Algorithmic Randomness 5

Rod Downey
Victoria University
Wellington
New Zealand

Measure-Theoretical Injury

- I would like to discuss some relatively poorly known (and sometimes re-proven) theorems of especially Stuart Kurtz using interesting arguments, I call measure-theoretical injury.
- We will need from Lecture 3 the 0-1 Laws

Effective 0-1 Laws

- Lemma (Kučera-Kautz) Let $n \geq 1$. Let T be a Π_{n}^{D} class of positive measure. Then T contains a member of every $D-n$-random degree.
- We will need this especially for $D=\emptyset^{\prime}$, so that it reads
- Every Π_{2}^{0} class of positive measure contains members of every 2 -random degree.

Martin's Theorem

- Recall that a degree \boldsymbol{a} is called hyperimmune if there is a function computable from \boldsymbol{a} not majorized by any computable function.
- We have seen that there are hyperimmune-free randomns.
- Are typical randoms hyperimmune?
- (Martin's Theorem) Suppose that \boldsymbol{a} is 2-random. Then \boldsymbol{a} is hyperimmune.
- Claimed by Kautz to hold for weakly 2-randoms, but every Kurtz random hyperimmune free degree is also weakly 2 -random by Lecture 3 . (Recall if $A \in \cap_{n} U_{n}$, then enumerate enough till A occurs and use majorization.)

The Paris-Martin Method

- The Proof:
- "risking measure": failing on some small measure.
- By 0-1 Law: $\mu(\{A: A$ bounds a hyperimmune degree $\})>0$. (Exact calculation later)
- We define partial computable functional Ξ so that
- $\mu\left(\left\{A: \Xi^{A}\right.\right.$ is total and not dominated by any computable function $\} \geq \frac{1}{2}$.
- We consider here Ξ as a continous partial computable partial functional from strings to strings.
- Requirements $R_{e}: \varphi_{e}$ total \rightarrow
Ξ^{A} is not majorized by φ_{e}.
- Suppose that we knew whether φ_{e} was total.
- Then we do this: Begin with R_{0} at λ.
- φ_{0} was not total, do nothing. Move on to R_{1}
- φ_{0} total, pick witness n_{0}, compute $\varphi_{0}\left(n_{0}\right)$ and then set
$\Xi^{\lambda}\left(n_{0}\right)=\varphi_{0}\left(n_{0}\right)+1$.
- Then φ_{0} cannot majorize Ξ^{A} for any A.
- Then use a new witness for R_{1} etc.
- However, even for a witness n_{0}, we can't decide if $\varphi_{0}\left(n_{0}\right) \downarrow[s]$
- The solution: The idea then is to try to implement this process in such a way that should we fail to meet some R_{e} then the overall cost (in terms of measure) will be small. (Here small will be $2^{-(e+2)}$.)
- For R_{0} alone.
- Pick 4 arenas: [00], [01], [10], [11].
- Initially (and perhaps forever) R_{0} only deals with [00]. The other requirements will have the arena $\overline{[00]}$ for their pleasure.
- Pick a witness $n_{0}=n_{0}^{00}$ for [00] and R_{0}.
- Don't define $\Xi^{\sigma}\left(n_{0}\right)$ for any σ extending 00 unless $\varphi_{0}\left(n_{0}^{00}\right) \downarrow[s]$.
- Should such an s occur, define
$\Xi^{00}\left(n_{0}\right)=\varphi_{0}\left(n_{0}\right)+1$.
- And then R_{0} releases control of [00], since now it is met there. The point is that now for any strings σ extending $00, \Xi^{\sigma}\left(n_{0}\right)=\varphi_{0}\left(n_{0}\right)+1$.
- If we fail to define Ξ^{00}, then n_{0}^{00} is a witness to the fact that φ_{0} is not total, and don't define Ξ on a cone of measure at most $\frac{1}{4}$. But R_{0} is met globally.
- Now whilst we are devoting [00] to testing R_{0}, we cannot stop Ξ^{ν} being defined for strings not extending 00 .
- Thus, for instance, by the stage s that we get to define
$\Xi^{00}\left(n_{0}\right) \downarrow[s]=\varphi\left(n_{0}\right)+1$, we might well have defined $\Xi^{\sigma}(m)$ for various σ extending 01.
- Now, we meet R_{0} in the cone [01] (and then [10], then [11], always risking 2^{-2} each time). Thus R_{1} will assert control of [01]
- R_{0} asserts control of all xtensions of 01 of length s. There will be 2^{s-2} such extensions $\nu_{1} \ldots \nu_{2^{s-2}}$ and note that

$$
\sum_{i \leq i \leq 2^{s-2}} 2^{-\left|\nu_{i}\right|}=2^{-2}
$$

- Pick a new large n_{0}^{01} which will serve for all of the ν_{i} 's.

Figure 1: R_{0} changes to the next cone

- Now if we ever see a stage $t>s$ such that $\varphi_{0}\left(n_{0}^{01}\right) \downarrow[t]$, we will be free to define $\Xi^{\nu_{i}}\left(n_{0}^{01}\right) \downarrow[t]=\varphi_{0}\left(n_{0}^{01}\right)+1$, for all ν_{i} simultaneously.
- In general, R_{e} deals with the cones $\left[\sigma_{i}\right]$ at length $e+2$.
- In this way, we see that at any stage each R_{e} has exactly $2^{-(e+2)}$ of measure risked because of it, of $R-e$ is completely met.
- Thus the overall measure where Ξ is not defined is bounded by
$\sum_{e \in \mathbb{N}} 2^{-(e+2)}=\frac{1}{2}$.

The NST Proof

- There is a very nice proof of Martin's Theorem by Nies, Stephan, and Terwijn.
- Recall from Lecture 3, A is 2-random iff for all computable time bounds g with $g(n) \geq n^{2}$,

$$
\exists d \exists^{\infty} n\left(C^{g}(A \upharpoonright n) \geq n-d\right)
$$

- Let A-computable :
$f(k)=\mu n\left[\exists p_{1}, \ldots, p_{k} \leq n\right]\left(C^{g}(A \upharpoonright\right.$
$\left.\left.p_{i}\right) \geq p_{i}-d\right)$.
- Claim f is not dominated by any computable h.
- If not, Define the Π_{1}^{0} class $P=\left\{Z: \forall k\left[\exists p_{1}, \ldots, p_{k} \leq h(k)\right]\right.$
$\left.\left(C^{g}\left(Z \upharpoonright p_{i}\right) \geq p_{i}-d\right)\right\}$.
- $P \neq \emptyset$ and contains only 2 -randoms!

Every 2-random is CEA

- Theorem (Kurtz) plus Kautz
observation.
Suppose that A is 2 -random. Then A is CEA.
- That is, there is a X with $X<_{T} A$ and A being Σ_{1}^{X}.
- We build Ξ so that $\Xi^{A}=X$ on a set of postive measure.
- $\mu(\{A: \Xi(A)$ total and
$\left.\left.\Xi(A) \not \mathbb{Z}_{T} A\right\}\right) \geq \frac{1}{4}$, and A is c.e. in
$\Xi(A)$ whenever $\Xi(A)$ is total.
- To make A c.e. in $\Xi(A), n \in A$ iff $\exists m(\langle n, m\rangle \in \Xi(A))$.
- Requirements: $R_{e}: A \neq \Phi_{e}^{\Xi(A)}$.
- Need to notion of acceptable strings

Acceptable strings

- ξ is acceptable for a string σ iff

$$
\xi(\langle m, n\rangle)=1 \rightarrow \sigma(n)=1 .
$$

- We make A c.e. in Ξ^{A}. Thus we will always require that $\Xi^{\sigma}[s]$ is acceptable.
- (Notation) We will also try, whenever possible, to use ξ to represent string in the range of $\Xi[s]$.

The Problem

- It is very difficult for $u s$ to force $A \neq \Phi_{e}^{\Xi(A)}$.
- It is our opponent who controls Φ_{e}.
- In some sense we can monitor what the opponent tries to do. Kurtz' strategy is based around this idea.

Kurtz's Idea

- We will inductively be working above some string β, to which Kurtz assigns a state via a colour blue e.
- blue $_{e}$ means we are currently "happy" (do be described!)
- We consider R_{e} in the cone $[\beta]$ for now. The argument is actually infinitary.
- We don't define (perhaps forever, again) Ξ on some cone of small measure in the cone $[\beta]$.
- Ξ^{σ} will be defined for σ extending $\beta 1^{e+2}$, should it be possible for us to actually perform some kind of diagonalization.
- This testing is signalled by state red_{e}.
- While we wait: work in
$\left[\nu_{1}\right], \ldots,\left[\nu_{2^{(e+2)}-1}\right]$ (length $e+2$ extensions of β)
- Give these colour yellow ${ }_{e}$. Only will define Ξ^{τ} for $\nu_{i} \preceq \tau$, for now.

Figure 2: R_{e} 's basic module

Purple $_{e}$

- The construction will be defining Ξ^{σ} for various θ extending ν_{i} in the cone $[\beta]$.
- Under what circumstances would a string θ look bad from R_{e} 's point of view?
- It would look bad if it looked like the initial segment of a real α with $\Phi_{e}^{\Xi(\alpha)}=\alpha$.
- We say that a string θ is threatening a requirement R_{e} is there is a yellow e strings ν extending its blue e_{e} predecessor β with $\nu \preceq \theta$, and a strings ξ acceptable to θ such that
(i) $|\theta| \leq s$
(ii) $|\xi|=s$
(iii) $\Xi^{\nu}[s] \preceq \xi$
(iv) $\Phi_{e}^{\xi}(k)=\nu(k)=0[s]$ for some k such that $|\beta|<k \leq|\nu|$, and
(v) no initial segment of θ has colour purple $_{e}$ (a minimality requirement).
- θ which is threatening R_{e} colour purple e_{e}. While this situation holds, we will not define Ξ on any extension of θ.

Too much purple e_{e}

- Maybe: β, the measure of the strings coloured red_{e} (namely $2^{-(|\beta|+e+2)}$) plus the measure of purple e_{e} strings remains small enough.
- So R_{e} 's injury to defining Ξ is small in $[\beta]$.
- The R_{e} is met and $\beta 1^{(e+2)}$ tells us so.
- ν_{i} are chosen so that they each differ from 1^{e+2} in at least one place where they are a 0 . Let $\rho=\beta 1^{e+2}$.
- By (iv) of "threatening" for such ξ, for some k with $\rho(k)=1$ we must have $\Phi_{e}^{\xi}(k)=\nu(k)=0 \neq \rho(k)=1$, by fact that $\rho=\beta 1^{e+2}$.
- Hence, if we define Ξ^{α} on extensions α of ρ to emulate Ξ^{ν}, then it cannot be that $\Phi_{e}^{\Xi^{\alpha}}=\alpha$ as it must be wrong on ρ.
- If θ is purple e_{e}, let θ^{\prime} denote the unique string of length $|\theta|$ extending the red_{e} string ρ with $\theta(m)=\theta^{\prime}(m)$ for all $n \geq|\rho|$.
- When the density of purple $_{e}$ strings above the blue e string β exceeds $2^{-(e+3)}$, there must be some yellow e string ν such that the density of purple $_{e}$ strings above ν must also exceed $2^{-(e+3)}$, by the Lebesgue Density Theorem.
- Let $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ list the purple $_{e}$ strings above ν
- For θ_{i}, let ξ_{i} be the least string which witnesses the threat to R_{e}
- Then we know:
(i) ξ_{i} is acceptable for $\theta_{i},($ and for $\rho)$,
(ii) $\Xi^{\nu} \preceq \xi_{i}$, and
(iii) $\Phi_{e}^{\xi_{i}}(k)=0=\theta_{i}(k)$ for some k with $\rho(k)=1$.
- We can win R_{e} in the cone above ρ, and on a set of large measure.

Green $_{e}$

- Define Ξ to mimic the action of Ξ on the θ_{i} above ν, so that $\Xi^{\nu}[s]=\Xi^{\rho}[s]$. The action is that
(a) Any string extending β loses its colour.
(b) β loses colour blue ${ }_{e}$.
(c) Each string θ_{i}^{\prime} is given colour green $_{e}$.
(d) We define $\Xi^{\theta_{i}^{\prime}}=\xi_{i}$, which will then force $\Phi_{e}^{\xi_{i}}(k) \neq \theta^{\prime}(k)$ for some k with $|\beta|<k \leq|\nu|$.
- Green $_{e}$ is best of all (and saves whales)

Figure 3: R_{e} 's acts under purple e pressure

- Each time we are forced to use the red_{e} string ρ, we are guaranteed to succeed on set of measure at least $2^{-(e+5)}$ above β
- With a "catch up stage" for the acceptability of the ξ, we then replicate this e module on the boundary.
- Notice $\left\{X i^{A}\right.$ is total $\}$ is a Π_{2}^{0} class of positive measure, and hence 2 -randomness is enough.

1-Generic degrees

- Recall that A is n-generic iff for all Σ_{n}^{0} sets of strings S, either there is a $\sigma \prec A$ with $\sigma \in S$, or there is a $\sigma \prec A$ such that, for any $\tau \in S, \sigma \npreceq \tau$.
- Corollary (Kurtz) Every 2-random real bounds a 1-generic one.
- This follows from
- Folklore Suppose that A is $\operatorname{CEA}(B)$ with $B<_{T} A$. Then A bounds a 1-generic degree.
- This is Shore's proof:
- $A=\cup_{s} A_{s} B$-computable enumeration. and let $c(n)=\mu s\left(A_{s} \upharpoonright n=A \upharpoonright n\right)$.
- Let V_{e} denote the e-th c.e. set of strings
- Construction: $G_{s+1}=G_{s}$ unless (for some least e) we see some extension $\gamma \in V_{e, c(s+1)}$ with $G_{s} \prec \gamma$. In this latter case, let $G_{s+1}=\gamma$.
- Suppose G is not 1-generic. Claim $A \leq_{T} B$.
- Suppose G is dense in V_{e} and not meeting it. Suppose e now has priority.
- To compute c, assume that G_{s} is known. Compute a minimal stage t such that some extension γ_{s} of G_{s} occurs in $V_{e, t}$. The it must be that $t>c(s+1)$, lest we would act for e. This allows us to compute $c(s+1)$, and hence G_{s+1}.

More 1-Generic degrees

- Kurtz used the risking measure method to prove the following remarkable result.
- Recall a class \mathcal{C} of degrees is downward dense below a degree \boldsymbol{a} iff for all nonzero $\boldsymbol{b}<\boldsymbol{a}$ there is a degree $\boldsymbol{c} \leq \boldsymbol{b}$ with $\boldsymbol{c} \in \mathcal{C}$.
- Theorem The 1-generic degrees are downward dense below any 2-random degree.
- The proof uses an idea akin to that of the CEA proof for 1-genericity.
- One key ingredient is the fact (Lecture 4) that if Φ^{A} is noncomputable, then the cone of reals Turing above Φ^{A} has measure 0 .
- This allows for "low measure noise" in the construction of $\Xi^{\Phi^{A}}$.
- But, sometimes Φ^{A} is computable, and this must be dealt with another way.
- The proof is either "elegant" or "horrible" depending on your outlook.

Analogs

- Actually there are a number of analogs that can be pursued here.
- For example, Yu Liang has proven a analog of van Lambalgen's Theorem: $x \oplus z$ is n-generic iff x is n-z-generic and z is n-generic.
- We can ask if there are reals low for 1-genericity.
- Theorem (Greenberg, Miller, Yu) No.
- One last analog: (Csima, Downey, Greenberg, Hirschfeldt, Miller)
(i) If A is 2-generic and B is n-generic, and for $n \geq 3, A \leq_{T} B$. Then A is n-generic.
(ii) (MUST BE CHECKED) There is a 1-generic $X \leq Y$ with Y 2-generic and X not 2-generic.

