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Motivation

• Reurning to the theme of studying
randomness in 2ω and in particular
the relationship of (n-) randomness
to calibrations of reals by relatitive
computational complexity.

• For instance, how do random reals
perform as oracles?

2



'

&

$

%

Enumeration probabilities

• The first linkage of measure and
degrees was the following: (also
Spector, 1958 for hyperdegrees)

• Recall an index e for ∅′ is is universal
if for all indices f and all sets S,
there is a finite string σf such that

WS
f = W

σf S
e .

• Define P (A) = µ{X : WX
e = A}.
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de Leeuw, et. al.;Sacks

• Theorem: (de Leeuw, Moore,
Shannon, Shapiro, 1956) If P (A) > 0
then A is computably enumerable.

• Corollary: Sacks
µ{X : A ≤T X} > 0, iff A is
computable.
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• The proof uses the majority vote
technique, which is an important
standard tool. Assume P (A) > 0.

• For some e, De = {X : A = WX
e } has

positive measure.

• There is a string σ such that the
relative measure of De above σ is
greater than 1

2 . (Lebesgue Density
Theorem)

• Let the oracles extending σ vote on
membership in De

• Pu n into A if more than half (by
measure) say so. This enumerates A.
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Solovay’s Therem

• Solovay examined the relationship
between P (A) > 0 and the least
index for Wi = A.

• Let H(A) = d− log P (A)e
I(A) = min{K(i) : Wi = A}.

• Theorem (Solovay)

I(A) ≤ 3H(A) + K(H(A)) + O(1).

• The proof is combinatorial, and uses
a clever lemma of Martin.
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Stillwell’s Therem

• Similar methods show the following
due to Stillwell.

(i) Suppose that
µ({C : D ≤T A⊕ C}) > 0. Then
C ≤T A.

(ii) (Hence) For any a, b,
(a ∪ b) ∩ (a ∪ c) = a, for almost
all c.

(iii) Similarly for almost all a,
a(n) ≡ a ∪ (n). Almost all
degrees are GLn.

(iv) For almost all a, b, a ∩ b = .
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• Now consider the language where
variables a, b, c, . . . vary over
arbitrary degrees. Terms are built
from ′ (jump), ∪,∩.

• An atomic formula t1 ≤ t2 for terms
t1, t2,

• In general build from atomic ones
and ∧, and the quantifier ∀
interpreted to mean “for almost all.’

• Then the above allows for the
generation of normal forms, and
Fubinbi’s Theorem allows for
treatment of quantifiers. These kinds
of considerations give
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• Theorem (Stillwell) The “almost all”
theory of degrees is decidable.
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Coding into randoms

• You might think that the above says
that, in general coding into random
reals should be impossible.

• The intuitive argument is, perhaps,
that a random real should have
information, but only in a way that if
not organized enough to be able to
use it. These is some truth in this as
we later see.

• However, coding is possible as we
now see.
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The Kučera-Gács Theorem

• Every set is wtt reducible to a
Martin-Löf random set.

• The proof uses blocks to code
information, and the Gács coding is
more compressed than the Kučera
one. Hirschfeldt (unpublished) has
yet another coding.

• One easy to understand proof is due
to Merkle and Mihailovic using
martingales.

• The first Lemma is folklore, more or
less going back to Kučera in another
form.
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The Space Lemma

• (The Space Lemma) Given a rational
δ > 1 and k ∈ Z+, we can compute a
length `(δ, k), such that for any
martingale d, and any word w,

|{w ∈ 2`(δ,k) : d(vw) ≤ δd(v)}| ≥ k.

• It is important here that `(δ, k) can
actually be computed.

• (Restated) For any martingale d and
any interval of length k, there are at
least k paths extending v of length
`(δ, k) where d cannot increase its
capitol more than a factor of δ while
betting on I, no matter how d

behaves.
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• Proof: d(v) = 2−k
∑

|u|=k d(vu).

• (Kolmogorov) For any given ` and v

the average of d(vw) over words of
length ` is d(v).

• Thus, |{|w|=`:d(vw)>δd(v)}|
2` < 1

δ .

• Since δ > 1, 1− δ−1 > 0

• Suffices to have `(δ, k) ≥ log k
1−δ−1 =

log k + log δ − log(δ − 1).
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Kučera-Gács

• The space lemma gives enough space
for coding.

• Here is the MM proof:

• Let βi = Πj≤irj , with
r0 > r1 > · · · ∈ Q+,

• Ask that βi converge.

• Partition N = ∪{Is : s ∈ N}; Is of
size `s = `(rs, 2).

• The Space Lemma tells us for any
word v, and any martingale d, there
are at least two words w of length `s

with d(vw) ≤ rsd(v).
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• We construct R with given X ≤wtt R.

• At step s we will specify R on Is.

• Say w of length Is is admissible if

(i) s = 0 and d(w) ≤ β0, and

(ii) for s > 0, if

d(vw) ≤ βs for v = R � (I0∪· · ·∪Is−1)

• Induction and Space Lemma show at
every step there are at least 2
admissible extensions.

• To specify R, from
R � (I0 ∪ · · · ∪ Is−1),

• choose left (lex min) if s 6∈ X and
right it s ∈ X.
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Kučera Coding

• Similar left-right coding with suitable
blocks allows Kučera to prove the
following theorem, roughly using
something like the Friedberg cupping
Theorem and an intersection lemma
on fat Π0

1 classes akin to the Space
Lemma.

• Theorem (Kučera, 1985) Suppose
that a > ′. Then a is Martin-Löf
random.

• Kučera’s proof is in the notes. It has
other applications. The theorem also
follows from the last proof since if X

is above ∅′ then X can compute R.
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• Other positive results say that there
are randoms of every possible jump
(using generalized low basis theory
on Π0

1 classes which have no
computable members) and

• (Kučera, Downey-Miller) randoms
below ′ of every possible jump, using
basis theorems for fat Π0

1 classes.
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Random power

• All of this might lead one to suspect
that randoms are in fact
computationally powerful. The only
explicit ones we have are above ′,
except the hyperimmune free ones.
(Later we will see that almost all of
them are hyperimmune, so the
hyperimmune free ones are red
herrings.)

• BUT Frank Stephan has shown that
these random reals above ′ are in
essence the only computationally
powerful reals.
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• Recall that a degree is called PA if a

is PA iff it is the degree of a complete
extension of Peano Arithmetic.

• A function f is called fixed-point free
if Wf(x) 6= Wx for all x.

• By Jockusch, Lerman, Soare, and
Solovay, a being FPF is equivalent to
bing able to compute a DNC
function: Namely g with g(e) 6= ϕe(e)
for all e.

• (Jockusch and Soare) a is PA iff it
can compute a {0, 1} valued DNC
function.
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Stephan’s Theorem

• (Stephan) Suppose that a is PA and
1-random. Then ′ ≤T a.

• He concludes
“The main result says that there are
two types of Martin-Löf sets: the first
type are the computationally
powerful sets which permit the
solving of the halting problem; the
second type of random set are
computationally weak in the sense
that they are not [PA]. Every set not
belonging to one of these two classes
is not Martin-Löf random.”
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n-randomness

• In the same way as the arithmetical
hierarchy,

• (i) A Σ0
n test is a computable

collection {Vn : n ∈ N} of Σ0
n

classes such that µ(Vk) ≤ 2−k.

(ii) A real α is Σ0
n-random or

n-random iff it passes all Σ0
n tests.

(iii) One can similarly define Π0
n, ∆0

n

etc tests and randomness.

(iv) A real α is called arithmetically
random iff for any n, α is
n-random.
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Kurtz’s Theorem

• We use open sets to define
Martin-Löf randomness.

• Consider: the Σ0
2 class consisting of

reals that are always zero from some
point onwards. It is not equivalent to
∪{[σ] : σ ∈ W} for any W .

• Kurtz showed that n-randomness is
the same as n randomness relative to
open classes. (Detailed statement in
the notes) The point is that:

• Theorem (Kurtz) n + 1-randomness
= 1-randomness relative to ∅(n).
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• This is also implicit in Solovay’s
notes in the dual way he treats
2-randomness.

• Thus, for instance, if A is 2-random
then A 6≤T ∅′. (Indeed, their degrees
forma minimal pair).

• Also there is a n + 1-random set
Ω(n+1) namely Ω∅(n)

which is
computably enumerable relative to
∅(n).

• NOTE it is NOT CEA(∅(n)). But
Ω(n) ⊕ ∅(n) ≡T ∅(n+1).
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Warning

• Similar relativization work for
Schnorr, computable, etc
randomness. BUT not for weak
randomness.

• It is NOT true that
weak-2-randomness (meaning being
in every Σ0

2 class of measure 1) is the
same as being Kurtz random over ∅′.
This is a genericity notion. 2-generics
have this property.

• The best we can do is: n ≥ 2, α is
Kurtz n-random iff α is in every
Σ∅(n−2)

2 -class of measure 1.
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• weak 2-randomness is the same as
“Martin-Löf randomness with no
effective convergence” In fact, weak
2-randomness might best be
described as strong 1-randomness.
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A hierarchy

• Theorem

(i) (Kurtz) Every n-random real is
Kurtz n-random.

(ii) (Kurtz) Every Kurtz
n + 1-random real is n-random.

(iii) (Kurtz, Kautz) All containments
proper.
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Proof

• To get weak n+1-random not
n-random prove that no weak n+1
random can be below ∅(n). But an
n-random can be.

• The most difficult non-containment
n-random 6= weak n-random, can be
shown by constructing each
CEA(∅(n)) degree a > (n) a weakly
n + 1-random reals X CE(∅(n), with
X ⊕ ∅(n) of degree a whereas any
such n + 1 random real Y must have
Y ⊕ ∅(n) of degree (n+1).
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• This method is due to Downey and
Hirschfeldt, and is not a relativization
of the DGR fact that there are Kurtz
randoms of all nonzero c.e. degrees..
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2-randomness

• There are some relative natural
examples of n-randoms using
methods akin to Post’s Theorem and
index sets (Becher-Figueira).
However, there are some really
unexpected characterizations also of
2-randoms.

• Recall that the maximum a string of
length n can be is (i)
C(σ) = n−O(1). (ii)
K(σ) = n + K(n)−O(1).

• (Solovay) (ii) implies (i), but not
conversely.
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• Say that a real is strongly Chaitin
random iff there are infinitely many n
with K(α � n) ≥ n + K(n)−O(1).

• Say that it is Kolmogorov random if
there are infinitely many n with
C(n) ≥ n−O(1).

• (Solovay) They exist.

• Fundamental question: are they the
same?
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Kolmogorov randomness

• Theorem Nies-Terwijn-Stephan,
Miller 2-randomness=Kolmogorov
randomness (!).

• Proof We fix a universal machine U
which is universal and prefix-free for
all oracles. Suppose that A is not
2-random. Thus, for each c there is
an n with

K∅′A � n) < n− c.

• We build a plain machine M. On an
input σ, M tries to parse σ as τβ,
with τ in the domain of U∅′ . Note
that as KX is prefix-free for all
oracles X, there is at most one τ ≺ σ.
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• Let s = |σ|.

• First it assumes that s is sufficiently
large that Hs is correct on the use of
A � n. It assumes that It then uses
∅′s as an oracle, to compute (if
anything) τ ≺ σ with U∅′s(τ) ↓ .

• If there is one, M outputs U∅′s(τ)β.
From some time onwards, upon input
νA[n + 1,m] with U∅′(ν) = A � n,
this will be A � m.

• Thus C(A � m) is bounded away
from m.

• The other direction. (Miller, NST)

• Recall from Lecture 1 that a
compression function acts like U−1.
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• Recall that we defined F : Σ∗ 7→ Σ∗

to be a compression function if for all
x |F (x)| ≤ C(x) and F is 1-1.

• Recall also that since they forma Π0
1

class, there is a compression function
F with F ′ ≤T ∅′. (NST’s idea)

• Namely, consider the Π0
1 class of

functions |F̂ (σ)| ≤ C(σ).

• The main idea is that most of the
basic facts of plain complexity can be
re-worked with any compression
function. For a compression function
F we can define F -Kolmogorov
complexity: α is F -Kolmogorov
random iff
∃∞n(F (α � n) > n−O(1)).
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• (NST) If Z is 2-random relative a
compression function F , then Z is
Kolmogorov F -random.

• Now we can save a quantifier using a
low compression function.

• This still leaves strongly Chaitin
random reals. Question are they
3-random, 2-random or something
else. Note that the same approach
won’t work because both sides
change. (To wit:
F (α � n) = n + F (|n|)− d. Could to
this if there was a low compression
function with K(σ) > K(τ) implies
F (σ) > F (τ) but this is surely false.)
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Kučera strikes again

• We have seen that most random reals
are not below ′ and hence are not
PA. Thus they are computationally
feeble.

• However, Kučera showed that
randoms do have some power, always.

• Kučera showed that they can
compute FPF functions. Recall that
this means that they can g with
g(e) 6= ϕe(e) for all e.
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• The difference is that if g(e) is
{0, 1}-valued, (so we are dealing with
PA degrees, then g computes
something positive, whereas in the
general case, g computes something
negative.
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• Actually, Kučera proved a nice
generalization:

• (Jockusch, Lerman, Soare, and R.
Solovay) We define a relation A ∼n B

as follows.

(i) A = B if n = 0.

(ii) A =∗ B if n = 1.

(iii) A(n−2) ≡T B(n−2), if n ≥ 2.

• and a total function f is called
n-fixed point free (n-FPF) iff for all x,

Wf(x) 6∼n Wx.

• Theorem (Kučera) Suppose that A is
n + 1 random. Then A computes an
n-FPF function. (cf Generalized
Arslanov’s completeness criterion.)
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van Lambalgen’s Theorem

• A central (independence) result.

• Lemma (van Lambalgen, (Kučera,
Kautz))

(i) If A⊕B is n-random so is A.

(ii) If A is n-random so is A[n], the
n-th column of A.

(iii) If A⊕B is n-random, then A is
n−B−random.

(iv) If A⊕B is random then A 6≤T B.

(v) Hence no random degree is
minimal.
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• (e.g. (i)) The proof is easy. (n = 1)
So suppose A⊕B is random, but A

is not.

• Suppose A ∈ [σ] for infinitely many
[σ] in some Solovay test V .

• Then A⊕B would be in V̂ , where
[σ ⊕ τ ] ∈ V̂ for all τ with |τ | = |σ|
and σ ∈ V . (Measure the same)

39



'

&

$

%

• The most important fact is that the
converse is true.

• (van Lambalgen’s Theorem)

(i) If A n-random and B is
n−A−random, then A⊕B is
n-random.

(ii) Hence, A⊕B is n-random iff A

n-random and B is n−A−random.
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• Proof: Suppose A⊕B is not random.

• A⊕B ∈
⋂

n Wn and µ(Wn) ≤ 1/22n.

• Let Un = {X | µ({Y | X ⊕ Y ∈
Wn}) > 1/2n}.

• Now, µ(Un) ≤ 1/2n since otherwise,
µ(Wn) > µ(Un) · 1

2n > 1
2n · 1

2n = 1
22n ,

• Thus, {n | A ∈ Un} is finite. (A
random)

• Hence a.a. n, A 6∈ Un, and the
measure of Un is small.

• V A
n = {Y | A⊕ Y ∈ Wn} is a

A-Solovay test covering B.

41



'

&

$

%

A pretty application

• Theorem (Miller and Yu) Suppose
that A is random and B is n-random.
Suppose also that A ≤T B. Then A

is n-random.

• Proof (We do n = 2.) If B is
2-random, then B is 1-Ω-random (as
Ω ≡T ∅′.)

• Hence by van Lambalgen’s Theorem,
Ω⊕B is random.

• Thus Ω is 1-B-random.

• But A ≤T B. Hence, Ω is
1-A-random. Hence Ω⊕A is random,
again by van Lambalgen’s Theorem.
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• Thus, A is 1-Ω-random. That is, A is
2-random.

• The general case is simlilar and relies
only on van Lambalgen’s Theorem
and Kučera’s result that all degrees
above ′ are random.

• Actually, Miller and Yu have also
proven

• Theorem: For any (not necessarily
random Z), any random below a
Z-random is itself Z-random. (This
does not use van Lambalgen)
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• One nice Corollary to van Lambalgen
and Sacks’ Theorems is the following.

• Theorem (Kautz) Let n ≥ 2. Then if
a and b are relatively n-random, they
form a minimal pair.

• Proof Suppose that D ≤T , A, B.
Then A ∈ {E : ΦE

e = D}. By Sacks’
Theorem, this set is a ΠD

2 -nullset,
and hence A is not n−D−random,
and hence not 2−B−random.
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Effective 0-1 Laws

• Classical: Any measureable class of
reals closed under finite translations
has measure 0 or measure 1.

• Effective version?

• Lemma (Kučera-Kautz) Let n ≥ 1.
Let T be a ΠD

n class of positive
measure. Then T contains a member
of every D − n−random degree.

• Indeed, if A is any n−D−random,
then there is some string σ and real
B such that A = σB and B ∈ T .
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• Proof (n = 1, D = ∅)

• T be a Π0
1 class,

S = T = ∪{[σ] : σ ∈ W} W c.e. and
prefix-free.

• Let r ∈ Q+, with µ(S) < r.

• Let E0 = S and
Es+1 = {στ : σ ∈ Es ∧ τ ∈ W}.

• µ(Es) ≤ rs

• Suppose for all B with A = σB,
A ∈ S.

• Then B ∈ ∩sEs and is hence not
random.

• Actually this can be gotten from the
Lemma needed for Kučera coding.
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• Theorem (Kurtz)

(i) Every degree invariant Σ0
n+1-class or

Π0
n+1 either contains all n-random

sets or no n-random sets.

(ii) In fact the same is true for any such
class closed under translations, and
such that for all A, if A ∈ S, then for
any string σ, σA ∈ S.
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• Examples:

• The class {A : A has non-minimal
degree } has measure 1, and includes
every 1-random set.

• The class {A⊕B : A,B form a
minimal pair } has measure 1, and
includes all 2-random but not every
1-random set.

• The first part of this follows from the
result on 2-randoms earlier.

The second part is trickier.
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below 0’

• Theorem (Kučera [?]) If A and B are
1-random with A,B <T ∅′ then A

and B do not form a minimal pair.

• Proof: Choose 2 randoms low and
below 0’ (van Lambalgen and low
basis theorem) Now they are DNC
and FPF. Use Kučera’s Priority Free
Solution to Post’s Problem.

• Actually, Hirschfeldt, Nies, and
Stephan have shown that the degrees
below such pairs are K-trivial. (For
those who know)
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• I will look at some other almost all
classes in Lecture 5, where I look at
measure-theoretical injury arguments
a la Kurtz’ Thesis.

• In particular, I will show that almost
all degrees are hyperimmune, CEA,
bound 1-generics etc.
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Omega Operators

• Important ignored work looks at Ω as
an operator acting on Cantor space.
(Downey, Hirschfeldt, Miller, Nies)

• Hopefully Miller, Nies of Hirschfeldt
will present this material.

• Analog of Ω looking like ∅′ fails as
badly as it can.

• We had hoped to attack Martin’s
conjecture about degree invariant
operators on the degree.
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• (“Heroic Failure”–Jan Reimann) For
all such Ω there are A =∗ B with ΩA

and ΩB relatively random.

• Many other results. One interesting
one: Omega operators are lower
semicontinuous but not continuous,
and moreover, that they are
continuous exactly at the 1-generic
reals.

52


