
'

&

$

%

Algorithmic Randomness 5

Rod Downey

Victoria University

Wellington

New Zealand

1



'

&

$

%

Measure-Theoretical Injury

• I would like to discuss some relatively

poorly known (and sometimes

re-proven) theorems of especially

Stuart Kurtz using interesting

arguments, I call measure-theoretical

injury.

• We will need from Lecture 3 the 0-1

Laws

2



'

&

$

%

Effective 0-1 Laws

• Lemma (Kučera-Kautz) Let n ≥ 1.

Let T be a ΠD
n class of positive

measure. Then T contains a member

of every D − n−random degree.

• We will need this especially for

D = ∅′, so that it reads

• Every Π0
2 class of positive measure

contains members of every 2-random

degree.
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Martin’s Theorem

• Recall that a degree a is called

hyperimmune if there is a function

computable from a not majorized by

any computable function.

• We have seen that there are

hyperimmune-free randomns.

• Are typical randoms hyperimmune?
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• (Martin’s Theorem) Suppose that a

is 2-random. Then a is

hyperimmune.

• Claimed by Kautz to hold for weakly

2-randoms, but every Kurtz random

hyperimmune free degree is also

weakly 2-random by Lecture 3.

(Recall if A ∈ ∩nUn, then enumerate

enough till A occurs and use

majorization.)
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The Paris-Martin Method

• The Proof:

• “risking measure”: failing on some

small measure.

• By 0-1 Law: µ({A : A bounds a

hyperimmune degree }) > 0. (Exact

calculation later)

• We define partial computable

functional Ξ so that

• µ({A : ΞA is total and not dominated

by any computable function } ≥ 1
2 .

• We consider here Ξ as a continous

partial computable partial functional

from strings to strings.
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• Requirements Re : ϕe total →

ΞA is not majorized by ϕe.

• Suppose that we knew whether ϕe

was total.

• Then we do this: Begin with R0 at λ.

• ϕ0 was not total, do nothing. Move

on to R1

• ϕ0 total, pick witness n0, compute

ϕ0(n0) and then set

Ξλ(n0) = ϕ0(n0) + 1.

• Then ϕ0 cannot majorize ΞA for any

A.

• Then use a new witness for R1 etc.
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• However, even for a witness n0, we

can’t decide if ϕ0(n0) ↓ [s]

• The solution: The idea then is to try

to implement this process in such a

way that should we fail to meet some

Re then the overall cost (in terms of

measure) will be small. (Here small

will be 2−(e+2).)
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• For R0 alone.

• Pick 4 arenas: [00], [01], [10], [11].

• Initially (and perhaps forever) R0

only deals with [00]. The other

requirements will have the arena [00]

for their pleasure.
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• Pick a witness n0 = n00
0 for [00] and

R0.

• Don’t define Ξσ(n0) for any σ

extending 00 unless ϕ0(n
00
0 ) ↓ [s].

• Should such an s occur, define

Ξ00(n0) = ϕ0(n0) + 1.

• And then R0 releases control of [00],

since now it is met there. The point

is that now for any strings σ

extending 00, Ξσ(n0) = ϕ0(n0) + 1.

• If we fail to define Ξ00, then n00
0 is a

witness to the fact that ϕ0 is not

total, and don’t define Ξ on a cone of

measure at most 1
4 . But R0 is met

globally.
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• Now whilst we are devoting [00] to

testing R0, we cannot stop Ξν being

defined for strings not extending 00.

• Thus, for instance, by the stage s

that we get to define

Ξ00(n0) ↓ [s] = ϕ(n0) + 1, we might

well have defined Ξσ(m) for various σ

extending 01.
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• Now, we meet R0 in the cone [01]

(and then [10], then [11], always

risking 2−2 each time). Thus R1 will

assert control of [01]

• R0 asserts control of all xtensions of

01 of length s. There will be 2s−2

such extensions ν1 . . . ν2s−2 and note

that

∑

i≤i≤2s−2

2−|νi| = 2−2.

• Pick a new large n01
0 which will serve

for all of the νi’s.
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ν2(s−2)

01 00

s

met

asserts
control of
[01]

R0

R0

here

11 10

ν1 ν2

Figure 1: R0 changes to the next cone
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• Now if we ever see a stage t > s such

that ϕ0(n
01
0 ) ↓ [t], we will be free to

define Ξνi(n01
0 ) ↓ [t] = ϕ0(n

01
0 ) + 1,

for all νi simultaneously.

• In general, Re deals with the cones

[σi] at length e + 2.

• In this way, we see that at any stage

each Re has exactly 2−(e+2) of

measure risked because of it, of R − e

is completely met.

• Thus the overall measure where Ξ is

not defined is bounded by∑
e∈N

2−(e+2) = 1
2 .
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The NST Proof

• There is a very nice proof of Martin’s

Theorem by Nies, Stephan, and

Terwijn.

• Recall from Lecture 3, A is 2-random

iff for all computable time bounds g

with g(n) ≥ n2,

∃d∃∞n(Cg(A � n) ≥ n − d).

• Let A-computable :

f(k) = µn[∃p1, . . . , pk ≤ n](Cg(A �

pi) ≥ pi − d).

• Claim f is not dominated by any

computable h.
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• If not, Define the Π0
1 class

P = {Z : ∀k[∃p1, . . . , pk ≤ h(k)]

(Cg(Z � pi) ≥ pi − d)}.

• P 6= ∅ and contains only 2-randoms!
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Every 2-random is CEA

• Theorem (Kurtz) plus Kautz

observation.

Suppose that A is 2-random. Then A

is CEA.

• That is, there is a X with X <T A

and A being ΣX
1 .

• We build Ξ so that ΞA = X on a set

of postive measure.

• µ({A : Ξ(A) total and

Ξ(A) 6≤T A}) ≥ 1
4 , andA is c.e. in

Ξ(A) whenever Ξ(A) is total.
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• To make A c.e. in Ξ(A), n ∈ A iff

∃m(〈n,m〉 ∈ Ξ(A)).

• Requirements: Re : A 6= Φ
Ξ(A)
e .

• Need to notion of acceptable strings
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Acceptable strings

• ξ is acceptable for a string σ iff

ξ(〈m,n〉) = 1 → σ(n) = 1.

• We make A c.e. in ΞA. Thus we will

always require that Ξσ[s] is

acceptable.

• (Notation) We will also try, whenever

possible, to use ξ to represent string

in the range of Ξ[s].
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The Problem

• It is very difficult for us to force

A 6= Φ
Ξ(A)
e .

• It is our opponent who controls Φe.

• In some sense we can monitor what

the opponent tries to do. Kurtz’

strategy is based around this idea.
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Kurtz’s Idea

• We will inductively be working above

some string β, to which Kurtz assigns

a state via a colour bluee.

• bluee means we are currently

“happy”(do be described!)

• We consider Re in the cone [β] for

now. The argument is actually

infinitary.

• We don’t define (perhaps forever,

again) Ξ on some cone of small

measure in the cone [β].
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• Ξσ will be defined for σ extending

β1e+2, should it be possible for us to

actually perform some kind of

diagonalization.

• This testing is signalled by state rede.

• While we wait: work in

[ν1], . . . , [ν2(e+2)−1] (length e + 2

extensions of β)

• Give these colour yellowe. Only will

define Ξτ for νi � τ , for now.
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ρ = β1(e+2)

red
e

blue
e

e
yellowall

β

ν1 ν2(e+2)−1

ν2(e+2)−2

Figure 2: Re’s basic module
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Purplee

• The construction will be defining Ξσ

for various θ extending νi in the cone

[β].

• Under what circumstances would a

string θ look bad from Re’s point of

view?

• It would look bad if it looked like the

initial segment of a real α with

Φ
Ξ(α)
e = α.
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• We say that a string θ is threatening

a requirement Re is there is a yellowe

strings ν extending its bluee

predecessor β with ν � θ, and a

strings ξ acceptable to θ such that

(i) |θ| ≤ s

(ii) |ξ| = s

(iii) Ξν [s] � ξ

(iv) Φξ
e(k) = ν(k) = 0[s] for some k such

that |β| < k ≤ |ν|, and

(v) no initial segment of θ has colour

purplee (a minimality requirement).
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• θ which is threatening Re colour

purplee. While this situation holds,

we will not define Ξ on any extension

of θ.
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Too much purplee

• Maybe: β, the measure of the strings

coloured rede (namely 2−(|β|+e+2))

plus the measure of purplee strings

remains small enough.

• So Re’s injury to defining Ξ is small

in [β].

• The Re is met and β1(e+2) tells us so.
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• νi are chosen so that they each differ

from 1e+2 in at least one place where

they are a 0. Let ρ = β1e+2.

• By (iv) of “threatening” for such ξ,

for some k with ρ(k) = 1 we must

have Φξ
e(k) = ν(k) = 0 6= ρ(k) = 1, by

fact that ρ = β1e+2.

• Hence, if we define Ξα on extensions

α of ρ to emulate Ξν , then it cannot

be that ΦΞα

e = α as it must be wrong

on ρ.
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• If θ is purplee, let θ′ denote the

unique string of length |θ| extending

the rede string ρ with θ(m) = θ′(m)

for all n ≥ |ρ|.

• When the density of purplee strings

above the bluee string β exceeds

2−(e+3), there must be some yellowe

string ν such that the density of

purplee strings above ν must also

exceed 2−(e+3), by the Lebesgue

Density Theorem.
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• Let {θ1, . . . , θn} list the purplee

strings above ν

• For θi, let ξi be the least string which

witnesses the threat to Re
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• Then we know:

(i) ξi is acceptable for θi, (and for ρ),

(ii) Ξν � ξi, and

(iii) Φξi

e (k) = 0 = θi(k) for some k with

ρ(k) = 1.

• We can win Re in the cone above ρ,

and on a set of large measure.
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Greene

• Define Ξ to mimic the action of Ξ on

the θi above ν, so that Ξν [s] = Ξρ[s].

The action is that

(a) Any string extending β loses its

colour.

(b) β loses colour bluee.

(c) Each string θ′i is given colour

greene.

(d) We define Ξθ′

i = ξi, which will

then force Φξi

e (k) 6= θ′(k) for some

k with |β| < k ≤ |ν|.

• Greene is best of all (and saves

whales)
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Ξ

of ”large”measure
epurple

θ′1 θ′2 θ′n θ1 θ2 θn

agree

all green e
defined to
with the θi

β

η

ρ = β1(e+2)

ν(j) 6= ρ(j) = 1

here

Figure 3: Re’s acts under purplee pressure
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• Each time we are forced to use the

rede string ρ, we are guaranteed to

succeed on set of measure at least

2−(e+5) above β

• With a “catch up stage” for the

acceptability of the ξ, we then

replicate this e module on the

boundary.

• Notice {XiA is total } is a Π0
2 class of

positive measure, and hence

2-randomness is enough.
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1-Generic degrees

• Recall that A is n-generic iff for all

Σ0
n sets of strings S, either there is a

σ ≺ A with σ ∈ S, or there is a σ ≺ A

such that, for any τ ∈ S, σ 6� τ .

• Corollary (Kurtz) Every 2-random

real bounds a 1-generic one.

• This follows from

• Folklore Suppose that A is CEA(B)

with B <T A. Then A bounds a

1-generic degree.
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• This is Shore’s proof:

• A = ∪sAs B-computable

enumeration. and let

c(n) = µs(As � n = A � n).

• Let Ve denote the e-th c.e. set of

strings

• Construction: Gs+1 = Gs unless (for

some least e) we see some extension

γ ∈ Ve,c(s+1) with Gs ≺ γ. In this

latter case, let Gs+1 = γ.
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• Suppose G is not 1-generic. Claim

A ≤T B.

• Suppose G is dense in Ve and not

meeting it. Suppose e now has

priority.

• To compute c, assume that Gs is

known. Compute a minimal stage t

such that some extension γs of Gs

occurs in Ve,t. The it must be that

t > c(s + 1), lest we would act for e.

This allows us to compute c(s + 1),

and hence Gs+1.
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More 1-Generic degrees

• Kurtz used the risking measure

method to prove the following

remarkable result.

• Recall a class C of degrees is

downward dense below a degree a iff

for all nonzero b < a there is a

degree c ≤ b with c ∈ C.

• Theorem The 1-generic degrees are

downward dense below any 2-random

degree.
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• The proof uses an idea akin to that

of the CEA proof for 1-genericity.

• One key ingredient is the fact

(Lecture 4) that if ΦA is

noncomputable, then the cone of

reals Turing above ΦA has measure 0.

• This allows for “low measure noise”in

the construction of ΞΦA

.

• But, sometimes ΦA is computable,

and this must be dealt with another

way.

• The proof is either “elegant” or

“horrible” depending on your

outlook.
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Analogs

• Actually there are a number of

analogs that can be pursued here.

• For example, Yu Liang has proven a

analog of van Lambalgen’s Theorem:

x ⊕ z is n-generic iff x is n-z-generic

and z is n-generic.

• We can ask if there are reals low for

1-genericity.

• Theorem (Greenberg, Miller, Yu) No.
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• One last analog: (Csima, Downey,

Greenberg, Hirschfeldt, Miller)

(i) If A is 2-generic and B is n-generic,

and for n ≥ 3, A ≤T B. Then A is

n-generic.

(ii) (MUST BE CHECKED) There is a

1-generic X ≤ Y with Y 2-generic and

X not 2-generic.
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