)↓= σ.

• Note now K(σ) ≤ |σ|+ K(|σ|) + d,

about n + 2 log n, for σ| = n.

• Build M , M(zσ) = σ if U(z) = |σ|.

29

'

&

$

%

K-Counting Theorem

• (Counting Theorem-Chaitin)
|{σ : |σ| = n ∧K(σ) ≤
n + K(n)− c}| ≤ O(1)2n+K(n)−c.

• The easiest proof uses semimeasures.
A partial function K̂ : 2<ω 7→ N such
that

(i)
∑

σ∈2<ω 2− bK(σ) ≤ 1, and,

(ii) {〈σ, k〉 : K̂(σ) ≤ k} is c.e..

• There is a universal minimal one:

K̂(x) = min
k≥0

{K̂k(x) + k + 1}.

30

'

&

$

%

• Using KC K is the same thing!

• Namely, at stage s, if we see
Ks(σ) = k and Ks+1(σ) = k′ < k

enumerate a Kraft-Chaitin axiom
〈2−(k′+1), σ〉 to describe M , and
hence generate K̂ = KM .

31

'

&

$

%

• Many proofs exploit the minimality
of K.

• Strictly speaking, A discrete
semimeasure is function
m : 2<ω 7→ R+ ∪ {0} such that∑

σ∈2<ω

m(σ) ≤ 1.

• NB Discrete Lebesgue measure is
λ(σ) = 2−2|σ|−1.

• Let m denote the minimal universal
discrete semimeasure. Then

• K(σ) = − log m(σ) + O(1).

32

'

&

$

%

Proof of Counting

•

• (Counting Theorem-Chaitin)
|{τ : |σ| = |τ | = n ∧K(σ) ≤
K(τ) + d− c}| ≤ O(2d)2n+K(n)−c.

• Note:∑
2−K(n) =

∑
n

∑
|σ|=n 2−K(σ).

• Now, as K is minimal, we have

2−K(n)+O(1) ≥
∑
|σ|=n

2−K(σ).

• suppose that there are more than
2n−k+c strings of length n with
K(σ) < n + K(n)− k.

33

'

&

$

%

• Let F = {σ : |σ| = n ∧K(σ) <

n + K(n)− k}. (the good)

• Then

2−K(n)+c ≥
∑
|σ|=n

2−K(σ) ≥

∑
σ 6∈F

2−K(σ) +
∑
σ∈F

2−K(σ)

> (1+ε)2n−k+c2n−K(n)−k > 2−K(n)+c,

a contradiction. (There are too many
bads)

34

'

&

$

%

The Coding Theorem

• Let QD(σ) = µ(D−1(σ)), the
probability tht σ is output.

• (The Coding Theorem) − log m(σ) =
− log Q(σ) + O(1) = K(σ) + O(1).

35

'

&

$

%

• (Proof) Q(σ) ≥ 2−K(σ) = 2−|σ
∗|,

since D(σ∗) = σ.

• So − log Q(σ) ≤ K(σ).

• But:
∑

2−logQ(σ) ≤
∑

σ Q(σ) ≤ 1.

• Now use minimality of K.

• (Remark) It is not hard to show that
for any σ Q(σ) is random.

36

'

&

$

%

An Application

• One nice applications shows that
within a fixed diameter there are
relatively few descriptions.

• Theorem (Chaitin, Levin) There is a
constant d such that for all c and all
σ,

|{ν : U(ν) = σ ∧ |ν| ≤ K(σ)+c}| ≤ d2c.

• The point here is that d is
independent of |ν| and depends only
on the Recursion Theorem, and c

37

'

&

$

%

• Proof: Trivially,

µ({ν : U(ν) = σ∧|ν| ≤ K(σ)+c}) ≥

2−(K(σ)+c)·|{ν : U(ν) = σ∧|ν| ≤ K(σ)+c}|.

But also, µ({ν : U(ν) = σ ∧ |ν| ≤
K(σ) + c}) ≤ d · 2−K(σ), by the
Coding Theorem.

• Thus,

d2−K(σ) ≥ 2−c2−K(σ)|{ν : U(ν) = σ ∧ |ν| ≤ K(σ)+c}|.

Hence, d2c ≥ |{ν : U(ν) = σ ∧ |ν| ≤
K(σ) + c}|.

38

'

&

$

%

Symmetry of Information

• K(xy) ≤ K(x) + K(y) + O(1).

• Define I(x : y) = K(y)−K(y|x).

• Levin and Gács, Chaitin I(〈x, K(x)〉 :
y) = I(〈y, K(y)〉 : x) + O(1).

• (restated)
K(x, y) = K(x) + K(y|x∗) =
K(x) + K(x|x,K(x)).

• The proof uses KC again. And the
Coding Theorem.

39

'

&

$

%

• Clearly
K(x, y) ≤ K(x) + K(y|x∗)(+O(1)).

• RTP K(y|x∗) ≤ K(x, y)−K(x)

• At each stage s, have a unique ps,
U(ps) ↓.

• U(ps) = (xs, ys).

• by Coding Thm
2K(x)−c

∑
y Q(x, y) ≤ 1. for all x as∑

y Q(x, y) is an information content
measure of x.

• We build a machine. M . With x′ on
tape, M first simulates U(x′). So
with x∗ on tape M will simuate
U(x∗) = x.

40

'

&

$

%

• Then M simulates Mx described by
the set W KC axioms:

(|pt| − |x∗|+ c, yt), for each
pt = (x, yt).

• ∑
t∈W

2−(|pt|−|x∗|+c)

≤ 2|x
∗|−c

∑
t

2−|pt| ≤ 2K(x)−c′(
∑

y

Q(〈x, y〉)) ≤ 1.

• Finally, for each p with U(p) = (x, y),
there is a p̂ with
U(p̂|x∗) = Mx(p̂) = y, and
|p̂| = |p| −K(x) + c.

• Thus
K(y|x∗) ≤ K(x, y)−K(x) + O(1).

41

'

&

$

%

Prefix free randomness

• Levin-Chaitin random
K(x) ≥ |x|+ O(1).

• Strongly K(x) ≥ |x|+ K(|x|) + O(1).

• Strongly K-random implies
C-random implies K-random.

• NO reversals (the first is nontrivial
and due to Solovay)

42

'

&

$

%

• As with life, relationships here are
complex (Solovay)

K(x) = C(x) + C(2)(x) +O(C(3)(x)).

and

C(x) = K(x)−K(2)(x)+O(K(3)(x)).

• These 3’s are sharp (Solovay) That is,
for example,
K = C + C2 + C3 + O(C4) is NOT
true.

43

'

&

$

%

• Is there a infinite low collection of
strongly K-random strings. Joe
Miller showed that the set is not
co-c.e..

• Theorem. (An A Muchnik) There
exist universal prefix-free machines V

and U such that

(i) MV
K is tt-complete.

(ii) MU
K (and hence R

U

K) is not
tt-complete.

• The proof of (ii) is very interesting,
using strategies for finite games do
diagonalize against tt-reductions.

44

'

&

$

%

• Thus, the overgraph may or may not
be tt-complete depending on the
universal machine. Open for
monotone complexity, open for the
nonrandoms.

45

'

&

$

%

Monotone Complexity

• Levin’s original idea here was to try
to assign a complexity to the real
itself. That is, think of the
complexity of the real as the shortest
machine that outputs the real. Hence
now we are thinking of machines that
take a program σ and might perhaps
output a real α. (Nonsense unless α

is computable)

• The following definition can be
applied to Turing machines with
potentially infinite output, and to
discrete ones mapping strings to
strings. In this definition, we regard

46

'

&

$

%

M(σ) ↓ to mean that at some stage
s, M(σ) ↓ [s].

• We say that a machine M is
monotone if its action is continuous.
That is, for all σ � τ , if M(σ) ↓ and
M(τ) ↓ then

M(σ) � M(τ).

• Levin’s (standard) monotone
complexity Km is defined as follows.
Fix a universal monotone machine U .

Km(σ) = min{|τ | : σ � U(τ)}.

47

'

&

$

%

Continuous Semimeasures

• The coding theorem relates K to
discrete semimeasures. Here we
would like an analog.

• Continuous semimeasures.

• A continuous semimeasure is a
function δ : [2<ω] 7→ R+ ∪ {0}
satisfying

(i) δ([λ]) ≤ 1, and

(ii) δ([σ]) ≥ δ([σ0]) + δ([σ1]).

48

'

&

$

%

• There is a minimal optimal
continuous semimeasure δ. (Actually
δ([σ]) = 2−|σ|F (σ) where F is the
optimal supermartingale, for those
who know.)

• KM(σ) = − log δ([σ]).

• The analog of the Coding Theorem
would state KM = Km. That is the
probability that a string is output
(KM) is the same as its Kolmogorov
complexity (Km). Note 2−Km(σ) is a
semimeasure.

49

'

&

$

%

Gács Theorem

• (i) There exists a function f with
lims f(s) = ∞, such that for
infinitely many σ,

Km(σ)−KM(σ) ≥ f(|σ|).

(ii) Indeed, we may choose f to be the
inverse of Ackkermann’s function.

• This shows ≤Km is not the same as
≤KM . (Miller observation). Is this
true for c.e. reals?

• Find a reasonable proof of Gács
Theorem. (Here reasonable=one I
can understand)

50

