Algorithmic Randomness 3

Rod Downey
Victoria University
Wellington
New Zealand

Motivation

- Reurning to the theme of studying randomness in 2^{ω} and in particular the relationship of ($n-$) randomness to calibrations of reals by relatitive computational complexity.
- For instance, how do random reals perform as oracles?

Enumeration probabilities

- The first linkage of measure and degrees was the following: (also Spector, 1958 for hyperdegrees)
- Recall an index e for \emptyset^{\prime} is is universal if for all indices f and all sets S, there is a finite string σ_{f} such that

$$
W_{f}^{S}=W_{e}^{\sigma_{f} S} .
$$

- Define $P(A)=\mu\left\{X: W_{e}^{X}=A\right\}$.

de Leeuw, et. al.;Sacks

- Theorem: (de Leeuw, Moore, Shannon, Shapiro, 1956) If $P(A)>0$ then A is computably enumerable.
- Corollary: Sacks $\mu\left\{X: A \leq_{T} X\right\}>0$, iff A is computable.
- The proof uses the majority vote technique, which is an important standard tool. Assume $P(A)>0$.
- For some $e, D_{e}=\left\{X: A=W_{e}^{X}\right\}$ has positive measure.
- There is a string σ such that the relative measure of D_{e} above σ is greater than $\frac{1}{2}$. (Lebesgue Density Theorem)
- Let the oracles extending σ vote on membership in D_{e}
- $\mathrm{Pu} n$ into A if more than half (by measure) say so. This enumerates A.

Solovay's Therem

- Solovay examined the relationship between $P(A)>0$ and the least index for $W_{i}=A$.
- Let $H(A)=\lceil-\log P(A)\rceil$
$I(A)=\min \left\{K(i): W_{i}=A\right\}$.
- Theorem (Solovay)

$$
I(A) \leq 3 H(A)+K(H(A))+O(1)
$$

- The proof is combinatorial, and uses a clever lemma of Martin.

Stillwell's Therem

- Similar methods show the following due to Stillwell.
(i) Suppose that
$\mu\left(\left\{C: D \leq_{T} A \oplus C\right\}\right)>0$. Then $C \leq_{T} A$.
(ii) (Hence) For any $\boldsymbol{a}, \boldsymbol{b}$,
$(\boldsymbol{a} \cup \boldsymbol{b}) \cap(\boldsymbol{a} \cup \boldsymbol{c})=\boldsymbol{a}$, for almost all c.
(iii) Similarly for almost all \boldsymbol{a}, $\boldsymbol{a}^{(n)} \equiv \boldsymbol{a} \cup \mathbf{o}^{(n)}$. Almost all degrees are GL_{n}.
(iv) For almost all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a} \cap \boldsymbol{b}=\mathbf{o}$.
- Now consider the language where variables $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \ldots$ vary over arbitrary degrees. Terms are built from ' (jump), \cup, \cap.
- An atomic formula $t_{1} \leq t_{2}$ for terms t_{1}, t_{2},
- In general build from atomic ones and $\wedge,{ }^{-}$and the quantifier \forall interpreted to mean "for almost all.'
- Then the above allows for the generation of normal forms, and Fubinbi's Theorem allows for treatment of quantifiers. These kinds of considerations give
- Theorem (Stillwell) The "almost all" theory of degrees is decidable.

Coding into randoms

- You might think that the above says that, in general coding into random reals should be impossible.
- The intuitive argument is, perhaps, that a random real should have information, but only in a way that if not organized enough to be able to use it. These is some truth in this as we later see.
- However, coding is possible as we now see.

The Kučera-Gács Theorem

- Every set is wtt reducible to a Martin-Löf random set.
- The proof uses blocks to code information, and the Gács coding is more compressed than the Kučera one. Hirschfeldt (unpublished) has yet another coding.
- One easy to understand proof is due to Merkle and Mihailovic using martingales.
- The first Lemma is folklore, more or less going back to Kučera in another form.

The Space Lemma

- (The Space Lemma) Given a rational $\delta>1$ and $k \in \mathbb{Z}^{+}$, we can compute a length $\ell(\delta, k)$, such that for any martingale d, and any word w,

$$
\left|\left\{w \in 2^{\ell(\delta, k)}: d(v w) \leq \delta d(v)\right\}\right| \geq k .
$$

- It is important here that $\ell(\delta, k)$ can actually be computed.
- (Restated) For any martingale d and any interval of length k, there are at least k paths extending v of length $\ell(\delta, k)$ where d cannot increase its capitol more than a factor of δ while betting on I, no matter how d behaves.
- Proof: $d(v)=2^{-k} \sum_{|u|=k} d(v u)$.
- (Kolmogorov) For any given ℓ and v the average of $d(v w)$ over words of length ℓ is $d(v)$.
- Thus, $\frac{|\{|w|=\ell: d(v w)>\delta d(v)\}|}{2^{\ell}}<\frac{1}{\delta}$.
- Since $\delta>1,1-\delta^{-1}>0$
- Suffices to have $\ell(\delta, k) \geq \log \frac{k}{1-\delta^{-1}}=$ $\log k+\log \delta-\log (\delta-1)$.

Kučera-Gács

- The space lemma gives enough space for coding.
- Here is the MM proof:
- Let $\beta_{i}=\Pi_{j \leq i} r_{j}$, with
$r_{0}>r_{1}>\cdots \in \mathbb{Q}^{+}$,
- Ask that β_{i} converge.
- Partition $\mathbb{N}=\cup\left\{I_{s}: s \in \mathbb{N}\right\} ; I_{s}$ of size $\ell_{s}=\ell\left(r_{s}, 2\right)$.
- The Space Lemma tells us for any word v, and any martingale d, there are at least two words w of length ℓ_{s} with $d(v w) \leq r_{s} d(v)$.
- We construct R with given $X \leq_{w t t} R$.
- At step s we will specify R on I_{s}.
- Say w of length I_{s} is admissible if
(i) $s=0$ and $d(w) \leq \beta_{0}$, and
(ii) for $s>0$, if

$$
d(v w) \leq \beta_{s} \text { for } v=R \upharpoonright\left(I_{0} \cup \cdots \cup I_{s}-1\right)
$$

- Induction and Space Lemma show at every step there are at least 2 admissible extensions.
- To specify R, from $R \upharpoonright\left(I_{0} \cup \cdots \cup I_{s-1}\right)$,
- choose left (lex min) if $s \notin X$ and right it $s \in X$.

Kučera Coding

- Similar left-right coding with suitable blocks allows Kučera to prove the following theorem, roughly using something like the Friedberg cupping Theorem and an intersection lemma on fat Π_{1}^{0} classes akin to the Space Lemma.
- Theorem (Kučera, 1985) Suppose that $\boldsymbol{a}>\mathbf{o}^{\prime}$. Then \boldsymbol{a} is Martin-Löf random.
- Kučera's proof is in the notes. It has other applications. The theorem also follows from the last proof since if X is above \emptyset^{\prime} then X can compute R.
- Other positive results say that there are randoms of every possible jump (using generalized low basis theory on Π_{1}^{0} classes which have no computable members) and
- (Kučera, Downey-Miller) randoms below \mathbf{o}^{\prime} of every possible jump, using basis theorems for fat Π_{1}^{0} classes.

Random power

- All of this might lead one to suspect that randoms are in fact computationally powerful. The only explicit ones we have are above \mathbf{o}^{\prime}, except the hyperimmune free ones. (Later we will see that almost all of them are hyperimmune, so the hyperimmune free ones are red herrings.)
- BUT Frank Stephan has shown that these random reals above \mathbf{o}^{\prime} are in essence the only computationally powerful reals.
- Recall that a degree is called PA if \boldsymbol{a} is PA iff it is the degree of a complete extension of Peano Arithmetic.
- A function f is called fixed-point free if $W_{f(x)} \neq W_{x}$ for all x.
- By Jockusch, Lerman, Soare, and Solovay, \boldsymbol{a} being FPF is equivalent to bing able to compute a DNC function: Namely g with $g(e) \neq \varphi_{e}(e)$ for all e.
- (Jockusch and Soare) \boldsymbol{a} is PA iff it can compute a $\{0,1\}$ valued DNC function.

Stephan's Theorem

- (Stephan) Suppose that \boldsymbol{a} is PA and 1-random. Then $\mathbf{o}^{\prime} \leq_{T} \boldsymbol{a}$.
- He concludes
"The main result says that there are two types of Martin-Löf sets: the first type are the computationally powerful sets which permit the solving of the halting problem; the second type of random set are computationally weak in the sense that they are not [PA]. Every set not belonging to one of these two classes is not Martin-Löf random."

n-randomness

- In the same way as the arithmetical hierarchy,
- (i) A Σ_{n}^{0} test is a computable collection $\left\{V_{n}: n \in \mathbb{N}\right\}$ of Σ_{n}^{0} classes such that $\mu\left(V_{k}\right) \leq 2^{-k}$.
(ii) A real α is Σ_{n}^{0}-random or n-random iff it passes all Σ_{n}^{0} tests.
(iii) One can similarly define $\Pi_{n}^{0}, \Delta_{n}^{0}$ etc tests and randomness.
(iv) A real α is called arithmetically random iff for any n, α is n-random.

Kurtz's Theorem

- We use open sets to define Martin-Löf randomness.
- Consider: the Σ_{2}^{0} class consisting of reals that are always zero from some point onwards. It is not equivalent to $\cup\{[\sigma]: \sigma \in W\}$ for any W.
- Kurtz showed that n-randomness is the same as n randomness relative to open classes. (Detailed statement in the notes) The point is that:
- Theorem (Kurtz) $n+1$-randomness
$=1$-randomness relative to $\emptyset^{(n)}$.
- This is also implicit in Solovay's notes in the dual way he treats 2 -randomness.
- Thus, for instance, if A is 2-random then $A \not \mathbb{Z}_{T} \emptyset^{\prime}$. (Indeed, their degrees forma minimal pair).
- Also there is a $n+1$-random set $\Omega^{(n+1)}$ namely $\Omega^{\emptyset^{(n)}}$ which is computably enumerable relative to $\emptyset^{(n)}$.
- NOTE it is NOT $\operatorname{CEA}\left(\emptyset^{(n)}\right)$. But $\Omega^{(n)} \oplus \emptyset^{(n)} \equiv_{T} \emptyset^{(n+1)}$.

Warning

- Similar relativization work for Schnorr, computable, etc randomness. BUT not for weak randomness.
- It is NOT true that weak-2-randomness (meaning being in every Σ_{2}^{0} class of measure 1) is the same as being Kurtz random over \emptyset^{\prime}. This is a genericity notion. 2-generics have this property.
- The best we can do is: $n \geq 2, \alpha$ is Kurtz n-random iff α is in every $\Sigma_{2}^{\emptyset^{(n-2)}}$-class of measure 1.
- weak 2-randomness is the same as
"Martin-Löf randomness with no effective convergence" In fact, weak 2-randomness might best be described as strong 1-randomness.

A hierarchy

- Theorem
(i) (Kurtz) Every n-random real is Kurtz n-random.
(ii) (Kurtz) Every Kurtz $n+1$-random real is n-random.
(iii) (Kurtz, Kautz) All containments proper.

Proof

- To get weak $\mathrm{n}+1$-random not n-random prove that no weak $\mathrm{n}+1$ random can be below $\emptyset^{(n)}$. But an n-random can be.
- The most difficult non-containment n-random \neq weak n-random, can be shown by constructing each CEA $\left(\emptyset^{(n)}\right)$ degree $\boldsymbol{a}>\mathbf{o}^{(n)}$ a weakly $n+1$-random reals $X C E\left(\emptyset^{(n)}\right.$, with $X \oplus \emptyset^{(n)}$ of degree \boldsymbol{a} whereas any such $n+1$ random real Y must have $Y \oplus \emptyset^{(n)}$ of degree $\mathbf{o}^{(n+1)}$.
- This method is due to Downey and Hirschfeldt, and is not a relativization of the DGR fact that there are Kurtz randoms of all nonzero c.e. degrees..

2-randomness

- There are some relative natural examples of n-randoms using methods akin to Post's Theorem and index sets (Becher-Figueira).
However, there are some really unexpected characterizations also of 2 -randoms.
- Recall that the maximum a string of length n can be is (i)
$C(\sigma)=n-O(1)$. (ii)
$K(\sigma)=n+K(n)-O(1)$.
- (Solovay) (ii) implies (i), but not conversely.
- Say that a real is strongly Chaitin random iff there are infinitely many n with $K(\alpha \upharpoonright n) \geq n+K(n)-O(1)$.
- Say that it is Kolmogorov random if there are infinitely many n with $C(n) \geq n-O(1)$.
- (Solovay) They exist.
- Fundamental question: are they the same?

Kolmogorov randomness

- Theorem Nies-Terwijn-Stephan, Miller 2-randomness=Kolmogorov randomness (!).
- Proof We fix a universal machine U which is universal and prefix-free for all oracles. Suppose that A is not 2 -random. Thus, for each c there is an n with

$$
\left.K^{\emptyset^{\prime}} A \upharpoonright n\right)<n-c .
$$

- We build a plain machine M. On an input σ, M tries to parse σ as $\tau \beta$, with τ in the domain of $U^{\emptyset^{\prime}}$. Note that as K^{X} is prefix-free for all oracles X, there is at most one $\tau \prec \sigma$.
- Let $s=|\sigma|$.
- First it assumes that s is sufficiently large that H_{s} is correct on the use of $A \upharpoonright n$. It assumes that It then uses $\emptyset^{\prime}{ }_{s}$ as an oracle, to compute (if anything) $\tau \prec \sigma$ with $U^{\emptyset^{\prime}}{ }_{s}(\tau) \downarrow$.
- If there is one, M outputs $U^{\emptyset^{\prime} s}(\tau) \beta$.

From some time onwards, upon input $\nu A[n+1, m]$ with $U^{\emptyset^{\prime}}(\nu)=A \upharpoonright n$, this will be $A \upharpoonright m$.

- Thus $C(A \upharpoonright m)$ is bounded away from m .
- The other direction. (Miller, NST)
- Recall from Lecture 1 that a compression function acts like U^{-1}.
- Recall that we defined $F: \Sigma^{*} \mapsto \Sigma^{*}$ to be a compression function if for all $x|F(x)| \leq C(x)$ and F is 1-1.
- Recall also that since they forma Π_{1}^{0} class, there is a compression function F with $F^{\prime} \leq_{T} \emptyset^{\prime}$. (NST's idea)
- Namely, consider the Π_{1}^{0} class of functions $|\widehat{F}(\sigma)| \leq C(\sigma)$.
- The main idea is that most of the basic facts of plain complexity can be re-worked with any compression function. For a compression function F we can define F-Kolmogorov complexity: α is F-Kolmogorov random iff
$\exists^{\infty} n(F(\alpha \upharpoonright n)>n-O(1))$.
- (NST) If Z is 2 -random relative a compression function F, then Z is Kolmogorov F-random.
- Now we can save a quantifier using a low compression function.
- This still leaves strongly Chaitin random reals. Question are they 3 -random, 2 -random or something else. Note that the same approach won't work because both sides change. (To wit: $F(\alpha \mid n)=n+F(|n|)-d$. Could to this if there was a low compression function with $K(\sigma)>K(\tau)$ implies $F(\sigma)>F(\tau)$ but this is surely false.)

Kučera strikes again

- We have seen that most random reals are not below \mathbf{o}^{\prime} and hence are not PA. Thus they are computationally feeble.
- However, Kučera showed that randoms do have some power, always.
- Kučera showed that they can compute FPF functions. Recall that this means that they can g with $g(e) \neq \varphi_{e}(e)$ for all e.
- The difference is that if $g(e)$ is $\{0,1\}$-valued, (so we are dealing with PA degrees, then g computes something positive, whereas in the general case, g computes something negative.
- Actually, Kučera proved a nice generalization:
- (Jockusch, Lerman, Soare, and R. Solovay) We define a relation $A \sim_{n} B$ as follows.
(i) $A=B$ if $n=0$.
(ii) $A={ }^{*} B$ if $n=1$.
(iii) $A^{(n-2)} \equiv_{T} B^{(n-2)}$, if $n \geq 2$.
- and a total function f is called n-fixed point free (n-FPF) iff for all x,

$$
W_{f(x)} \not \chi_{n} W_{x} .
$$

- Theorem (Kučera) Suppose that A is $n+1$ random. Then A computes an n-FPF function. (cf Generalized Arslanov's completeness criterion.)

van Lambalgen's Theorem

- A central (independence) result.
- Lemma (van Lambalgen, (Kučera, Kautz))
(i) If $A \oplus B$ is n-random so is A.
(ii) If A is n-random so is $A^{[n]}$, the n-th column of A.
(iii) If $A \oplus B$ is n-random, then A is $n-B$-random.
(iv) If $A \oplus B$ is random then $A \not \mathbb{Z}_{T} B$.
(v) Hence no random degree is minimal.
- (e.g. (i)) The proof is easy. $(n=1)$ So suppose $A \oplus B$ is random, but A is not.
- Suppose $A \in[\sigma]$ for infinitely many $[\sigma]$ in some Solovay test V.
- Then $A \oplus B$ would be in \widehat{V}, where $[\sigma \oplus \tau] \in \widehat{V}$ for all τ with $|\tau|=|\sigma|$ and $\sigma \in V$. (Measure the same)
- The most important fact is that the converse is true.
- (van Lambalgen's Theorem)
(i) If $A n$-random and B is $n-A$-random, then $A \oplus B$ is n-random.
(ii) Hence, $A \oplus B$ is n-random iff A n-random and B is $n-A$-random.
- Proof: Suppose $A \oplus B$ is not random.
- $A \oplus B \in \bigcap_{n} W_{n}$ and $\mu\left(W_{n}\right) \leq 1 / 2^{2 n}$.
- Let $U_{n}=\{X \mid \mu(\{Y \mid X \oplus Y \in$ $\left.\left.\left.W_{n}\right\}\right)>1 / 2^{n}\right\}$.
- Now, $\mu\left(U_{n}\right) \leq 1 / 2^{n}$ since otherwise, $\mu\left(W_{n}\right)>\mu\left(U_{n}\right) \cdot \frac{1}{2^{n}}>\frac{1}{2^{n}} \cdot \frac{1}{2^{n}}=\frac{1}{2^{2 n}}$,
- Thus, $\left\{n \mid A \in U_{n}\right\}$ is finite. (A random)
- Hence a.a. n, $A \notin U_{n}$, and the measure of U_{n} is small.
- $V_{n}^{A}=\left\{Y \mid A \oplus Y \in W_{n}\right\}$ is a A-Solovay test covering B.

A pretty application

- Theorem (Miller and Yu) Suppose that A is random and B is n-random. Suppose also that $A \leq_{T} B$. Then A is n-random.
- Proof (We do $n=2$.) If B is 2 -random, then B is $1-\Omega$-random (as $\Omega \equiv_{T} \emptyset^{\prime}$.)
- Hence by van Lambalgen's Theorem, $\Omega \oplus B$ is random.
- Thus Ω is 1 - B-random.
- But $A \leq_{T} B$. Hence, Ω is 1 - A-random. Hence $\Omega \oplus A$ is random, again by van Lambalgen's Theorem.
- Thus, A is $1-\Omega$-random. That is, A is 2-random.
- The general case is simlilar and relies only on van Lambalgen's Theorem and Kučera's result that all degrees above \mathbf{o}^{\prime} are random.
- Actually, Miller and Yu have also proven
- Theorem: For any (not necessarily random Z), any random below a Z-random is itself Z-random. (This does not use van Lambalgen)
- One nice Corollary to van Lambalgen and Sacks' Theorems is the following.
- Theorem (Kautz) Let $n \geq 2$. Then if \boldsymbol{a} and \boldsymbol{b} are relatively n-random, they form a minimal pair.
- Proof Suppose that $D \leq_{T}, A, B$.

Then $A \in\left\{E: \Phi_{e}^{E}=D\right\}$. By Sacks' Theorem, this set is a Π_{2}^{D}-nullset, and hence A is not $n-D$-random, and hence not $2-B$-random.

Effective 0-1 Laws

- Classical: Any measureable class of reals closed under finite translations has measure 0 or measure 1 .
- Effective version?
- Lemma (Kučera-Kautz) Let $n \geq 1$. Let T be a Π_{n}^{D} class of positive measure. Then T contains a member of every $D-n$-random degree.
- Indeed, if A is any $n-D$-random, then there is some string σ and real B such that $A=\sigma B$ and $B \in T$.
- Proof $(n=1, D=\emptyset)$
- T be a Π_{1}^{0} class, $S=\bar{T}=\cup\{[\sigma]: \sigma \in W\} W$ c.e. and prefix-free.
- Let $r \in \mathbb{Q}^{+}$, with $\mu(S)<r$.
- Let $E_{0}=S$ and

$$
E_{s+1}=\left\{\sigma \tau: \sigma \in E_{s} \wedge \tau \in W\right\}
$$

- $\mu\left(E_{s}\right) \leq r^{s}$
- Suppose for all B with $A=\sigma B$, $A \in S$.
- Then $B \in \cap_{s} E_{s}$ and is hence not random.
- Actually this can be gotten from the Lemma needed for Kučera coding.
- Theorem (Kurtz)
(i) Every degree invariant Σ_{n+1}^{0}-class or Π_{n+1}^{0} either contains all n-random sets or no n-random sets.
(ii) In fact the same is true for any such class closed under translations, and such that for all A, if $A \in S$, then for any string $\sigma, \sigma A \in S$.
- Examples:
- The class $\{A: A$ has non-minimal degree $\}$ has measure 1, and includes every 1-random set.
- The class $\{A \oplus B: A, B$ form a minimal pair $\}$ has measure 1 , and includes all 2-random but not every 1 -random set.
- The first part of this follows from the result on 2-randoms earlier.

The second part is trickier.

below 0'

- Theorem (Kučera [?]) If A and B are 1-random with $A, B<_{T} \emptyset^{\prime}$ then A and B do not form a minimal pair.
- Proof: Choose 2 randoms low and below 0' (van Lambalgen and low basis theorem) Now they are DNC and FPF. Use Kučera's Priority Free Solution to Post's Problem.
- Actually, Hirschfeldt, Nies, and Stephan have shown that the degrees below such pairs are K-trivial. (For those who know)
- I will look at some other almost all classes in Lecture 5, where I look at measure-theoretical injury arguments a la Kurtz' Thesis.
- In particular, I will show that almost all degrees are hyperimmune, CEA, bound 1-generics etc.

Omega Operators

- Important ignored work looks at Ω as an operator acting on Cantor space. (Downey, Hirschfeldt, Miller, Nies)
- Hopefully Miller, Nies of Hirschfeldt will present this material.
- Analog of Ω looking like \emptyset^{\prime} fails as badly as it can.
- We had hoped to attack Martin's conjecture about degree invariant operators on the degree.
- ("Heroic Failure"-Jan Reimann) For all such Ω there are $A={ }^{*} B$ with Ω^{A} and Ω^{B} relatively random.
- Many other results. One interesting one: Omega operators are lower semicontinuous but not continuous, and moreover, that they are continuous exactly at the 1 -generic reals.

