Algorithmic Randomness 2

Rod Downey
Victoria University
Wellington
New Zealand

Three views of

effective randomness

1 Measure-Theoretical:

- Random means no distinguishing features. (Think of a statistical test as generating a set of tests: e.g. the law of large numbers
$\limsup n \frac{a_{1}+\cdots+a_{n}}{n} \rightarrow \frac{1}{2}$. Then
consider $U=\{x: x$ fails the law $\}$. The U is a null open set.)
- In effective terms:
- Avoids all effective sets of measure 0.

2. Algorithmic:

- Random means hard to describe, incompressible: e.g. 1010101010.... (10000 times) would have a short program.
- In effective terms:
- Initial segments have high Kolmogorov complexity.

3. Other views: e.g. random means unpredictable. No effective betting strategy succeeds on α.

Richard von Mises:

- Actually, the first attempt to "define" randomness was by von Mises 1919.
- Stochastic approach: $\alpha=a_{1} a_{2} \ldots$, "select" some subsequence assuming "acceptable" selection rules,
- say positions $f(1)<f(2)$..., then $n \rightarrow \infty$, the number of $a_{f(i)}=1$ divided by those with $a_{f(i)}=0$ for $i \leq n$ should be 1 .
- generalization of the law of large numbers.
- What are acceptable selection rules?
- Some problems (later). Solved by Martin-Löf who said we should view effective statistical tests as effective null sets.

Martin-Löf randomness:

- A c.e. open set is one of the form $\bigcup_{i}\left(q_{i}, r_{i}\right)$ where $\left\{q_{i}: i \in \omega\right\}$ and $\left\{r_{i}: i \in \omega\right\}$ are c.e.. $U=\{[\sigma]: \sigma \in W\}$.
- A Martin-Löf test is a uniformly c.e. sequence U_{1}, U_{2}, \ldots of c.e. open sets s.t.

$$
\forall i\left(\mu\left(U_{i}\right) \leq 2^{-i}\right) .
$$

(Computably shrinking to measure 0)

- α is Martin-Löf random if for every Martin-Löf test,

$$
\alpha \notin \bigcap_{i>0} U_{i}
$$

Solovay Randomness

- We call a real α Solovay random iff for all c.e. sets of open intervals
$\left\{I_{n}: n \in \omega\right\}$, with $\sum_{n}\left|I_{n}\right|<\infty$, $\alpha \in I_{n}$ for at most finitely many n.
- (Solovay) α is Martin-Löf random iff α is Solovay random.
- The proof is not difficult: A Martin-Löf test is a Solovay test, naturally. For the other direction, given a Solovay test as above and wlog the sum is ≤ 1, let $U_{k}=\left\{\beta: \beta \in I_{n}\right.$ for at least $\left.2^{k} n\right\}$. Then $\mu\left(U_{k}\right) \leq 2^{-k}$ and hence if α is Martin=Löf random we are done.

Universal Tests

- Enumerate all c.e. tests, $\left\{W_{e, j, s}: e, j, s \in \mathbb{N}\right\}$, stopping should one threated to exceed its bound.
- $U_{n}=\cup_{e \in \mathbb{N}} W_{e, n+e+1}$.
- A passes this test iff it passes all tests. It is a universal martin-Löf test. (Martin-Löf)
- There are other clever constructions we may need later. (Kučera)

Kolmogorov Complexity, again

- From this point of view we should have all the initial segments of a real to be random.
- (Can also use selected places and factor in the complexity of the selection.)
- First try α, a real, is random iff for all $n, C(\alpha \upharpoonright n) \geq n-d$.
- By complexity oscillations (Lecture 1) no such real can exist. The reason as we have seen is that C lacks the intentional meaning of Komogorov complexity.

Levin-Chaitin ($K-$)

randomness:

- Recall from Lecture 1: prefix freeness gets rid of the use of length as extra information:
- α is K-random if there is a c s.t.

$$
\forall n(K(\alpha \upharpoonright n)>n-c) .
$$

This happens if there is a c such that for infinitely many n,
$C(\alpha \upharpoonright n)>n-c$.

Schnorr's Theorem

Theorem[Schnorr]
Chaitin random \Longleftrightarrow Martin-Löf random.

Kraft-Chaitin

- Recall from Lecture 1, KC:

Suppose that we are effectively given a set of "requirements" $\left\langle n_{k}, \sigma_{k}\right\rangle$ for $k \in \omega$ with $\sum_{k} 2^{-n_{k}} \leq 1$. Then we can (primitive recursively) build a prefix-free machine M and a collection of strings τ_{k} with $\left|\tau_{k}\right|=n_{k}$ and $M\left(\tau_{k}\right)=\sigma_{k}$.

Proof of Schnorr's Theorem

- \Longrightarrow Suppose that α is not Martin-Löf random and $\alpha \in \cap_{i} U_{i}$, with $\mu\left(U_{i}\right) \leq 2^{-i}$.
- We use Kraft-Chaitin.
- Let $n \geq 3$. For all strings σ in $U_{n^{2}}$, enumerate the pair $|\sigma|-n, \sigma$ into B.
- By prefix-freeness, note that
$\sum_{B} 2^{-n} \leq \sum_{n \geq 3} 2^{-n}\left(\mu\left(U_{n^{2}}\right) \leq\right.$ $\sum_{n \geq 3} 2^{n-n^{2}} \leq 1$.
- Thus by Kraft-Chaitin there is a machine M and strings $\tau_{n} \in \operatorname{dom} M$ with $M\left(\tau_{n}\right)=\sigma_{n}$ and $\left|\tau_{n}\right|=|\sigma|-n$.

Since $\alpha \in \cap_{n} U_{n^{2}}$, this means that α is not Chaitin random.

- \Longleftarrow Suppose that α is Martin-Löf random. Consider

$$
U_{k}=\{\beta: \exists n(K(\beta \upharpoonright n) \leq n-k\} .
$$

Then $\mu\left(U_{k}\right) \leq 2^{-k}$ (as the domain of M is prefix-free) and hence, as $\alpha \notin \cap_{K} U_{k}$, we are done.

Levin and monotone complexity

- Recall from Lecture 1, that for a a universal monotone machine U.

$$
K m(\sigma)=\min \{|\tau|: \sigma \preceq U(\tau)\} .
$$

- (Levin's Theorem) A is Martin-Löf random iff $K m(A \upharpoonright n)>n-O(1)$.
- (One direction holds since every prefix-free machine is monotone, the other we again put $[\sigma]$ into U_{k} iff $K m_{M}(\sigma) \leq|\sigma|-k$. where M is a universal monotone machine, and

$$
\begin{gathered}
\mu\left(U_{k}\right)=\sum\left\{2^{-|\sigma|}: K_{M}(\sigma) \leq|\sigma|-k \wedge\right. \\
\left.\left.\forall \tau \prec \sigma\left(K_{M} \tau\right)>|\tau|-k\right)\right\} \leq 2^{-k}
\end{gathered}
$$

- In fact A is Martin-Löf random iff $K m(A \upharpoonright n)=n-O(1)$.

K and C

- Recall from Lecture 1, we had a notion of weakly Chaitin random string : $K(x)>|x|$.
- (Corollary) For all c, there are infinitely many weakly K random strings σ with $C(\sigma)<|\sigma|-c$.
- (Proof) Consider the initial segments of a random real and C-oscillations.
- Actually with a more refied analysis of the complexity oscillations, you can have $C(x) \leq n-\log n$.

Lots of random reals

- $\mu\{A: A$ random $\}=1$.
- Consider the Σ_{2}^{0} class
$\{A: \exists k \forall n K(A \upharpoonright n>n-k\}$ contains all random reals.
- Hence there are ones of low Turing degree (low basis theorem) and hyperimmune free degree. (Kučera)
- There are ones of all jumps and even Δ_{2}^{0} ones of all jumps (Kučera, Downey-Miller)

Chaitin's Ω

- The most famous random real is

$$
\Omega=\mu \operatorname{dom}(M)=\sum_{M(\sigma) \downarrow} 2^{-|\sigma|},
$$

the "halting probability."

- Ω is random.
- Proof. We use Kraft-Chaitin: We build a Kraft-Chaitin set with coding constant c given by the recursion theorem. If, at stage s, we see $K_{s}\left(\Omega_{s} \upharpoonright n\right)<n-c-1$, enumerate $\left\langle n-c, \Omega_{s} \upharpoonright n\right\rangle$ into KC, and hence $\Omega \upharpoonright n \neq \Omega_{s} \upharpoonright n$.

Ω and halting

- Solovay looked at basic properties of Ω, in terms of computability. e.g.
- Let $D_{n}=\{x:|x| \leq n \wedge U(x) \downarrow\}$.
- (Solovay) $K\left(D_{n}\right)=n+O(1)$.
- (Solovay)
(i) $K\left(D_{n} \mid \Omega \upharpoonright n\right)=O(1)$. (Indeed $D_{n} \leq_{w t t} \Omega \upharpoonright n$ via a weak truth table reduction with identity use.)
(ii) $K\left(\Omega \upharpoonright n \mid D_{n+K(n)}\right)=O(1)$.
- (i) is easy. Wait till
$\Omega_{s}=$ def $\sum_{U(\sigma) \downarrow[s]} 2^{-|\sigma|}$ is correct on its first n bits. Then we can compute D_{n}.
- (ii) is more difficult and is in the notes.

Extending Schnorr's Theorem

- (Miller and Yu) (The Ample Excess Lemma)
α is Martin-Löf random iff
$\sum_{n \in \mathbb{N}} 2^{n-K(\alpha \upharpoonright n)}<\infty$.
- This says that whilst the

K-complexity is above n, mostly it is "pretty far" from n. (Proof in notes)

- (Miller and Yu) Suppose that f is an arbitrary function with
$\sum_{m \in \mathbb{N}} 2^{-f(m)}=\infty$. Suppose that α is 1 -random. Then there are infinitely many m with $K(\alpha \upharpoonright m)>m+f(m)-O(1)$.

Plain Complexity again

- In spite of the fact that we have this natural characterization in terms of K or $K m$, it was a longstanding question whether there was a plain complexity charcaterization of randomness.
- It was known that there were sufficient conditions on on $C(\alpha \upharpoonright n)$ to guarantee randomness. To wit:
- Say that it is Kolmogorov random if there are infinitely many n with
$C(n) \geq n-O(1)$.
- (Solovay) They exist.

1-randomness and

plain complexity

- Finally Miller and Yu provided a plain complexity characterization of Martin-Löf randomness.
- Theorem (Miller and Yu) x is Martin-Löf random iff
$(\forall n) C(x \upharpoonright n) \geq n-g(n) \pm O(1)$, for every computable $g: \omega \rightarrow \omega$ such that $\sum_{n \in \omega} 2^{-g(n)}$ is finite.

Martingales

- von Mises again. This time think about predicting the next bit of a sequence. Then you bet on the outcome. You should not win!
- (Levy) A martingale is a function $f: 2^{<\omega} \mapsto \mathbb{R}^{+} \cup\{0\}$ such that for all σ,

$$
f(\sigma)=\frac{f(\sigma 0)+f(\sigma 1)}{2}
$$

- the martingale succeeds on a real α, if $\lim \sup _{n} F(\alpha \upharpoonright n) \rightarrow \infty$.
- Think of betting on sequence where you know that every 2 nd bit was 1 . Then every second bit you could double you stake. This martingale exhibits exponential growth and that can be used to characterize computable reals.
- Ville proved that null sets correspond to success sets for martingales. They were used extensively by Doob in the study of stochastic processes.
- A supermartingale is a function $f: 2^{<\omega} \mapsto \mathbb{R}^{+} \cup\{0\}$ such that for all σ,

$$
f(\sigma) \geq \frac{f(\sigma 0)+f(\sigma 1)}{2} .
$$

- Schnorr showed that Martin-Löf randomness corresponded to effective (super-)martingales failing to succeed.
- f as being effective or computably enumerable if $f(\sigma)$ is a c.e. real, and at every stage we have effective approximations to f in the sense that $f(\sigma)=\lim _{s} f_{s}(\sigma)$, with $f_{s}(\sigma)$ a computable increasing sequence of rationals.

Schnorr, Again

- Theorem: A real α is Martin-Löf random iff no effective
(super-)martingale. succeeds on α.
- The proof uses a basic fact about (super-)martingales.
- (Kolmogorov's inequality)
(i) Let f be a (super-) martingale. For any string σ and prefix-free set $X \subseteq\{x: \nu \preceq x\}$,

$$
2^{-|\nu|} f(\nu) \geq \sum_{x \in X} 2^{-|x|} f(x) .
$$

(ii) Let $S^{k}(f)=\{\sigma: f(\sigma) \geq k\}$, then

$$
\mu\left(S^{k}(f)\right) \leq f(\lambda) \frac{1}{k} .
$$

- That is the stake must be shared fairly at level n.
- Proof of Schnorr's Theorem: We show that test sets and martingales are essentially the same. (Ville effectivized). Firstly suppose that f is an effective (super-)martingale.
- Let $V_{n}=\cup\left\{\beta: f(\beta) \geq 2^{n}\right\}$.
- V_{n} is a c.e. open set and $\mu\left(V_{n}\right) \leq 2^{-n}$ by Kolmogorov's Inequality.
- Thus $\left\{V_{n}: n \in \mathbb{N}\right\}$ is a Martin-Löf test.
- And $\alpha \in \cap_{n} V_{n}$ iff
$\limsup \operatorname{su}_{n} f(\alpha \upharpoonright n)=\infty$.
- Hence a martingales succeeds on α iff it fails the derived test.
- The other direction.
- Build a martingale from a Martin-Löf test. Let $\left\{U_{n}: n \in \mathbb{N}\right\}$ be a Martin-Löf test.
- We represent U_{n} by extensions of a prefix-free set of strings σ, and whenever such a σ is enumerated into $\cup_{n, s} U_{n}^{s}$, increase $F(\sigma)[s]$ by one.
- To maintain the martingale nature of F, we also increase F by 1 on all extensions of σ, and by 2^{-t} on the substring of σ of length $(|\sigma|-t)$.)

Universal martingales

- (Corollary) There is a universal martingale. For all martingales g, and reals α, f succeeds on α implies g succeeds on α.
- Use the construction above in a universal Martin-Löf test.

Optimal supermartingales

- (Schnorr) We can do better. There is a multiplicatively optimal supermartingale.
- An effective supermartingale f such that for all effective supermartingales g, there is a constant c such that, for all σ,

$$
c f(\sigma) \geq g(\sigma)
$$

- No such martingale exists.
- This is implicit in Levin's work since $\delta(\sigma)=2^{-|\sigma|} F(\sigma)$ is the optimal continuous effective semimeasure.
- Proof: construct a computable enumeration of all effective supermartingales, g_{i} for $i \in \mathbb{N}$. (Stop the enumeration when it threatens to fail the supermartingale condition.)
- Then we can define

$$
f(\sigma)=\sum_{i \in \mathbb{N}} 2^{-i} g_{i}(\sigma)
$$

Schnorr randomness

- One could argue that to be algorithmically random, Martin-Löf's definition is too strong.
- For instance, α is ML-random iff no c.e. Martingale succeeds on α. (That is the betting startegy
$F: 2^{<\omega} \mapsto \mathbb{R}^{+} \cup\{0\}$ is a c.e. function.)
- Schnorr argued that $M L$ randomness is intrinsically c.e. not defeating "effectively" = computably given objects.

More effective randomness

- Schnorr proposed two notions of more computable randomness.
- (i) A martingale f is called computable iff $f: 2^{<\omega} \mapsto \mathbb{R}^{+} \cup\{0\}$ is a computable function with $f(\sigma)$ (the index of functions representing the effective convergence of) a computable real. (That is, we will be given indices for a computable sequence of rationals $\left\{q_{i}: i \in \mathbb{N}\right\}$ so that $f(\sigma)=\lim _{s} q_{s}$ and $\left|f(\sigma)-q_{s}\right|<2^{-s}$.)
(ii) A real α is called computably

random iff for no computable martingale succeeeds on it.

- A Schnorr test is a Martin-Löf test $U_{i}: i \in \omega$ such that $\mu\left(U_{i}\right)=2^{-i}$.
- α is Schnorr random iff $\alpha \notin \cap_{i} U_{i}$ for all Schnorr tests $\left\{U_{i}\right\}$.
- There is a machine characterization of Schnorr randomness, solving an old question of Ambos-Spies and others.
- Recall that a real is called computable if it has a computable dyadic expansion.
- (Stop the enumeration when it threatens to fail the supermartingale condition.) Then we can define

$$
f(\sigma)=\sum_{i \in \mathbb{N}} 2^{-i} g_{i}(\sigma)
$$

- A computable prefix free machine is a prefix free machine M such that,

$$
\mu(\operatorname{dom}(M))=\sum_{M(\sigma) \downarrow} 2^{-|\sigma|}
$$ is a computable real.

- The domains of prefix-free machines are, in general, only computably
enumerable or left computable in the sense that they are limits of computable nondecreasing sequences of rations.
- For example
$\Omega=\lim _{s} \Omega_{s}=\sum_{U(\sigma) \downarrow[s]} 2^{-|\sigma|}$.
- Computably enumerable reals play the same role in this theory as computably enumerable set do in classical computalility theory, and will be deal with in more detail later.
- Theorem: (Downey and Griffiths) α is Schnorr random iff for all computable prefix free machines M, there is a c such that for all n,

$$
K_{M}(\alpha \upharpoonright n) \geq n-c
$$

- Proof. For instance, suppose that α is not Schnorr random. Thus we have $\alpha \in \cap_{n} V_{n}$ a Schnorr test.
- We mimic the proof for Martin-Löf dropping complexity of σ by k should $[\sigma]$ occur in the test.
- Now the point is that the proof of KC would give a computable machine if the requirements were computable, which they are.
- the other direction is similar.

Kurtz Randomness

- Another related notion of relevance to this story is: Kurtz or weak randomness.
- Stuart Kurtz suggested that a real should be random if it obeyed all positive laws: that is α is Kurtz random iff for all c.e. open sets U, if $\mu(U)=1$ then $\alpha \in U$.
- Some would suggest that this is not really a randomness notion at all, since it can be shown to be not stochastic, but it will be relvant later.
- There is a null set characterization of this notion.
- (Wang) A Kurtz null test is a collection $\left\{V_{n}: n \in \mathbb{N}\right\}$ of c.e. open sets, such that
(i) $\mu\left(V_{n}\right) \leq 2^{-n}$, and
(ii) There is a computable function $f: \mathbb{N} \mapsto\left(\Sigma^{*}\right)^{<\omega}$ such that $f(n)$ is a canonical index for a finite set of σ^{\prime} s, say, $\sigma_{1}, \ldots, \sigma_{n}$ and $V_{n}=\left\{\left[\sigma_{1}\right], \ldots,\left[\sigma_{n}\right]\right\}$.
- Theorem (Wang, implict in Kurtz's Thesis) A real α is Kurtz random iff it passes all Kurtz null tests.
- Proof Let U be a c.e. open set with $\mu(U)=1$. We define V_{n}.
- To define V_{1}, enumerate U until a stage s is found with $\mu\left(U_{s}\right)>2^{-1}$.

The let $V_{1}=\overline{U_{s}}$. Continue in the obvious way.

- Theorem (Downey, Grifiths, Reid) A real α is weakly random iff for ever "computably layered" machine M,

$$
K_{M}(\alpha \upharpoonright n) \geq n-c .
$$

- Schnorr used martingales and a kind of forcing argument to prove that there are Schnorr random reals that are not Martin-Löf random.
- Soon we will show that all c.e. random reals are Turing complete.
- (Downey-Griffiths) All Schnorr random c.e. reals are of "high" c.e. degree.
- (Downey-Griffiths) There are c.e. reals that are Schnorr random that have incomplete T-degree.
- (Downey, Griffiths and Reid) Each c.e. degree contains a c.e. Kurtz random real.
- (Downey-Griffiths-LaForte, Nies-Stephan-Terwijn) All high c.e. degrees contain Schnorr random c.e. reals.
- NST have a stronger result for copputably random c.e. reals and high degrees. (soon)

Martingale characterizations

- (Wang) A real α is Kurtz random iff there is no computable martingale F and nondecreasing function h, such that for almost all n,

$$
F(\alpha \upharpoonright n)>h(n) .
$$

- (Schnorr) We say that a computable martingale strongly succeeds on a real x iff there is a computable unbounded nondecreasing function $h: \mathbb{N} \mapsto \mathbb{N}$ such that $F(x \upharpoonright n) \geq h(n)$ infinitely often.
- (Schnorr) A real x is Schnorr random iff no computable martingale strongly succeeds on x.

The full characterization

- Martin-Löf implies computable implies Schnorr implies Kurtz. (randomness)
- The following very attractive result gives the full picture.
- (Nies, Stephan and Terwijn) For every set A, the following are equivalent.
(I) A is high.
(II) $\exists B \equiv_{T} A, B$ is computably random but not Martin-Löf random.
(III) $\exists C \equiv_{T} A, C$ is Schnorr random but not computably random.
- Moreover, for c.e. degrees, the examples can be chosen to be c.e.

Outside the high degrees

- (Nies, Stephan and Terwijn)

Suppose that a set A is Schnorr random and does not have high degree. (That is, $A^{\prime} \not ¥_{T} \emptyset^{\prime \prime}$. Then A is Martin-Löf random.

- (Nies, Stephan, Terwijn) Suppose that A is of hyperimmune-free degree. Then A is Kurtz random iff A is Martin-Löf random.
- Both proofs use domination properties.
- The high case.
- Suppose that A is not of high degree and covered by the Martin-Löf test $A \subset \cap_{i} U_{i}$. Let $f(n)$ be the stage by which U_{n} has enumerated a $[\sigma] \in U_{n, s}$ with $A \in[\sigma]$. Note that f is
A-computable, and hence computable relative to an oracle which is not high. It follows that there is a computable function g such that $g(n)>f(n)$ for infinitely many n. Then consider the test $\left\{V_{i}: i \in \mathbb{N}\right\}$, found by setting $V_{i}=U_{i, g(i)}$. The $\cup_{i} V_{i}$ is a Schnorr-Solovay test, and hence A is not Schnorr random.
- Proof of the hyperimmune case .
- Suppose that A has hyperimmune free degree, and A is Kurtz random. Suppose that A is not Martin-Löf random. Then since Then there is a Martin-Löf test $\left\{V_{n}: n \in \mathbb{N}\right\}$, such that $A \in \cap_{n} V_{n}$. Using A we can compute A-computably compute a stage $g(n)$ such that $A \in V_{g(n)}$, and without loss of generality we can suppose that $V_{g(n+1)} \supseteq V_{g(n)}$. But as A has hyperimmune free degree, we can choose a computable function f so that $f(n)>g(n)$ for all n. Then if we define $W_{n}=V_{f(n)}$, being a Kurtz null test such that $A \in \cap_{n} W_{n}$, a contradiction.
- Actually this works for weakly 2-random reals.

von Mises strikes back

- There has been a lot of work recently on nonmonotonic selection, and nonmonotomic martingales, which might address Schnorr's critique.
- Briefly, we get toselect position $f(0), f(1), \ldots$ and bet on thse bits, but now the selction on the places can be nonmonotonic.
- Important open question (Muchnik, Uspensky, Semenov)
- Is randomness relative to computable nonmonotonic supermartingales the same as Martin-Löf randomness. (also see MMNRS)

Hausdorff Dimension

- Actually Schnorr called the function h and order.
- If F is a martingale and h is an order the h-success set of F is the set:

$$
S_{h}(F)=\left\{\alpha: \limsup _{n \rightarrow \infty} \frac{F(\alpha \upharpoonright n)}{h(n)} \rightarrow \infty\right\} .
$$

- Thus, A real α is Schnorr random iff for all computable orders h and all computable martingales F, $\alpha \notin S_{h}(F)$.
- Exponential orders offer a special place in this subject.
- (Lutz) An s-gale is a function $F: 2^{<\omega} \mapsto \mathbb{R}$ such that

$$
F(\sigma)=2^{s}(F(\sigma 0)+F(\sigma 1))
$$

- The basic idea here is that not betting on one outcome or the other is bad.
- Usually, decide that we are not prepared to favour one side or the other in our bet. Thus we make $F(\sigma i)=F(\sigma)$ at some node σ.In the case of an s-gale, then we will be unable to do this, without automatically losing money due to inflation.
- Lutz has shown that effective Hausdorff dimension can be
characterized using these notions.
- It is not important exactly what the definition is but we get the following.
- (Lutz, Hitchcock) For a class X the following are equivalent:
(i) $\operatorname{dim}(X)=s$.
(ii) $s=\inf \{s \in \mathbb{Q}: X \subseteq S[d]$ for some s-gale $F\}$.
(iii) $s=\inf \left\{s \in \mathbb{Q}: X \subseteq S_{2^{(1-s) n}[d]}\right.$ for some martingale $d\}$.
- Lutz comment:
- "Informally speaking, the above theorem says the the dimension of a set is the most hostile environment (i.e. most unfavorable payoff schedule, i.e. the infimum s) in which a single betting strategy can achieve infinite winnings on every element of the set."
- While Schnorr did not do any of this, he did look at exponential orders. He comments:
- "To our opinion the important statistical laws correspond to null sets with fast growing orders. Here the exponentially growing orders are
of special significance."

