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Motivation

• Reurning to the theme of studying
randomness in 2ω and in particular
the relationship of (n-) randomness
to calibrations of reals by relatitive
computational complexity.

• For instance, how do random reals
perform as oracles?
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Enumeration probabilities

• The first linkage of measure and
degrees was the following: (also
Spector, 1958 for hyperdegrees)

• Recall an index e for ∅′ is is universal
if for all indices f and all sets S,
there is a finite string σf such that

WS
f = W

σf S
e .

• Define P (A) = µ{X : WX
e = A}.
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de Leeuw, et. al.;Sacks

• Theorem: (de Leeuw, Moore,
Shannon, Shapiro, 1956) If P (A) > 0
then A is computably enumerable.

• Corollary: Sacks
µ{X : A ≤T X} > 0, iff A is
computable.
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• The proof uses the majority vote
technique, which is an important
standard tool. Assume P (A) > 0.

• For some e, De = {X : A = WX
e } has

positive measure.

• There is a string σ such that the
relative measure of De above σ is
greater than 1

2 . (Lebesgue Density
Theorem)

• Let the oracles extending σ vote on
membership in De

• Pu n into A if more than half (by
measure) say so. This enumerates A.
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Solovay’s Therem

• Solovay examined the relationship
between P (A) > 0 and the least
index for Wi = A.

• Let H(A) = d− log P (A)e
I(A) = min{K(i) : Wi = A}.

• Theorem (Solovay)

I(A) ≤ 3H(A) + K(H(A)) + O(1).

• The proof is combinatorial, and uses
a clever lemma of Martin.
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Stillwell’s Therem

• Similar methods show the following
due to Stillwell.

(i) Suppose that
µ({C : D ≤T A⊕ C}) > 0. Then
C ≤T A.

(ii) (Hence) For any a, b,
(a ∪ b) ∩ (a ∪ c) = a, for almost
all c.

(iii) Similarly for almost all a,
a(n) ≡ a ∪ (n). Almost all
degrees are GLn.

(iv) For almost all a, b, a ∩ b = .
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• Now consider the language where
variables a, b, c, . . . vary over
arbitrary degrees. Terms are built
from ′ (jump), ∪,∩.

• An atomic formula t1 ≤ t2 for terms
t1, t2,

• In general build from atomic ones
and ∧, and the quantifier ∀
interpreted to mean “for almost all.’

• Then the above allows for the
generation of normal forms, and
Fubinbi’s Theorem allows for
treatment of quantifiers. These kinds
of considerations give
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• Theorem (Stillwell) The “almost all”
theory of degrees is decidable.
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Coding into randoms

• You might think that the above says
that, in general coding into random
reals should be impossible.

• The intuitive argument is, perhaps,
that a random real should have
information, but only in a way that if
not organized enough to be able to
use it. These is some truth in this as
we later see.

• However, coding is possible as we
now see.
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The Kučera-Gács Theorem

• Every set is wtt reducible to a
Martin-Löf random set.

• The proof uses blocks to code
information, and the Gács coding is
more compressed than the Kučera
one. Hirschfeldt (unpublished) has
yet another coding.

• One easy to understand proof is due
to Merkle and Mihailovic using
martingales.

• The first Lemma is folklore, more or
less going back to Kučera in another
form.
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The Space Lemma

• (The Space Lemma) Given a rational
δ > 1 and k ∈ Z+, we can compute a
length `(δ, k), such that for any
martingale d, and any word w,

|{w ∈ 2`(δ,k) : d(vw) ≤ δd(v)}| ≥ k.

• It is important here that `(δ, k) can
actually be computed.

• (Restated) For any martingale d and
any interval of length k, there are at
least k paths extending v of length
`(δ, k) where d cannot increase its
capitol more than a factor of δ while
betting on I, no matter how d

behaves.
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• Proof: d(v) = 2−k
∑

|u|=k d(vu).

• (Kolmogorov) For any given ` and v

the average of d(vw) over words of
length ` is d(v).

• Thus, |{|w|=`:d(vw)>δd(v)}|
2` < 1

δ .

• Since δ > 1, 1− δ−1 > 0

• Suffices to have `(δ, k) ≥ log k
1−δ−1 =

log k + log δ − log(δ − 1).
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Kučera-Gács

• The space lemma gives enough space
for coding.

• Here is the MM proof:

• Let βi = Πj≤irj , with
r0 > r1 > · · · ∈ Q+,

• Ask that βi converge.

• Partition N = ∪{Is : s ∈ N}; Is of
size `s = `(rs, 2).

• The Space Lemma tells us for any
word v, and any martingale d, there
are at least two words w of length `s

with d(vw) ≤ rsd(v).
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• We construct R with given X ≤wtt R.

• At step s we will specify R on Is.

• Say w of length Is is admissible if

(i) s = 0 and d(w) ≤ β0, and

(ii) for s > 0, if

d(vw) ≤ βs for v = R � (I0∪· · ·∪Is−1)

• Induction and Space Lemma show at
every step there are at least 2
admissible extensions.

• To specify R, from
R � (I0 ∪ · · · ∪ Is−1),

• choose left (lex min) if s 6∈ X and
right it s ∈ X.
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Kučera Coding

• Similar left-right coding with suitable
blocks allows Kučera to prove the
following theorem, roughly using
something like the Friedberg cupping
Theorem and an intersection lemma
on fat Π0

1 classes akin to the Space
Lemma.

• Theorem (Kučera, 1985) Suppose
that a > ′. Then a is Martin-Löf
random.

• Kučera’s proof is in the notes. It has
other applications. The theorem also
follows from the last proof since if X

is above ∅′ then X can compute R.
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• Other positive results say that there
are randoms of every possible jump
(using generalized low basis theory
on Π0

1 classes which have no
computable members) and

• (Kučera, Downey-Miller) randoms
below ′ of every possible jump, using
basis theorems for fat Π0

1 classes.

17



'

&

$

%

Random power

• All of this might lead one to suspect
that randoms are in fact
computationally powerful. The only
explicit ones we have are above ′,
except the hyperimmune free ones.
(Later we will see that almost all of
them are hyperimmune, so the
hyperimmune free ones are red
herrings.)

• BUT Frank Stephan has shown that
these random reals above ′ are in
essence the only computationally
powerful reals.
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• Recall that a degree is called PA if a

is PA iff it is the degree of a complete
extension of Peano Arithmetic.

• A function f is called fixed-point free
if Wf(x) 6= Wx for all x.

• By Jockusch, Lerman, Soare, and
Solovay, a being FPF is equivalent to
bing able to compute a DNC
function: Namely g with g(e) 6= ϕe(e)
for all e.

• (Jockusch and Soare) a is PA iff it
can compute a {0, 1} valued DNC
function.
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Stephan’s Theorem

• (Stephan) Suppose that a is PA and
1-random. Then ′ ≤T a.

• He concludes
“The main result says that there are
two types of Martin-Löf sets: the first
type are the computationally
powerful sets which permit the
solving of the halting problem; the
second type of random set are
computationally weak in the sense
that they are not [PA]. Every set not
belonging to one of these two classes
is not Martin-Löf random.”
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n-randomness

• In the same way as the arithmetical
hierarchy,

• (i) A Σ0
n test is a computable

collection {Vn : n ∈ N} of Σ0
n

classes such that µ(Vk) ≤ 2−k.

(ii) A real α is Σ0
n-random or

n-random iff it passes all Σ0
n tests.

(iii) One can similarly define Π0
n, ∆0

n

etc tests and randomness.

(iv) A real α is called arithmetically
random iff for any n, α is
n-random.
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Kurtz’s Theorem

• We use open sets to define
Martin-Löf randomness.

• Consider: the Σ0
2 class consisting of

reals that are always zero from some
point onwards. It is not equivalent to
∪{[σ] : σ ∈ W} for any W .

• Kurtz showed that n-randomness is
the same as n randomness relative to
open classes. (Detailed statement in
the notes) The point is that:

• Theorem (Kurtz) n + 1-randomness
= 1-randomness relative to ∅(n).
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• This is also implicit in Solovay’s
notes in the dual way he treats
2-randomness.

• Thus, for instance, if A is 2-random
then A 6≤T ∅′. (Indeed, their degrees
forma minimal pair).

• Also there is a n + 1-random set
Ω(n+1) namely Ω∅(n)

which is
computably enumerable relative to
∅(n).

• NOTE it is NOT CEA(∅(n)). But
Ω(n) ⊕ ∅(n) ≡T ∅(n+1).
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Warning

• Similar relativization work for
Schnorr, computable, etc
randomness. BUT not for weak
randomness.

• It is NOT true that
weak-2-randomness (meaning being
in every Σ0

2 class of measure 1) is the
same as being Kurtz random over ∅′.
This is a genericity notion. 2-generics
have this property.

• The best we can do is: n ≥ 2, α is
Kurtz n-random iff α is in every
Σ∅(n−2)

2 -class of measure 1.
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• weak 2-randomness is the same as
“Martin-Löf randomness with no
effective convergence” In fact, weak
2-randomness might best be
described as strong 1-randomness.
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A hierarchy

• Theorem

(i) (Kurtz) Every n-random real is
Kurtz n-random.

(ii) (Kurtz) Every Kurtz
n + 1-random real is n-random.

(iii) (Kurtz, Kautz) All containments
proper.
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Proof

• To get weak n+1-random not
n-random prove that no weak n+1
random can be below ∅(n). But an
n-random can be.

• The most difficult non-containment
n-random 6= weak n-random, can be
shown by constructing each
CEA(∅(n)) degree a > (n) a weakly
n + 1-random reals X CE(∅(n), with
X ⊕ ∅(n) of degree a whereas any
such n + 1 random real Y must have
Y ⊕ ∅(n) of degree (n+1).
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• This method is due to Downey and
Hirschfeldt, and is not a relativization
of the DGR fact that there are Kurtz
randoms of all nonzero c.e. degrees..
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2-randomness

• There are some relative natural
examples of n-randoms using
methods akin to Post’s Theorem and
index sets (Becher-Figueira).
However, there are some really
unexpected characterizations also of
2-randoms.

• Recall that the maximum a string of
length n can be is (i)
C(σ) = n−O(1). (ii)
K(σ) = n + K(n)−O(1).

• (Solovay) (ii) implies (i), but not
conversely.
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• Say that a real is strongly Chaitin
random iff there are infinitely many n
with K(α � n) ≥ n + K(n)−O(1).

• Say that it is Kolmogorov random if
there are infinitely many n with
C(n) ≥ n−O(1).

• (Solovay) They exist.

• Fundamental question: are they the
same?
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Kolmogorov randomness

• Theorem Nies-Terwijn-Stephan,
Miller 2-randomness=Kolmogorov
randomness (!).

• Proof We fix a universal machine U
which is universal and prefix-free for
all oracles. Suppose that A is not
2-random. Thus, for each c there is
an n with

K∅′A � n) < n− c.

• We build a plain machine M. On an
input σ, M tries to parse σ as τβ,
with τ in the domain of U∅′ . Note
that as KX is prefix-free for all
oracles X, there is at most one τ ≺ σ.
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• Let s = |σ|.

• First it assumes that s is sufficiently
large that Hs is correct on the use of
A � n. It assumes that It then uses
∅′s as an oracle, to compute (if
anything) τ ≺ σ with U∅′s(τ) ↓ .

• If there is one, M outputs U∅′s(τ)β.
From some time onwards, upon input
νA[n + 1,m] with U∅′(ν) = A � n,
this will be A � m.

• Thus C(A � m) is bounded away
from m.

• The other direction. (Miller, NST)

• Recall from Lecture 1 that a
compression function acts like U−1.
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• Recall that we defined F : Σ∗ 7→ Σ∗

to be a compression function if for all
x |F (x)| ≤ C(x) and F is 1-1.

• Recall also that since they forma Π0
1

class, there is a compression function
F with F ′ ≤T ∅′. (NST’s idea)

• Namely, consider the Π0
1 class of

functions |F̂ (σ)| ≤ C(σ).

• The main idea is that most of the
basic facts of plain complexity can be
re-worked with any compression
function. For a compression function
F we can define F -Kolmogorov
complexity: α is F -Kolmogorov
random iff
∃∞n(F (α � n) > n−O(1)).
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• (NST) If Z is 2-random relative a
compression function F , then Z is
Kolmogorov F -random.

• Now we can save a quantifier using a
low compression function.

• This still leaves strongly Chaitin
random reals. Question are they
3-random, 2-random or something
else. Note that the same approach
won’t work because both sides
change. (To wit:
F (α � n) = n + F (|n|)− d. Could to
this if there was a low compression
function with K(σ) > K(τ) implies
F (σ) > F (τ) but this is surely false.)
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Kučera strikes again

• We have seen that most random reals
are not below ′ and hence are not
PA. Thus they are computationally
feeble.

• However, Kučera showed that
randoms do have some power, always.

• Kučera showed that they can
compute FPF functions. Recall that
this means that they can g with
g(e) 6= ϕe(e) for all e.

35



'

&

$

%

• The difference is that if g(e) is
{0, 1}-valued, (so we are dealing with
PA degrees, then g computes
something positive, whereas in the
general case, g computes something
negative.
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• Actually, Kučera proved a nice
generalization:

• (Jockusch, Lerman, Soare, and R.
Solovay) We define a relation A ∼n B

as follows.

(i) A = B if n = 0.

(ii) A =∗ B if n = 1.

(iii) A(n−2) ≡T B(n−2), if n ≥ 2.

• and a total function f is called
n-fixed point free (n-FPF) iff for all x,

Wf(x) 6∼n Wx.

• Theorem (Kučera) Suppose that A is
n + 1 random. Then A computes an
n-FPF function. (cf Generalized
Arslanov’s completeness criterion.)
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van Lambalgen’s Theorem

• A central (independence) result.

• Lemma (van Lambalgen, (Kučera,
Kautz))

(i) If A⊕B is n-random so is A.

(ii) If A is n-random so is A[n], the
n-th column of A.

(iii) If A⊕B is n-random, then A is
n−B−random.

(iv) If A⊕B is random then A 6≤T B.

(v) Hence no random degree is
minimal.
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• (e.g. (i)) The proof is easy. (n = 1)
So suppose A⊕B is random, but A

is not.

• Suppose A ∈ [σ] for infinitely many
[σ] in some Solovay test V .

• Then A⊕B would be in V̂ , where
[σ ⊕ τ ] ∈ V̂ for all τ with |τ | = |σ|
and σ ∈ V . (Measure the same)
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• The most important fact is that the
converse is true.

• (van Lambalgen’s Theorem)

(i) If A n-random and B is
n−A−random, then A⊕B is
n-random.

(ii) Hence, A⊕B is n-random iff A

n-random and B is n−A−random.
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• Proof: Suppose A⊕B is not random.

• A⊕B ∈
⋂

n Wn and µ(Wn) ≤ 1/22n.

• Let Un = {X | µ({Y | X ⊕ Y ∈
Wn}) > 1/2n}.

• Now, µ(Un) ≤ 1/2n since otherwise,
µ(Wn) > µ(Un) · 1

2n > 1
2n · 1

2n = 1
22n ,

• Thus, {n | A ∈ Un} is finite. (A
random)

• Hence a.a. n, A 6∈ Un, and the
measure of Un is small.

• V A
n = {Y | A⊕ Y ∈ Wn} is a

A-Solovay test covering B.
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A pretty application

• Theorem (Miller and Yu) Suppose
that A is random and B is n-random.
Suppose also that A ≤T B. Then A

is n-random.

• Proof (We do n = 2.) If B is
2-random, then B is 1-Ω-random (as
Ω ≡T ∅′.)

• Hence by van Lambalgen’s Theorem,
Ω⊕B is random.

• Thus Ω is 1-B-random.

• But A ≤T B. Hence, Ω is
1-A-random. Hence Ω⊕A is random,
again by van Lambalgen’s Theorem.
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• Thus, A is 1-Ω-random. That is, A is
2-random.

• The general case is simlilar and relies
only on van Lambalgen’s Theorem
and Kučera’s result that all degrees
above ′ are random.

• Actually, Miller and Yu have also
proven

• Theorem: For any (not necessarily
random Z), any random below a
Z-random is itself Z-random. (This
does not use van Lambalgen)
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• One nice Corollary to van Lambalgen
and Sacks’ Theorems is the following.

• Theorem (Kautz) Let n ≥ 2. Then if
a and b are relatively n-random, they
form a minimal pair.

• Proof Suppose that D ≤T , A, B.
Then A ∈ {E : ΦE

e = D}. By Sacks’
Theorem, this set is a ΠD

2 -nullset,
and hence A is not n−D−random,
and hence not 2−B−random.
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Effective 0-1 Laws

• Classical: Any measureable class of
reals closed under finite translations
has measure 0 or measure 1.

• Effective version?

• Lemma (Kučera-Kautz) Let n ≥ 1.
Let T be a ΠD

n class of positive
measure. Then T contains a member
of every D − n−random degree.

• Indeed, if A is any n−D−random,
then there is some string σ and real
B such that A = σB and B ∈ T .
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• Proof (n = 1, D = ∅)

• T be a Π0
1 class,

S = T = ∪{[σ] : σ ∈ W} W c.e. and
prefix-free.

• Let r ∈ Q+, with µ(S) < r.

• Let E0 = S and
Es+1 = {στ : σ ∈ Es ∧ τ ∈ W}.

• µ(Es) ≤ rs

• Suppose for all B with A = σB,
A ∈ S.

• Then B ∈ ∩sEs and is hence not
random.

• Actually this can be gotten from the
Lemma needed for Kučera coding.
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• Theorem (Kurtz)

(i) Every degree invariant Σ0
n+1-class or

Π0
n+1 either contains all n-random

sets or no n-random sets.

(ii) In fact the same is true for any such
class closed under translations, and
such that for all A, if A ∈ S, then for
any string σ, σA ∈ S.
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• Examples:

• The class {A : A has non-minimal
degree } has measure 1, and includes
every 1-random set.

• The class {A⊕B : A,B form a
minimal pair } has measure 1, and
includes all 2-random but not every
1-random set.

• The first part of this follows from the
result on 2-randoms earlier.

The second part is trickier.
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below 0’

• Theorem (Kučera [?]) If A and B are
1-random with A,B <T ∅′ then A

and B do not form a minimal pair.

• Proof: Choose 2 randoms low and
below 0’ (van Lambalgen and low
basis theorem) Now they are DNC
and FPF. Use Kučera’s Priority Free
Solution to Post’s Problem.

• Actually, Hirschfeldt, Nies, and
Stephan have shown that the degrees
below such pairs are K-trivial. (For
those who know)
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• I will look at some other almost all
classes in Lecture 5, where I look at
measure-theoretical injury arguments
a la Kurtz’ Thesis.

• In particular, I will show that almost
all degrees are hyperimmune, CEA,
bound 1-generics etc.
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Omega Operators

• Important ignored work looks at Ω as
an operator acting on Cantor space.
(Downey, Hirschfeldt, Miller, Nies)

• Hopefully Miller, Nies of Hirschfeldt
will present this material.

• Analog of Ω looking like ∅′ fails as
badly as it can.

• We had hoped to attack Martin’s
conjecture about degree invariant
operators on the degree.
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• (“Heroic Failure”–Jan Reimann) For
all such Ω there are A =∗ B with ΩA

and ΩB relatively random.

• Many other results. One interesting
one: Omega operators are lower
semicontinuous but not continuous,
and moreover, that they are
continuous exactly at the 1-generic
reals.
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