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‘ Calibrating Randomness I

~

e How should we attempt to calibrate

levels of randomness”?

e Among randoms?

e Among non-randoms.

e How does this relate to Turing and

\_

other reducibilities, etc?
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‘Measures of Relative I

‘ Randomness I

e A pre-ordering < on reals is a

measure of relative randomness it it

satisfies the Solovay property:

If 5 <« then
de (Vn (K(B [ n) < K(a|n)+c)).

e Notice that if a is random and o < 3
then by Schnorr’s Theorem, (3 is

random too.

e Can also use C, and others.

/
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e The idea is that if we can
characterize randomness by initial
segment complexity, then we oght to
be able to calibrate randomness by
comparing initial segment

complexities.

e Of course this is open to question,
and we could also suggest other
programs such as using tests and
maybe effective Holder
transformations (for instance) to
attempt such a calibration. These are

unexplored.
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‘ Solovay Reducibility I

e We talk about the halting problem,
whereas of course we really mean
HALT{ for a universal U. But...
they are all the same (Myhill)

e Solovay introduced a reduction to

address this for randomness.

e (o <g ) « is Solovay or domination
reducible to (3 iff there is a constant
d, and a partial computable ¢, such
that for all rationals ¢ < (3

(@) L ANd(B—q) > |a—(q).

\_ /
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e Intuitively, however well I can

approximate 3, I can approximate o
just as well. Clearly <g implies <7.

e A formal way to say this is

e Lemma (Calude, Hertling,

Khoussainov, Wang) For c.e. reals,
a <g p iff for all c.e. ¢; — (3 there
exists a total computable g, and a
constant c, such that, for all m,

(B = qm) > @ — Ty(m)-
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e S-reducibility is a measure of relative

~

randomness (Solovay)

This follows by : Let d be given.
Then there is a constant ¢ = ¢(d)
such that for all n: if 0 and 7 have
length n and |0 — 7| < 27"+,
K(o)4c> K(1).

If U(’)/) — O, then if 01...,092d+1
denote the possible 7 in lex order,
have M(1%y) = o;.

/
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e Then suppose x <g y with constant d
and partial computable f. To show,
for instance, x [ n K-below y | n,
consider the machine M which does
the following. For each v with
U(v) |, M applied f to U(v). If this
halts, for each of the 2¢(4) many
strings 7;, within 27"+ of f(U(v)),
we define M (1'"1v) = 7.

This procedure applied to y [ n will
result in a program for x [ n from
amongst these programs. Note that
this really is a reduction, in that we
get to generate x from vy in the limit.

\_ /




‘Ss and -I-I

e Actually for c.e. reals, <g is a simple

arithmetical relation.

e (Downey, Hirschfeldt, Nies) = <g y iff

there exists a ¢ € N and a c.e. real z

\_

such that cy =z + z.

/
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e Recall: a <g (3 iff there are a

~

computable f and a constant d such
that o — a e,y < d(8 — 3,) for all n.
Want cy = = + z.

Roughly, the proof works by
synchronizing the enumerations so
that the approximation to x is
“covered” by one for y, (i.e.

Ts11 — Ts generates a change in cy of
the same order.) Then we use the
amount needed for x for x and the

excess goes Into z.

/
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‘Only one random c.e. real'

o A c.e. real is Q-like if it dominates all

c.e. reals.
e (Solovay) Any Q-like real is random.

e Proof : By Schnorr since then
K(a[n)>n-—d.

\_ /
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Solovay proved that €2-like reals
posessed many of the properties that

() posessed. He remarks:

“It seems strange that we will be able
to prove so much about the behavior
of K(£2 | n) when, a priori, the
definition of €2 is thoroughly model
dependent. What our discussion has
shown is that our results hold for a
class of reals (that include the value
of the universal measures of ...) and
that the function K (€2 [ n) is model
independent to within O(1).”

/
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Theorem (Calude, Hertling,
Khoussainov, and Wang) If a c.e. real
is {)-like then it is an {2-number.
That is, a halting probability.

Proof: We have 2 <g¢ o with

enumerations {2, — ), oy — «

We know that if we use a stage by

stage approximation, then essentially

cla—ag) > Q— Q.

Use Kraft-Chaitin. If U(7) = ¢ then
2=l enters the domain of U — Us,.
We re-cycle this by defining

M(7) = o with 27" entering o — a,
this keeping Ks(0) < Ky (o) + c. etc.

/
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e Theorem (Kucera-Slaman) If a c.e.

e ic all random c.e. reals are the

~

‘ Kucera-Slaman Theorem I

real is random then it is Q-like.

“same” and are halting probabilities.
(even though it might be possible for
it to be as high as n + 2logn all

oscillations occur at the “same” n’s.)

/
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Proof: Suppose that o is random arm
(3 is a c.e. real. We need to show that
8 <g a. We enumerate a Martin-Lof

test I, : n € w 1n stages.

Let oy — o and s — [ computably
and monotonically. We assume that

63 < 534—1 .

At stage s if ag € F°, do nothing,

else put (a, as + 27" (Bsu1 — Bt.))
into F5T!, where t, denotes the last

stage we put something into F,.

One verifies that u(F,) < 27". Thus
the F,, define a Martin-Lof test. As «

is random, there is a n such that for
all m > n, a ¢ F,,. This shows that

B <g a with constant 2". /
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‘ Variations I

e [t follows that if « is c.e. real and

random it is Turing complete. This is

true in a very strong way.

(Downey and Hirschfeldt) Suppose
that A is a c.e. set and « is a
I-random c.e. real. Then A <, «,

and this is true with identity use.
(“a <ssw B7)

/
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Proof: We construct I'* = A, where
V(x) = .
We use KC and we know our coding

constant e. We know

Ky(a | n) > n — cand have ay — a.

Initially I'*s (n) = 0. We want to
change this at some t > s should n
enter As;11. We need a change in

as [ n.

Enumerate the KC axiom

<2n—c—e—17 O r n>

This causes K¢11(ags [ n) to drop

below n —c—1. Thus oy [n# a5 [ n

/

for some t > s.
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e Similar methods show

(Kucera) Suppose that A is a random
set of c.e. degree. Then A is Turing

complete

(Downey and Hirschfeldt) Suppose
that A is a random set of c.e.
wtt-degree. Then A is wtt-complete.

/
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e The c.e. reals using <g forms a

e (Downey, Hirschfeldt, Nies)

‘ Structure '

upper semilattice, called the Solovay
degrees.

(
(i) 4+ induces a join
(ii) It is distributive
(iii) dense

(i

v) [Q?] is the only join inaccessible
element.

/
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e Proof of (i). z,y <g z implies there is

ac,p,qsuchthatcz=x+p=vy-+gq.
So 2cz = (x +y) + (p+ ¢q). So
x+1y<gz Clearly z,y < x +y.

(ii) (distributive) z <g x1 + y1. Run
the enumerations of and cover the
Zs11 — Zs using bits of

xl,s—i—l — Lsy Ys+1 — Ys-

density and [€2] being join

inaccessible more intricate.

20
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‘The Density Theorem'

e Splits into two cases.

e Theorem (Downey, Hirschfeldt, Nies)

(i) If @ is incomplete and b <g a,
then there exist a,|sa, such that
b<a,,a,, and a =a, V a,.
That is every incomplete degree

splits over all lesser ones.

(ii) If [Q2] = a V b then either )] = a
or [(2] =b.

e (ii) is a straightforward finite injury

argument.

\_ /
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e We give the idea for (i), that
a <ga<g . There are £ and 3!
s.t. o <g 3%, B! <5 o and
7+ 8 =a

e Recall: o <g (3 iff there are a
computable f and a constant d such
that a — a g,y < d(8 — 3,) for all n.

\_ /
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We want to build £° and 3! such that

- 607ﬁ1 SS ,
— B’ + B =a, and

— the following requirement is satisfied
for each e, k € w and 7 < 2:

R e P total

= In(a — as,(m) = k(B = 5,))-

/
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e Two requirements show the problems.

— Ry : @ total = dn(a — ag@) >

k(B8° — 67))

— Ry : U total = dn(a — ag@y) >

(B — Br))

24



We assume ®, ¥ total for the

following.

— two containers, labeled £° and ', apd

— a large funnel, through which bits of]

are being poured.

Ry and R, fight for control of the

funnel.

Bits of a must go into the containers

at the same rate as they enter a to
make 3" 4+ 3! = a.

Ry says put the bits into 3 till
satisfied. Ry the opposite.

Ry is satisfied through n at stage s it

®(n)ls] | and
a5 — Qgp(n) > k(BY — B).

~

/
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/ e The idea is Ry sets a quota for R; \

into 3.

e If the quota is 27 and R, finds that
either

— it is unsatisfied or

— the least number through which it is
satisfied changes,

then it sets a new quota of 2~ (m+1)

for how much may be funneled.

e Lemma: There is an n through which
Ry is eventually permanently
satisfied, that is,

In, sVt > s (ar—aam) > k(B —5.)).

\o The proof is that R;’s quota — 0 ary

26




its noise is computable, then a’ la
Sacks.

27




‘ The Dilemma I

e So now, Ry is permanently satisfied,
and R, has a final quota 27" that it
is allowed to put into (Y.

o If we knew when s occurred with
a— ag < 27, then we could use the

same strategy.

e If we are too quick R; can’t be
satisfied.

28
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Idea : R1 uses €2 as an tnvestment

advisor.

After the final stage u where R;’s
final quota is set, R; puts as much of
ayy1 — oy into BY as possible so that
the total amount put into 3 since

stage s does not exceed 27",
Since () settles last, we can show

There is a stage t after which Ry is

allowed to funnel all of oo — a; into 3°.

/
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e (Downey and Hirschfeldt) This works
for any Y9 measure of relative
randomness where + is a join, the 0
degree includes the computable reals,

and the top degree is ().

30
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‘ Other structure I

The Solovay degrees of c.e. real is not
a lattice (Downey and Hirschfeldt)

Minimal pairs exist etc.

(Downey, Hirschfeldt, LaForte) The
structure of the S-degrees of c.e. reals

has an undecidable theory.

This is proven using Nies’ method of

effective dense boolean algebras.

Little else known.

/
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‘ Other Measures I

e S-reducibility is a measure of relative
randomness, but not the only one,

and it has some problems.

(i) Restricted to c.e. reals.
(ii) Too fine.

(iii) Too uniform.

32
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e Another measure of relative

randomness 1s sw-reducibility:

0 <4 o if there is a functional I s.t.
['* = 3 and the use of I' is bounded
by x + ¢ for some c. If ¢ = 0 called
ssw-reducibility, used by Soare and
Csima in differential geometry.

e sw-reducibility is incomparable with
S-reducibility.

e sw-reducibility says that there is an
efficient way to convert the bits of o
into those of (.

\_ /
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‘The Yu-Ding Theorem'

e Lven though Kucera-Slaman says

that any two versions of ) are “the
same”, there is no efficient way to

convert the bits of one into another
e Theorem (Yu and Ding)

(i) There is no sw-complete c.e. real.

(ii) There are two c.e. reals §y and
(31 so that there is no c.e. real «

with Gy <. a and (1 <, .

\_ /
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The proof, roughly works by picking\
two long intervals

Bo | [n,n—+1t],01 | [n,n+t], to
diagonalize against some o and sw

reduction I'. with use n + e.

Initially the reals are 0 on this

interval.

Then alternating between 3y and (31
adding 2~ ("*%) each time, where time

here means “expansionary stages.”

Yu and Ding observed that this

process will cause « to be too large.

This is proven by induction, and the

reason I think, is that when « has

lots of 1’s, it can only change large./
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e Here is an example.

stage 1: o1 = 0.001, 8; 1 =0 and

~

a1 — 0.001

Stage 2: 60)2 = 0001, ﬁl,g = (0.001
and o — 0.010

stage 3: Bp.3 = 0.010, (5; 3 = 0.001
and a3 = 0.100

stage 4: Bp.4 = 0.010, 81 4 = 0.010
and ay = 0.110

stage 5: Bp 5 = 0.011, ;5 = 0.010
and a5 = 0.111

Stage 0: 60,6 = 0011, ﬁl,ﬁ = 0.011
and ag = 1.000

stage 7: Bp.7 = 0.100, 5; 7 = 0.011
and 7 — 1.100

\_
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stage 8: Bps = 0.100, 81 5 = 0.100
and g — 10.000

e You must prove that a’s best
strategy is the least effort one.
(Definition of Barmpalias and Lewis).

37
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e Similar methods can be used to prove

e Theorem (Barmpalias and Lewis)
There is a c.e. real o such that for

any random c.e. real 3, a L4, 0.

e Using a different argument,
Hirschfeldt constructed a real o such
that for all random reals (3, a L4 3.

\_ /
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Would like a measure of relative
randomness combining the best of

S-reducibility and sw-reducibility.

one such is A <, (3 iff there for all
n, K(A|n|B|[n+c)=0(1).

Again + is a join, etc so it is dense.

Little else known. Known that <g
does not imply <, g on the c.e. reals.

(Downey, Greenberg, Hirschfeldt,
Miller)

/
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‘Results on <z and SGI \

Recall A <x B to mean
K(An)<K(BIn)+0(1),all n.

Thanks to the work of Miller and Yu
(mainly) we know a lot about the
structure of K and C degrees on

randoms.

The first thing we find is that <c
and <g are not really reducibilities

Yu, Ding, Downey If X is random
then {Y : Y <g X} is uncountable.
Moreover it contains members of

each Turing degree.

The proof is to observe: If Y is very/

40



sparse then its complexity is low, but
we can code any degree into a sparse

set.

41




Replace with: \

Yu, Ding, Downey
u({B: B <g A}) = 0. Hence

uncountably many K degrees.

Yu, Ding In fact 2%0. (Actually this
follows from the above by a Theorem
of Silver and the fact that <g is
Borel.)

(Miller and Yu) For almost all pairs
A|lg B.

(Miller and Yu) for all n # m,
QM| Q™) (This extends earlier
work of Yu, Ding, Downey; Solovay)

(Miller and Yu) However, there are
random A, B with B <x A. (This
result is the most difficult!) /
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e (Miller and Yu) Each K-degree of a

random countable.

e (Miller) There is an uncountable

K-degree.

e (Csima and Montalban) There are

minimal pairs of K-degrees.

43
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‘A unified approach' \

(von Lambalgen reducibility) For
x,y € 2¥, write x <, y if
(Vz € 2¥) 2 & z is 1-random —

y &b z is 1-random.

is the same as Define y <, x it
(Vz € 2¥) z is 1-z-random =—

z 1s 1-y-random, on the randoms.

inspired by van Lambalgen: A @ B is
random iff A is B-random and B is

A-random.

(Miller and Yu) If a <, 8 and « is
n-random, then (3 is n-random. /
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e The proofs of most of these are

relatively easy once you figure out
what to do.

Suppose that o n-random and

a <, 8. Use Kucera’s Theorem that
there is a random z with z =7 0=,
Then a &® z is random, and hence

8 @ z is random and hence [ is

1-z-random, that is 3 is n-random.

/
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(Miller and Yu) If y <7 x and y is \
I-random, then x <, v.

(Miller and Yu) If m # n, then QO

and 9% have no upper bound in

the vL-degrees.

(Miller and Yu) If z is n-random and
y <7 x is 1-random, then y is

n-random.

(Miller and Yu)
TSKY = TyLY

(Hence)(Yu, Ding, Downey) for
randoms u({3: 0 <k a}) =0.

Proof: If  is 1-a-random, then
B L1, a and hence, since u({8 : 3 is
l-a-random }) = 1, we get /
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({0 : 06 <k a}) =0, since <k
implies <, 1, .

47




/ ‘ Miller’s Theorems I \

e In unpublished work, Miller has used
these techniques to establish other

fascinating results on <.
e Theorem (Miller)

(i) If a, B are random, and a = (3,
then o' =4 B’. As a consequence,
every K-degree of a random real
1s countable.

(iii) If @« <k B, and « is 3-random, the
B<radl.

e Note that (ii) implies that the cone of
K-degrees above a 3-random is

\ countable. /
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e (Miller and Yu) There are upper
K-cones that are uncountable above

a l-random.

49
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e (Miller-Yu) This is proven using a
variation on the Miller-Yu proof that

there are K-comparable randoms.

e That proof uses the following difficult

result.

e (Miller and Yu) Suppose that
S~ 27" < 0o, then there is a
lI-random Y with

K(Y [n)<n+ f(n),

for almost all n.

\_ /
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e Then to get K-comparible reals, use
the result taking g(n) = K(B [ n) —n
for random B, which is convergent by
the Ample Excess Lemma, then use
the above on some convergent

function f with g — f — oo.
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e We will call o weakly low for K it
(3*n)[K(n) < K*(n) + O(1)].

e The information in « is so useless

that it cannot help to compress n.

e (i) If o is 3-random it is weakly low for
K.

(ii) If « is weakly low for K, and also
random, then « is strongly Chaitin

random 1n that

(3%n)|K(a [ n) >n+ K(n) — O(1).

\_ /
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/ ‘Outside of the Randoms. \

e Little is known about <r and <&

outside of the random reals.

e (Downey and Hirschfeldt) The C-
and K- degress of c.e. reals form a

dense uppersemilattices.

e This is because the XY density

theorem holds, again.

e This uses Downey, Hirschfeldt, Nies,
Stephan that + is a join.

e To see this, given x,y < z, run the
enumerations, and have one

z-program if x4 [ n stops first, and

\ one if ys [ n first. /
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‘ Loveland-Chaitin-Stephan I

o <. implies <7 on c.e. reals,
generalizing Loveland’s and Chaitin’s

Theorems(Stephan)

e Loveland C(a [ njn) = O(1) iff «

computable.

e Chaitin A < 1% iff A is computable.

\_ /
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e The proofs use the “IIY class

method” each time.

A TIY class with a finite number of

paths only has computable ones.

Loveland Proof: Only finitely many
programs to consider for the

C(X | nln) = O(1). Knowing these
and the maximum hit infinitely often
will allow for the construction of the

119 class.

/
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Chaitin’s is the same proof PLUS:

{o:C(o) <Cn)+dA ol =n}| =
0(2%). (Chaitin)

Since we know that between n and
2™ there are C-random lengths with
C'(n) = logn, we can then apply the
Lemma. (i.e. to construct the IT{

class.)

Stephan’s is a kind of relativization

of this. (Together with enumerations)

Is this true for <g 7 Intuitively yes,

/
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/ ‘K -trivial reals: I \

e (Solovay) There exist noncomputable
reals o such that for all n

Klan) < K(1") +d.

e These are called K-trivial reals.
specifically, K'T'(d).

e What goes wrong with the IIY class
method. The answer is “nothing”
except that the tree is no longer
computable, but a (’-computable tree

with a finite number of paths.

e Thus (Chaitin) all K-trivial reals are
AY and for each d, KT(d) has O(2%)

\ members. (Zambella) /
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e How many are there? Let G(d)

denote the number of KT'(d) reals.

We know G(d) <p (0"'. We know
G(d) £7 0. We know > = Gld)

convergent. Is G(d) machme

dependent in its complexity?
(Downey, Miller, Yu)

e Related to Csima-Montalban
functions. f such that
K(ATn)<K(n)+ f(n)+O(1)
implies A is K-trivial. CM if F is
nondecreasing, and weakly CM if

liminf — oo.

~

/
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Such A can be c.e. sets. (DHNS, an}
others)

Solovay’s 1974 proof is very
complicated. Here is a simplified

version proving a stronger result.

(DHNS) There is a c.e.
noncomputable set A such that for

all n
K(ATn)<K(n)+O(1).
Let
A1 = AU{z : W, sNAg = DAx € W

A Z o—K(17)[s] g~ (et

2<j<s

/
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e (DHNS) K-trivial reals are never of
high degree, so this is an injury free
solution to Post’s problem.
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‘ Nies Theorems '

Nies (and Hirschfeldt) has some deep

material here using the “golden run”

construction:

e Lvery K-trivial is bounded by a
K-trivial c.e. set.

e Livery K-low is superlow, and “ jump

tracable”.

o K-trivial = low for Martin-Lof
randomness (Meaning random* iff

random) =low for K (meaning

K4 = K)

\_ /
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K-trivials are closed under
T'-reducibility and form the only
known natural X9 ideal in the Turing

degrees.

The are bounded above by a lows

degree.

This is a special case of unpublished
work of Nies showing that every X9
ideal in the c.e. Turing degrees is

bounded by a low, c.e. degree.
(Proof in Downey-Hirschfeldt)

Unknown if this X9 ideal has an

exact pair.

/
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/o Hirschfeldt, Nies, Stephan have \

shown that if A and B are A
random then there is a K-trivial
below both.

e This needs Kucera’s proirity-free
soution to Post’s Problem. And if
you are a c.e. set below a incomplete

random then you are K-trivial.

e Many, many relationships with other

classes. (Nies lecture)

e Is there a low a above all the
K-trivials? If so can it be random?
(It can’t be c.e.) As Kucera points
out this would need new coding ideas

into randoms.

\_ /
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/ ‘Hausdorff dimension. \

1895 Borel, Jordan
Lebesgue 1904 measure

In any n-dimesnional Euclidean

space, Carathéodory 1914
/LS(A) — ll’lf{z ‘IZ’S A C UiLL},

where each [; is an interval in the

space.

1919 Hausdorft s fractional. and

refine measure 0.

For 0 < s <1, the s-measure of a

clopen set |o] is

ps([o]) = 27217,

/
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(ii) s =inf{s € Q: X C S|d] for some

Lutz-Mayordomo-Hitchcock has the\
following characterization of effective

Hausdorff dimension: (also Staiger)

An s-gale is a function F : 2<% — R
such that

F(o) = 2°(F(00) + F(o1)).

Similarly we can define s-supergale,

etc.

Theorem
(Lutz-Mayordomo-Hitchcock) For a

class X the following are equivalent:

(i) dim(X) = s.

s-gale F'}. /
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e Lutz says the folllowing:

“Informally speaking, the above
theorem says the the dimennsion of a
set 18 the most hostile environment
(i.e. most unfavorable payoff
schedule, i.e. the infimum s) in which
a single betting strategy can achieve
infinite winnings on every element of
the set.”

Thm Lutz, Mayordomo, Hitchcock:
The Hausdorft dimension of a real a

1S
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/ ‘Dimensions of strings' \

e [Lutz has introduced a method of

assigning dimensions to strings.

e liminf @,
e cquivalently, the infimum over all s of
the values of d*(« [ n).

e To discreteize this characterization,

Lutz used three devices:

(i) He replaced supergales by
termgales, which resemble
supergales, yet have modifications
to deal with the terminations of
strings. This is done first via

\ s-termgales and then later by /
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/ termgales, which are uniform \

families of s-termgales.

(ii) He replaced — oo by a finite
threshold.

(iii) He replaced optimal s-supergale

by and optimal termgale.

e For s € [0,00), an s-termgale is a
function d from the collection of
terminated strings T to R™ U {0},
such that d(\) <1, and

d(o) > 27%[d(00) + d(o1) + d(oT)].

Here [ is a delimiting symbol, and

has vanishing probability as n — oc.

e (i) A termgale is a family

\ d=1{d’:s€|0,00)} of /
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/ s-termgales such that \

2—8|0‘|d8(0_) — 2_8/|G|d/(0'),

for all s,s’ and o € 2<%,

(ii) We say that a termgale is
constructive or 29, if d¥ is a XY

function.
e Now introduce optimal termgales etc.

e filtering through discrete
semimeasures and the Coding

theorem, you get

e There is a constant ¢ € N such that

for all o € 2<%,

K (o) — |o| dim(0)] < c.

\_ /
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