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‘ Motivation I

e Reurning to the theme of studying
randomness in 2“ and in particular
the relationship of (n-) randomness
to calibrations of reals by relatitive

computational complexity.

e For instance, how do random reals

perform as oracles?
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‘ Enumeration probabilities I

e The first linkage of measure and

degrees was the following: (also

Spector, 1958 for hyperdegrees)

e Recall an index e for (/' is is universal
if for all indices f and all sets S,
there is a finite string o¢ such that

WP =wor®.

e Define P(A) = u{X : W = A}
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‘de Leeuw, et. al.;SacksI

e Theorem: (de Leeuw, Moore,

Shannon, Shapiro, 1956) If P(A) > 0

then A is computably enumerable.

e Corollary: Sacks

p{X A<y X} >0,iff Ais

computable.




~

The proof uses the majority vote
technique, which is an important
standard tool. Assume P(A) > 0.

For some e, D, = {X : A= WX} has

positive measure.

There is a string o such that the
relative measure of D, above o is
greater than % (Lebesgue Density

Theorem)

Let the oracles extending o vote on

membership in D,

Pu n into A if more than half (by

measure) say so. This enumerates A.
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‘ Solovay’s Therem I

e Solovay examined the relationship
between P(A) > 0 and the least
index for W; = A.

o Let H(A)=|—logP(A)]
I(A) =min{K (i) : W; = A}.

e Theorem (Solovay)

I(A) < 3H(A) + K(H(A)) + O(1).

e The proof is combinatorial, and uses

a clever lemma of Martin.
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‘ Stillwell’s Therem I

e Similar methods show the following

\_

due to Stillwell.

(i) Suppose that

uw({C: D <p A®C}) > 0. Then

C <r A.

(ii) (Hence) For any a, b,
(aUb)N (aUc) = a, for almost

all c.

(iii) Similarly for almost all a,
a'™ = aUo™. Almost all

degrees are GL,,.

(iv) For almost all a,b, aNb = o.

~
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Now consider the language where
variables a, b, ¢, ... vary over
arbitrary degrees. Terms are built

from ' (jump), U, N.

An atomic formula t; < ¢y for terms
t17t27

In general build from atomic ones
and A,  and the quantifier V

interpreted to mean “for almost all.’

Then the above allows for the
generation of normal forms, and
Fubinbi’s Theorem allows for

treatment of quantifiers. These kinds

/

of considerations give




e Theorem (Stillwell) The “almost all”
theory of degrees is decidable.
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‘Coding into randoms'

e You might think that the above says

that, in general coding into random
reals should be impossible.

e The intuitive argument is, perhaps,
that a random real should have
information, but only in a way that if
not organized enough to be able to
use it. These is some truth in this as

we later see.

e However, coding is possible as we

NNOW See.

\_ /
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/‘ The Kucéera-Gacs Theorem I\

e Livery set is witt reducible to a

Martin-Lof random set.

e The proof uses blocks to code
information, and the Gacs coding is
more compressed than the Kucera
one. Hirschfeldt (unpublished) has

yet another coding.

e One easy to understand proot is due
to Merkle and Mihailovic using

martingales.

e The first Lemma is folklore, more or

less going back to Kucera in another

\ form. /
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‘The Space Lemma' \

(The Space Lemma) Given a rational
6 >1and k € Z™, we can compute a

length £(9, k), such that for any
martingale d, and any word w,

{w € 2100 . d(vw) < §d(v)Y] > k.

It is important here that £(d, k) can

actually be computed.

(Restated) For any martingale d and
any interval of length £, there are at
least k paths extending v of length
¢(0, k) where d cannot increase its

capitol more than a factor of 0 while

betting on I, no matter how d

behaves. /
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Proof: d(v) = 27* D jul=k A(vw).

(Kolmogorov) For any given ¢ and v

the average of d(vw) over words of
length ¢ is d(v).

Thus, Hlel=tdvw>sdwl 1

Since § >1,1—6"1>0

Suffices to have £(d, k) > log —%— =
logk +logd — log(d — 1).

/
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‘ Kucera-Gacs I \

The space lemma gives enough space

for coding.

Here is the MM proof:

Let Bz — ngﬂ“j, with
To > T >°"€Q+,

Ask that (; converge.

Partition N = U{[, : s € N}; I of
size £y = l(rg,2).

The Space Lemma tells us for any
word v, and any martingale d, there

are at least two words w of length £,

with d(vw) < red(v). /
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/ e We construct R with given X <, }%

o At step s we will specify R on 1.

e Say w of length I, is admissible if

(i) s =0 and d(w) < [y, and

(ii) for s > 0, if
dlvw) < Bs forv=R | ([pU--- U,

e Induction and Space Lemma show at
every step there are at least 2

admissible extensions.

e To specity R, from
R (IgU---Uls 1),

e choose left (lex min) if s ¢ X and

\ right it s € X. /
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‘ Kucera Coding I \

e Similar left-right coding with suitable

\_

blocks allows Kucera to prove the
following theorem, roughly using
something like the Friedberg cupping
Theorem and an intersection lemma
on fat I1Y classes akin to the Space

Lemma.

Theorem (Kucera, 1985) Suppose
that a > o’. Then a is Martin-Lof

random.

Kucera’s proof is in the notes. It has
other applications. The theorem also
tollows from the last proof since if X

is above () then X can compute R./
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e Other positive results say that there

are randoms of every possible jump
(using generalized low basis theory
on II classes which have no

computable members) and

(Kucera, Downey-Miller) randoms
below 0’ of every possible jump, using

basis theorems for fat II{ classes.
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‘ Random power I

e All of this might lead one to suspect
that randoms are in fact
computationally powerful. The only
explicit ones we have are above 0/,
except the hyperimmune free ones.
(Later we will see that almost all of
them are hyperimmune, so the
hyperimmune free ones are red

herrings.)

e BUT Frank Stephan has shown that
these random reals above 0’ are in

essence the only computationally

powerful reals.

\_ /
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Recall that a degree is called PA if a
is PA iff it is the degree of a complete
extension of Peano Arithmetic.

A function f is called fized-point free
if Wf(x) # W, for all x.

By Jockusch, Lerman, Soare, and
Solovay, a being FPF' is equivalent to
bing able to compute a DNC
function: Namely g with g(e) # v.(e)
tor all e.

(Jockusch and Soare) a is PA iff it
can compute a {0, 1} valued DNC

function.

/
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‘ Stephan’s Theorem I \

e (Stephan) Suppose that a is PA and
l-random. Then o’ <t a.

e He concludes
“The main result says that there are
two types of Martin-Lof sets: the first
type are the computationally
powertul sets which permit the
solving of the halting problem; the
second type of random set are
computationally weak in the sense
that they are not [PA]. Every set not
belonging to one of these two classes

is not Martin-Lof random.”

\_ /
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‘ n-randomness I

e In the same way as the arithmetical

hierarchy,

o (i) A XY test is a computable
collection {V,, : n € N} of XY
classes such that (V) < 27F.

(i) A real « is XY -random or
n-random iff it passes all X9 tests.

(iii) One can similarly define I19, A%

etc tests and randomness.

(iv) A real « is called arithmetically
random iff for any n, « is

n-random.

\_ /
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‘ Kurtz’s Theorem I

e We use open sets to define

Martin-Lof randomness.

o Consider: the XY class consisting of
reals that are always zero from some

point onwards. It is not equivalent to

U{|o] : 0 € W} for any W.

e Kurtz showed that n-randomness is
the same as n randomness relative to
open classes. (Detailed statement in
the notes) The point is that:

e Theorem (Kurtz) n 4+ 1-randomness

\ — 1-randomness relative to O™, /
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e This is also implicit in Solovay’s

notes in the dual way he treats

2-randomness.

Thus, for instance, if A is 2-random
then A L7 ('. (Indeed, their degrees

forma minimal pair).

Also there is a n 4+ 1-random set
QM+ namely Q% which is
computably enumerable relative to
p(n) .

NOTE it is NOT CEA(0™). But
QM) @ ) =, n+D),

/
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e Similar relativization work for

~

Warning

Schnorr, computable, etc
randomness. BUT not for weak

randomness.

It is NOT true that
weak-2-randomness (meaning being
in every X9 class of measure 1) is the
same as being Kurtz random over (.
This is a genericity notion. 2-generics

have this property.

The best we can do is: n > 2, « is

Kurtz n-random iff « is in every

(n—2)
0 -class of measure 1. /
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e weak 2-randomness is the same as
“Martin-Lof randomness with no
effective convergence” In fact, weak
2-randomness might best be

described as strong 1-randomness.
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‘ A hierarchy I

e Theorem

(i) (Kurtz) Every n-random real is

Kurtz n-random.

(ii) (Kurtz) Every Kurtz

n + l-random real i1s n-random.

(iii) (Kurtz, Kautz) All containments

proper.

\_ /
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Proof

To get weak n+1-random not
n-random prove that no weak n+1
random can be below (™). But an

n-random can be.

The most difficult non-containment
n-random # weak n-random, can be
shown by constructing each
CEA(0(™) degree a > o™ a weakly
n + l-random reals X CE(0™, with
X @ 0™ of degree a whereas any

such n + 1 random real Y must have
Y @ 0™ of degree o("t1).

/
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e This method is due to Downey and
Hirschfeldt, and is not a relativization
of the DGR fact that there are Kurtz

randoms of all nonzero c.e. degrees..
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e There are some relative natural

‘ 2-randomness I \

examples of n-randoms using
methods akin to Post’s Theorem and
index sets (Becher-Figueira).
However, there are some really
unexpected characterizations also of

2-randoms.

Recall that the maximum a string of
length n can be is (i)
C(o)=n—0(1). (ii)

K(o)=n+ K(n)—0(1).

(Solovay) (ii) implies (i), but not

conversely. /
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Say that a real is strongly Chaitin

random iff there are infinitely many n
with K(a [n) >n+ K(n) — O(1).

Say that it is Kolmogorov random it

there are infinitely many n with

C(n) >n—0(1).
(Solovay) They exist.

Fundamental question: are they the

same”?

/
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/ ‘ Kolmogorov randomness I \

e Theorem Nies-Terwijn-Stephan,
Miller 2-randomness=Kolmogorov

randomness (!).

e Proof We fix a universal machine U
which is universal and prefix-free for
all oracles. Suppose that A is not
2-random. Thus, for each c there is

an n with

K"A1n)<n—c

e We build a plain machine M. On an
input o, M tries to parse o as 703,
with 7 in the domain of U? . Note
that as K= is prefix-free for all

\ oracles X, there is at most one 7 < y

31




Let s = |o|. \

First it assumes that s is sufficiently
large that H, is correct on the use of
A | n. It assumes that It then uses
0’ as an oracle, to compute (if
anything) 7 < o with U?+(7) | .

If there is one, M outputs U?'s (7).
From some time onwards, upon input
vAn +1,m] with UY (v) = A | n,
this will be A | m.

Thus C(A | m) is bounded away

from m.
The other direction. (Miller, NST)

Recall from Lecture 1 that a
compression function acts like U _1./
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Recall that we defined F': ¥* — E*\
to be a compression function if for all
r |F(x)| < C(x) and F is 1-1.

Recall also that since they forma IIY

class, there is a compression function
F with F/ <7 @'. (NST’s idea)

Namely, consider the IIV class of
functions |F(o)| < C(0).

The main idea is that most of the
basic facts of plain complexity can be
re-worked with any compression
tunction. For a compression function
F' we can define F-Kolmogorov
complexity: « is F-Kolmogorov

random iff

3°n(F(a [n) >n—0(1)). /
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e (NST) If Z is 2-random relative a
compression function F', then Z is

Kolmogorov F'-random.

e Now we can save a quantifier using a

low compression function.

e This still leaves strongly Chaitin
random reals. QQuestion are they
3-random, 2-random or something
else. Note that the same approach
won’t work because both sides
change. (To wit:

F(a|n)=n+ F(|n|) —d. Could to
this if there was a low compression
function with K (o) > K(7) implies
F(o) > F(7) but this is surely false.)

\_ /

34




‘Kuéera strikes again'

e We have seen that most random reals

are not below o’ and hence are not

PA. Thus they are computationally
teeble.

e However, Kucera showed that

randoms do have some power, always.

e Kucera showed that they can
compute FPF functions. Recall that
this means that they can g with

g(e) # pe(e) for all e.

\_ /
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e The difference is that if g(e) is
{0, 1}-valued, (so we are dealing with
PA degrees, then g computes
something positive, whereas in the
general case, g computes something

negative.

36




/ e Actually, Kucera proved a nice \

generalization:

e (Jockusch, Lerman, Soare, and R.
Solovay) We define a relation A ~,, B

as follows.
(i) A= B if n=0.
(ii) A=*Bifn=1.
(iii) A"=2) = B("=2) if n > 2.
e and a total function f is called
n-fixed point free (n-FPF) iff for all z,
Wi@) #n Wa.

e Theorem (Kucera) Suppose that A is
n + 1 random. Then A computes an
n-FPF function. (cf Generalized

\ Arslanov’s completeness criterion.) /
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‘Van Lambalgen’s Theorem'

e A central (independence) result.

e Lemma (van Lambalgen, (Kucera,

Kautz))

(i) If A@® B is n-random so is A.
(ii) If A is n-random so is A", the

n-th column of A.

(iii) If A @ B is n-random, then A is

n — B—random.

(iv) If A@® B is random then A £ B.

(v) Hence no random degree is

minimal.

\_

/
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e (e.g. (i)) The proof is easy. (n =1)
So suppose A & B is random, but A

1S not.

e Suppose A € [o] for infinitely many

lo] in some Solovay test V.

e Then A® B would be in ‘A/, where
(o @ 7] €V for all T with |7] = |o]
and o0 € V. (Measure the same)

\_ /
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e The most important fact is that the

converse 1S true.

e (van Lambalgen’s Theorem)

(i) If A n-random and B is
n — A—random, then A @ B is

n-random.

(ii) Hence, A ® B is n-random iff A

n-random and B is n — A—random.

\_ /
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Proof: Suppose A & B is not random.
A® Be ), W, and p(W,) <1/2°™.

Let U, ={X | p{Y | X ®Y €
W,}) >1/2"}.

Now, u(U,) < 1/2™ since otherwise,
N(Wn)>N(Un)'2Ln>2Ln'QLn:22Lm

Thus, {n | A € U,} is finite. (A

random)

Hence a.a. n, A € U,,, and the

measure of U,, is small.

VA={Y|AdY cW,}isa
A-Solovay test covering B.

/
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/ ‘A pretty application' \

e Theorem (Miller and Yu) Suppose
that A is random and B is n-random.
Suppose also that A < B. Then A

1s n-random.

e Proof (Wedon=2.) If Bis

2-random, then B is 1-()-random (as

() =T (Z)/)

e Hence by van Lambalgen’s Theorem,
() ® B is random.

e Thus (2 is 1-B-random.

e But A <7 B. Hence, Q is

1-A-random. Hence ) & A is random,

\ again by van Lambalgen’s Theorem/
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Thus, A is 1-Q2-random. That is, A is

2-random.

The general case is simlilar and relies
only on van Lambalgen’s Theorem
and Kucera’s result that all degrees

above o’ are random.

Actually, Miller and Yu have also

proven

Theorem: For any (not necessarily
random Z), any random below a
Z-random is itself Z-random. (This

does not use van Lambalgen)

/
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e One nice Corollary to van Lambalgen

and Sacks’ Theorems is the following.

Theorem (Kautz) Let n > 2. Then if
a and b are relatively n-random, they

form a minimal pair.

Proof Suppose that D <p, A, B.
Then A € {E : ®2 = D}. By Sacks’
Theorem, this set is a II5-nullset,
and hence A is not n — D—random,

and hence not 2 — B—random.

/
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‘Effective 0-1 Laws.

Classical: Any measureable class of
reals closed under finite translations

has measure 0 or measure 1.
Effective version?

Lemma (Kucera-Kautz) Let n > 1.
Let T be a ITY class of positive
measure. Then 1T’ contains a member

of every D — n—random degree.

Indeed, if A is any n — D—random,
then there is some string o and real

B such that A=0B and B &T.
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Proof (n =1,D = () \

T be a IIY class,
S=T=U{[o]:0 € W} W c.e. and

prefix-free.
Let r € QT, with u(S) <.

Let £ = S and
Esi1={or:0e EsANT €W}

p(Es) < r?

Suppose for all B with A = 0B,
AeS.

Then B € N,E, and is hence not

random.

Actually this can be gotten from the
Lemma needed for Kucera coding. /
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e Theorem (Kurtz)

(i) Every degree invariant X . ;-class or
IT, , ; either contains all n-random

sets or no n-random sets.

(ii) In fact the same is true for any such
class closed under translations, and

such that for all A, if A € S, then fof
any string o, cA € S.

\_ /
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Examples:

The class {A : A has non-minimal
degree } has measure 1, and includes

every l-random set.

The class {A® B : A, B form a

minimal pair } has measure 1, and
includes all 2-random but not every
I-random set.

The first part of this follows from the

result on 2-randoms earlier.

The second part is trickier.

/
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e Theorem (Kucera [?]) If A and B are

~

‘below 0’ '

1-random with A, B <r () then A

and B do not form a minimal pair.

Proof: Choose 2 randoms low and
below 0’ (van Lambalgen and low
basis theorem) Now they are DNC
and FPF. Use Kucera’s Priority Free
Solution to Post’s Problem.

Actually, Hirschfeldt, Nies, and
Stephan have shown that the degrees

below such pairs are K-trivial. (For

/

those who know)

49



4 N

e I will look at some other almost all
classes in Lecture 5, where I look at
measure-theoretical injury arguments
a la Kurtz’ Thesis.

e In particular, I will show that almost
all degrees are hyperimmune, CEA,

bound 1-generics etc.
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‘ Omega Operators I

Important ignored work looks at {) as

an operator acting on Cantor space.
(Downey, Hirschfeldt, Miller, Nies)

Hopefully Miller, Nies of Hirschfeldt

will present this material.

Analog of Q) looking like ()’ fails as
badly as it can.

We had hoped to attack Martin’s
conjecture about degree invariant

operators on the degree.

/
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(“Heroic Failure”—Jan Reimann) For
all such Q there are A =* B with Q4

and QF relatively random.

Many other results. One interesting
one: Omega operators are lower
semicontinuous but not continuous,
and moreover, that they are
continuous exactly at the 1-generic

reals.

/
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