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Three views of

effective randomness

1 Measure-Theoretical:

• Random means no distinguishing
features. (Think of a statistical test
as generating a set of tests: e.g. the
law of large numbers
lim supna1+···+an

n → 1
2 . Then

consider U = {x : x fails the law }.
The U is a null open set.)

• In effective terms:

- Avoids all effective sets of
measure 0.
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2. Algorithmic:

• Random means hard to describe,
incompressible: e.g. 1010101010....
(10000 times) would have a short
program.

• In effective terms:

- Initial segments have high
Kolmogorov complexity.
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3. Other views: e.g. random means
unpredictable. No effective betting
strategy succeeds on α.
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Richard von Mises:

• Actually, the first attempt to “define”
randomness was by von Mises 1919.

• Stochastic approach: α = a1a2 . . . ,

“select” some subsequence assuming
“acceptable” selection rules,

• say positions f(1) < f(2) . . . , then
n →∞, the number of af(i) = 1
divided by those with af(i) = 0 for
i ≤ n should be 1.

• generalization of the law of large
numbers.

• What are acceptable selection rules?
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• Some problems (later). Solved by
Martin-Löf who said we should view
effective statistical tests as effective
null sets.
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Martin-Löf randomness:

• A c.e. open set is one of the form⋃
i(qi, ri) where {qi : i ∈ ω} and

{ri : i ∈ ω} are c.e..
U = {[σ] : σ ∈ W}.

• A Martin-Löf test is a uniformly c.e.
sequence U1, U2, . . . of c.e. open sets
s.t.

∀i(µ(Ui) ≤ 2−i).

(Computably shrinking to measure 0)

• α is Martin-Löf random if for every
Martin-Löf test,

α /∈
⋂
i>0

Ui.
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Solovay Randomness

• We call a real α Solovay random iff
for all c.e. sets of open intervals
{In : n ∈ ω}, with

∑
n |In| < ∞,

α ∈ In for at most finitely many n.

• (Solovay) α is Martin-Löf random iff
α is Solovay random.

• The proof is not difficult: A
Martin-Löf test is a Solovay test,
naturally. For the other direction,
given a Solovay test as above and
wlog the sum is ≤ 1, let
Uk = {β : β ∈ In for at least 2kn}.
Then µ(Uk) ≤ 2−k and hence if α is
Martin=Löf random we are done.
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Universal Tests

• Enumerate all c.e. tests,
{We,j,s : e, j, s ∈ N}, stopping should
one threated to exceed its bound.

• Un = ∪e∈NWe,n+e+1.

• A passes this test iff it passes all
tests. It is a universal martin-Löf
test. (Martin-Löf)

• There are other clever constructions
we may need later. (Kučera)
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Kolmogorov Complexity, again

• From this point of view we should
have all the initial segments of a real
to be random.

• (Can also use selected places and
factor in the complexity of the
selection.)
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• First try α, a real, is random iff for
all n, C(α � n) ≥ n− d.

• By complexity oscillations (Lecture
1) no such real can exist. The reason
as we have seen is that C lacks the
intentional meaning of Komogorov
complexity.
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Levin-Chaitin (K-)

randomness:

• Recall from Lecture 1: prefix freeness
gets rid of the use of length as extra
information:

• α is K-random if there is a c s.t.

∀n(K(α � n) > n− c).

This happens if there is a c such that
for infinitely many n,
C(α � n) > n− c.
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Schnorr’s Theorem

Theorem[Schnorr]
Chaitin random ⇐⇒ Martin-Löf random.
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Kraft-Chaitin

• Recall from Lecture 1, KC:
Suppose that we are effectively given
a set of “requirements” 〈nk, σk〉 for
k ∈ ω with

∑
k 2−nk ≤ 1. Then we

can (primitive recursively) build a
prefix-free machine M and a
collection of strings τk with |τk| = nk

and M(τk) = σk.
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Proof of Schnorr’s Theorem

• =⇒ Suppose that α is not Martin-Löf
random and α ∈ ∩iUi, with
µ(Ui) ≤ 2−i.

• We use Kraft-Chaitin.

• Let n ≥ 3. For all strings σ in Un2 ,
enumerate the pair |σ| − n, σ into B.

• By prefix-freeness, note that∑
B 2−n ≤

∑
n≥32

−n(µ(Un2) ≤∑
n≥3 2n−n2 ≤ 1.

• Thus by Kraft-Chaitin there is a
machine M and strings τn ∈ domM

with M(τn) = σn and |τn| = |σ| − n.
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Since α ∈ ∩nUn2 , this means that α

is not Chaitin random.

• ⇐= Suppose that α is Martin-Löf
random. Consider

Uk = {β : ∃n(K(β � n) ≤ n− k}.

Then µ(Uk) ≤ 2−k (as the domain of
M is prefix-free) and hence, as
α 6∈ ∩KUk, we are done.
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Levin and monotone complexity

• Recall from Lecture 1, that for a a
universal monotone machine U .

Km(σ) = min{|τ | : σ � U(τ)}.

• (Levin’s Theorem) A is Martin-Löf
random iff Km(A � n) > n−O(1).
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• (One direction holds since every
prefix-free machine is monotone, the
other we again put [σ] into Uk iff
KmM (σ) ≤ |σ| − k. where M is a
universal monotone machine, and

µ(Uk) =
∑

{2−|σ| : KM (σ) ≤ |σ|−k∧

∀τ ≺ σ(KMτ) > |τ | − k)} ≤ 2−k.

• In fact A is Martin-Löf random iff
Km(A � n) = n−O(1).
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K and C

• Recall from Lecture 1, we had a
notion of weakly Chaitin random
string : K(x) > |x|.

• (Corollary) For all c, there are
infinitely many weakly K random
strings σ with C(σ) < |σ| − c.

• (Proof) Consider the initial segments
of a random real and C-oscillations.

• Actually with a more refied analysis
of the complexity oscillations, you
can have C(x) ≤ n− log n.
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Lots of random reals

• µ{A : A random } = 1.

• Consider the Σ0
2 class

{A : ∃k∀nK(A � n > n− k} contains
all random reals.

• Hence there are ones of low Turing
degree (low basis theorem) and
hyperimmune free degree. (Kučera)

• There are ones of all jumps and even
∆0

2 ones of all jumps (Kučera,
Downey-Miller)
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Chaitin’s Ω

• The most famous random real is

Ω = µ dom(M) =
∑

M(σ)↓

2−|σ|,

the “halting probability.”

• Ω is random.

• Proof. We use Kraft-Chaitin: We
build a Kraft-Chaitin set with coding
constant c given by the recursion
theorem. If, at stage s, we see
Ks(Ωs � n) < n− c− 1, enumerate
〈n− c,Ωs � n〉 into KC, and hence
Ω � n 6= Ωs � n.
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Ω and halting

• Solovay looked at basic properties of
Ω, in terms of computability. e.g.

• Let Dn = {x : |x| ≤ n ∧ U(x) ↓}.

• (Solovay) K(Dn) = n + O(1).

• (Solovay)

(i) K(Dn|Ω � n) = O(1). (Indeed
Dn ≤wtt Ω � n via a weak truth
table reduction with identity use.)

(ii) K(Ω � n|Dn+K(n)) = O(1).

• (i) is easy. Wait till
Ωs =def

∑
U(σ)↓[s] 2

−|σ| is correct on
its first n bits. Then we can compute
Dn.
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• (ii) is more difficult and is in the
notes.
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Extending Schnorr’s Theorem

• (Miller and Yu) (The Ample Excess
Lemma)
α is Martin-Löf random iff∑

n∈N 2n−K(α�n) < ∞.

• This says that whilst the
K-complexity is above n, mostly it is
“pretty far” from n. (Proof in notes)

• (Miller and Yu) Suppose that f is an
arbitrary function with∑

m∈N 2−f(m) = ∞. Suppose that α

is 1-random. Then there are
infinitely many m with
K(α � m) > m + f(m)−O(1).
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Plain Complexity again

• In spite of the fact that we have this
natural characterization in terms of
K or Km, it was a longstanding
question whether there was a plain
complexity charcaterization of
randomness.

• It was known that there were
sufficient conditions on on C(α � n)
to guarantee randomness. To wit:

• Say that it is Kolmogorov random if
there are infinitely many n with
C(n) ≥ n−O(1).

• (Solovay) They exist.

25



'

&

$

%

1-randomness and

plain complexity

• Finally Miller and Yu provided a
plain complexity characterization of
Martin-Löf randomness.

• Theorem (Miller and Yu) x is
Martin-Löf random iff
(∀n) C(x � n) ≥ n− g(n)±O(1), for
every computable g : ω → ω such that∑

n∈ω 2−g(n) is finite.
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Martingales

• von Mises again. This time think
about predicting the next bit of a
sequence. Then you bet on the
outcome. You should not win!

• (Levy) A martingale is a function
f : 2<ω 7→ R+ ∪ {0} such that for all
σ,

f(σ) =
f(σ0) + f(σ1)

2
.

• the martingale succeeds on a real α, if
lim supn F (α � n) →∞.
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• Think of betting on sequence where
you know that every 2nd bit was 1.
Then every second bit you could
double you stake. This martingale
exhibits exponential growth and that
can be used to characterize
computable reals.

• Ville proved that null sets correspond
to success sets for martingales. They
were used extensively by Doob in the
study of stochastic processes.
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• A supermartingale is a function
f : 2<ω 7→ R+ ∪ {0} such that for all
σ,

f(σ) ≥ f(σ0) + f(σ1)
2

.

• Schnorr showed that Martin-Löf
randomness corresponded to effective
(super-)martingales failing to
succeed.

• f as being effective or computably
enumerable if f(σ) is a c.e. real, and
at every stage we have effective
approximations to f in the sense that
f(σ) = lims fs(σ), with fs(σ) a
computable increasing sequence of
rationals.
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Schnorr, Again

• Theorem: A real α is Martin-Löf
random iff no effective
(super-)martingale. succeeds on α.

• The proof uses a basic fact about
(super-)martingales.

• (Kolmogorov’s inequality)

(i) Let f be a (super-) martingale.
For any string σ and prefix-free
set X ⊆ {x : ν � x},

2−|ν|f(ν) ≥
∑
x∈X

2−|x|f(x).

(ii) Let Sk(f) = {σ : f(σ) ≥ k}, then

µ(Sk(f)) ≤ f(λ)
1
k

.
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• That is the stake must be shared
fairly at level n.
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• Proof of Schnorr’s Theorem: We
show that test sets and martingales
are essentially the same. (Ville
effectivized). Firstly suppose that f

is an effective (super-)martingale.

• Let Vn = ∪{β : f(β) ≥ 2n}.

• Vn is a c.e. open set and µ(Vn) ≤ 2−n

by Kolmogorov’s Inequality.

• Thus {Vn : n ∈ N} is a Martin-Löf
test.

• And α ∈ ∩nVn iff
lim supn f(α � n) = ∞.

• Hence a martingales succeeds on α iff
it fails the derived test.
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• The other direction.

• Build a martingale from a Martin-Löf
test. Let {Un : n ∈ N} be a
Martin-Löf test.

• We represent Un by extensions of a
prefix-free set of strings σ, and
whenever such a σ is enumerated into
∪n,sU

s
n, increase F (σ)[s] by one.

• To maintain the martingale nature of
F , we also increase F by 1 on all
extensions of σ, and by 2−t on the
substring of σ of length (|σ| − t).)
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Universal martingales

• (Corollary) There is a universal
martingale. For all martingales g,
and reals α, f succeeds on α implies
g succeeds on α.

• Use the construction above in a
universal Martin-Löf test.
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Optimal supermartingales

• (Schnorr) We can do better. There is
a multiplicatively optimal
supermartingale.

• An effective supermartingale f such
that for all effective supermartingales
g, there is a constant c such that, for
all σ,

cf(σ) ≥ g(σ).

• No such martingale exists.

• This is implicit in Levin’s work since
δ(σ) = 2−|σ|F (σ) is the optimal
continuous effective semimeasure.
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• Proof: construct a computable
enumeration of all effective
supermartingales, gi for i ∈ N. (Stop
the enumeration when it threatens to
fail the supermartingale condition.)

• Then we can define

f(σ) =
∑
i∈N

2−igi(σ).
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Schnorr randomness

• One could argue that to be
algorithmically random, Martin-Löf’s
definition is too strong.

• For instance, α is ML-random iff no
c.e. Martingale succeeds on α. (That
is the betting startegy
F : 2<ω 7→ R+ ∪ {0} is a c.e.
function.)

• Schnorr argued that ML randomness
is intrinsically c.e. not defeating
“effectively”=computably given
objects.
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More effective randomness

• Schnorr proposed two notions of
more computable randomness.

• (i) A martingale f is called
computable iff f : 2<ω 7→ R+ ∪{0}
is a computable function with
f(σ) (the index of functions
representing the effective
convergence of) a computable
real. (That is, we will be given
indices for a computable sequence
of rationals {qi : i ∈ N} so that
f(σ) = lims qs and
|f(σ)− qs| < 2−s.)

(ii) A real α is called computably
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random iff for no computable
martingale succeeeds on it.

• A Schnorr test is a Martin-Löf test
Ui : i ∈ ω such that µ(Ui) = 2−i.

• α is Schnorr random iff α 6∈ ∩iUi for
all Schnorr tests {Ui}.

• There is a machine characterization
of Schnorr randomness, solving an old
question of Ambos-Spies and others.
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• Recall that a real is called computable
if it has a computable dyadic
expansion.

• (Stop the enumeration when it
threatens to fail the supermartingale
condition.) Then we can define

f(σ) =
∑
i∈N

2−igi(σ).

• A computable prefix free machine is a
prefix free machine M such that,

µ(dom(M)) =
∑

M(σ)↓

2−|σ|

is a computable real.

• The domains of prefix-free machines
are, in general, only computably
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enumerable or left computable in the
sense that they are limits of
computable nondecreasing sequences
of rations.

• For example
Ω = lims Ωs =

∑
U(σ)↓[s] 2

−|σ|.

• Computably enumerable reals play
the same role in this theory as
computably enumerable set do in
classical computalility theory, and
will be deal with in more detail later.

• Theorem: (Downey and Griffiths) α

is Schnorr random iff for all
computable prefix free machines M ,
there is a c such that for all n,

KM (α � n) ≥ n− c.
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• Proof. For instance, suppose that α

is not Schnorr random. Thus we have
α ∈ ∩nVn a Schnorr test.

• We mimic the proof for Martin-Löf
dropping complexity of σ by k should
[σ] occur in the test.

• Now the point is that the proof of
KC would give a computable machine
if the requirements were computable,
which they are.

• the other direction is similar.
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Kurtz Randomness

• Another related notion of relevance
to this story is: Kurtz or weak
randomness.

• Stuart Kurtz suggested that a real
should be random if it obeyed all
positive laws: that is α is Kurtz
random iff for all c.e. open sets U , if
µ(U) = 1 then α ∈ U .

• Some would suggest that this is not
really a randomness notion at all,
since it can be shown to be not
stochastic, but it will be relvant later.

• There is a null set characterization of
this notion.
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• (Wang) A Kurtz null test is a
collection {Vn : n ∈ N} of c.e. open
sets, such that

(i) µ(Vn) ≤ 2−n, and

(ii) There is a computable function
f : N 7→ (Σ∗)<ω such that f(n) is
a canonical index for a finite set of
σ’s, say, σ1, . . . , σn and
Vn = {[σ1], . . . , [σn]}.

• Theorem (Wang, implict in Kurtz’s
Thesis) A real α is Kurtz random iff
it passes all Kurtz null tests.

• Proof Let U be a c.e. open set with
µ(U) = 1. We define Vn.

• To define V1, enumerate U until a
stage s is found with µ(Us) > 2−1.
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The let V1 = Us. Continue in the
obvious way.

• Theorem (Downey, Grifiths, Reid) A
real α is weakly random iff for ever
“computably layered” machine M ,

KM (α � n) ≥ n− c.
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• Schnorr used martingales and a kind
of forcing argument to prove that
there are Schnorr random reals that
are not Martin-Löf random.

• Soon we will show that all c.e.
random reals are Turing complete.

• (Downey-Griffiths) All Schnorr
random c.e. reals are of “high” c.e.
degree.

• (Downey-Griffiths) There are c.e.
reals that are Schnorr random that
have incomplete T -degree.

• (Downey, Griffiths and Reid) Each
c.e. degree contains a c.e. Kurtz
random real.
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• (Downey-Griffiths-LaForte,
Nies-Stephan-Terwijn) All high c.e.
degrees contain Schnorr random c.e.
reals.

• NST have a stronger result for
copputably random c.e. reals and
high degrees. (soon)
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Martingale characterizations

• (Wang) A real α is Kurtz random iff
there is no computable martingale F

and nondecreasing function h, such
that for almost all n,

F (α � n) > h(n).

• (Schnorr) We say that a computable
martingale strongly succeeds on a real
x iff there is a computable
unbounded nondecreasing function
h : N 7→ N such that F (x � n) ≥ h(n)
infinitely often.

• (Schnorr) A real x is Schnorr random
iff no computable martingale strongly
succeeds on x.
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The full characterization

• Martin-Löf implies computable
implies Schnorr implies Kurtz.
(randomness)

• The following very attractive result
gives the full picture.

• (Nies, Stephan and Terwijn ) For
every set A, the following are
equivalent.

(I) A is high.

(II) ∃B ≡T A, B is computably
random but not Martin-Löf
random.

(III) ∃C ≡T A, C is Schnorr random
but not computably random.
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• Moreover, for c.e. degrees, the
examples can be chosen to be c.e.
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Outside the high degrees

• (Nies, Stephan and Terwijn )
Suppose that a set A is Schnorr
random and does not have high
degree. (That is, A′ 6≥T ∅′′. Then A

is Martin-Löf random.

• (Nies, Stephan, Terwijn ) Suppose
that A is of hyperimmune-free
degree. Then A is Kurtz random iff
A is Martin-Löf random.
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• Both proofs use domination
properties.

• The high case.

• Suppose that A is not of high degree
and covered by the Martin-Löf test
A ⊂ ∩iUi. Let f(n) be the stage by
which Un has enumerated a [σ] ∈ Un,s

with A ∈ [σ]. Note that f is
A-computable, and hence computable
relative to an oracle which is not
high. It follows that there is a
computable function g such that
g(n) > f(n) for infinitely many n.
Then consider the test {Vi : i ∈ N},
found by setting Vi = Ui,g(i). The
∪iVi is a Schnorr-Solovay test, and
hence A is not Schnorr random.
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• Proof of the hyperimmune case .

• Suppose that A has hyperimmune
free degree, and A is Kurtz random.
Suppose that A is not Martin-Löf
random. Then since Then there is a
Martin-Löf test {Vn : n ∈ N}, such
that A ∈ ∩nVn. Using A we can
compute A-computably compute a
stage g(n) such that A ∈ Vg(n), and
without loss of generality we can
suppose that Vg(n+1) ⊇ Vg(n). But as
A has hyperimmune free degree, we
can choose a computable function f

so that f(n) > g(n) for all n. Then if
we define Wn = Vf(n), being a Kurtz
null test such that A ∈ ∩nWn, a
contradiction.
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• Actually this works for weakly
2-random reals.
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von Mises strikes back

• There has been a lot of work recently
on nonmonotonic selection, and
nonmonotomic martingales, which
might address Schnorr’s critique.

• Briefly, we get toselect position
f(0), f(1), . . . and bet on thse bits,
but now the selction on the places
can be nonmonotonic.

• Important open question (Muchnik,
Uspensky, Semenov)

• Is randomness relative to computable
nonmonotonic supermartingales the
same as Martin-Löf randomness.
(also see MMNRS)
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Hausdorff Dimension

• Actually Schnorr called the function
h and order.

• If F is a martingale and h is an order
the h-success set of F is the set:

Sh(F ) = {α : lim sup
n→∞

F (α � n)
h(n)

→∞}.

• Thus, A real α is Schnorr random iff
for all computable orders h and all
computable martingales F ,
α 6∈ Sh(F ).

• Exponential orders offer a special
place in this subject.
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• (Lutz) An s-gale is a function
F : 2<ω 7→ R such that

F (σ) = 2s(F (σ0) + F (σ1)).

• The basic idea here is that not
betting on one outcome or the other
is bad.

• Usually, decide that we are not
prepared to favour one side or the
other in our bet. Thus we make
F (σi) = F (σ) at some node σ.In the
case of an s-gale, then we will be
unable to do this, without
automatically losing money due to
inflation.

• Lutz has shown that effective
Hausdorff dimension can be
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characterized using these notions.

• It is not important exactly what the
definition is but we get the following.

• (Lutz, Hitchcock) For a class X the
following are equivalent:

(i) dim(X) = s.

(ii) s = inf{s ∈ Q : X ⊆ S[d] for some
s-gale F}.

(iii) s = inf{s ∈ Q : X ⊆ S2(1−s)n [d] for
some martingale d}.
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• Lutz comment:

• “Informally speaking, the above
theorem says the the dimension of a
set is the most hostile environment
(i.e. most unfavorable payoff
schedule, i.e. the infimum s) in which
a single betting strategy can achieve
infinite winnings on every element of
the set.”

• While Schnorr did not do any of this,
he did look at exponential orders. He
comments:

• “To our opinion the important
statistical laws correspond to null
sets with fast growing orders. Here
the exponentially growing orders are
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of special significance.”
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