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‘ Measure-Theoretical Injury I

e [ would like to discuss some relatively

poorly known (and sometimes
re-proven) theorems of especially
Stuart Kurtz using interesting
arguments, I call measure-theoretical

Injury.

e We will need from Lecture 3 the 0-1

\_

Laws
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‘Effective 0-1 Laws'

e Lemma (Kucera-Kautz) Let n > 1.

Let T be a IT? class of positive
measure. Then 7' contains a member

of every D — n—random degree.

e We will need this especially for
D =/, so that it reads

e Every IIY class of positive measure
contains members of every 2-random

degree.
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‘ Martin’s Theorem '

e Recall that a degree a is called
hyperimmune if there is a function
computable from a not majorized by

any computable function.

e We have seen that there are

hyperimmune-free randomns.

e Are typical randoms hyperimmune?
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(Martin’s Theorem) Suppose that a
i1s 2-random. Then a is

hyperimmune.

Claimed by Kautz to hold for weakly
2-randoms, but every Kurtz random
hyperimmune free degree is also
weakly 2-random by Lecture 3.
(Recall if A € N, U, then enumerate
enough till A occurs and use

majorization.)




/‘ The Paris-Martin Method I\

The Prootf:

“risking measure”: failing on some

small measure.

By 0-1 Law: u({A : A bounds a
hyperimmune degree }) > 0. (Exact

calculation later)

We define partial computable

functional = so that

n({A : 24 is total and not dominated
: 1
by any computable function } > 3.

We consider here = as a continous

partial computable partial functional
from strings to strings. /
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Requirements R, : @, total —

=4 is not majorized by ¢..

Suppose that we knew whether ¢,
was total.

Then we do this: Begin with Ry at A.

g was not total, do nothing. Move

on to Ry

o total, pick witness ng, compute
©wo(ng) and then set

=M (no) = wo(no) + 1.

Then ¢ cannot majorize =4 for any

A.

Then use a new witness for R etc.
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e However, even for a witness ng, we

can’t decide if pg(ng) | [s]

e The solution: The idea then is to try
to implement this process in such a
way that should we fail to meet some
R, then the overall cost (in terms of

measure) will be small. (Here small
will be 27(¢+2) )
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e For R, alone.
e Pick 4 arenas: [00], [01],[10], [11].

e Initially (and perhaps forever) R
only deals with [00]. The other

requirements will have the arena [00]

for their pleasure.




Pick a witness ng = ng° for [00] and\
Ry.

Don’t define Z7 (ng) for any o
extending 00 unless ©o(ny’) | [s].

Should such an s occur, define
=" (no) = ¢o(no) + 1.

And then R releases control of [00],
since now it is met there. The point
is that now for any strings o
extending 00, Z7(ng) = @o(ng) + 1.

If we fail to define Z%°, then ny’ is a
witness to the fact that ¢g is not
total, and don’t define = on a cone of

measure at most i. But Ry 1s met

globally. /
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e Now whilst we are devoting [00] to

testing Ry, we cannot stop =¥ being

defined for strings not extending 00.

Thus, for instance, by the stage s
that we get to define

=9(ng) | [s] = ¢(ng) + 1, we might
well have defined =7 (m) for various o

extending 0O1.

/
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e Now, we meet Ry in the cone [01]

(and then [10], then [11], always
risking 272 each time). Thus R; will

assert control of [01]

Ry asserts control of all xtensions of
01 of length s. There will be 2572
such extensions v ...Vss—2 and note
that

» o 2l=272

i<i< 252

Pick a new large ng' which will serve

for all of the v;’s.

/
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V2 Vo(s—2)

\_

11

Ry
asserts
control of
01]

Figure 1: Ry changes to the next cone

/
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Now if we ever see a stage t > s such
that oo(ngl) | [t], we will be free to
define 2% (ngt) | [t] = po(ngt) + 1,

for all v; simultaneously.

In general, R, deals with the cones
lo;] at length e + 2.

In this way, we see that at any stage
each R, has exactly 27(¢+2) of
measure risked because of it, of R — e

is completely met.

Thus the overall measure where = is
not defined is bounded by

—(e+2) __ 1
ZGGNQ (+)_§'

/

14



/

\_

e There is a very nice proof of Martin’s

e Recall from Lecture 3, A is 2-random

e Let A-computable :

e Claim f is not dominated by any

‘The NST Proof' \

Theorem by Nies, Stephan, and

Terwijn.

iff for all computable time bounds g
with g(n) > n?,

Ad3A*°n(CI(A [ n) > n—d).

f(k) = pn[Ip1,...,pr <n(CI(A]
pi) = pi —d).

computable h. /
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e If not, Define the IIY class
P={Z :Vk[3p1,...,pr < h(k)]
(C9UZ [ pi) = pi —d)}.

e P +# () and contains only 2-randoms!
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‘Every 2-random 1is CEAI

Theorem (Kurtz) plus Kautz
observation.

Suppose that A is 2-random. Then A
is CEA.

That is, there is a X with X <r A
and A being 35F.

We build = so that =4 = X on a set

of postive measure.

u({A : Z(A) total and
=(A) €1 A}) > %, andA is c.e. in
=(A) whenever Z(A) is total.

/
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e To make A c.e. in =(A), n € A iff
Idm((n,m) € Z(A)).

e Requirements: R, : A # o=,

e Need to notion of acceptable strings
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‘ Acceptable strings I

e £ is acceptable for a string o ift

§((m,n)) =1—o(n)=1.

e We make A c.e. in Z. Thus we will
always require that =7]s] is

acceptable.

e (Notation) We will also try, whenever
possible, to use & to represent string

in the range of =|s].

\_ /
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‘ The Problem '

e It is very difficult for us to force

A+ =W,

e It is our opponent who controls ®..

e In some sense we can monitor what

\_

the opponent tries to do. Kurtz’

strategy is based around this idea.
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‘ Kurtz’s Idea '

We will inductively be working above
some string 3, to which Kurtz assigns

a state via a colour blue,.

blue, means we are currently
“happy” (do be described!)

We consider R, in the cone [3] for
now. The argument is actually
infinitary.

We don’t define (perhaps forever,
again) Z on some cone of small

measure in the cone [3].

/
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e =7 will be defined for o extending
31172 should it be possible for us to
actually perform some kind of

diagonalization.
e This testing is signalled by state red..

e While we wait: work in

1], ..o [Vacer2y 1] (length e + 2
extensions of (3)

e Give these colour yellow.. Only will

define =7 for v; < 7, for now.

\_ /
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V2(e,+2)_2
1 Vo(e+2)_q

red
e

blue
e

Figure 2: R.’s basic module
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e The construction will be defining =Z¢

e Under what circumstances would a

e It would look bad if it looked like the

~

Purple, I

for various 6 extending v; in the cone

5l

string 6 look bad from R.’s point of

view?

initial segment of a real a with

<I>§<a) = (.

/
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e We say that a string 6 is threatening

~

a requirement R, is there is a yellow,
strings v extending its blue,
predecessor § with v < 6, and a

strings & acceptable to 6 such that

(i) 18] <s
(i) [¢] = s
(iii) =¥[s] 2 &
(iv) ®5(k) = v(k) = 0[s] for some k such

that |3| < k < |v|, and

(v) no initial segment of 6 has colour

purple. (a minimality requirement).

/
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e O which is threatening R, colour
purple.. While this situation holds,
we will not define = on any extension

of 6.
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‘Too much purpleel

e Maybe: (3, the measure of the strings

coloured red. (namely 2~ (8l+e+2))

plus the measure of purple, strings

remains small enough.

e So R.’s injury to defining = is small

in [3].

e The R, is met and B1(¢12) tells us so.

\_

/
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e 1, are chosen so that they each differ
from 1°72 in at least one place where

they are a 0. Let p = 51612,

e By (iv) of “threatening” for such &,
for some k with p(k) = 1 we must
have ®5(k) = v(k) = 0 # p(k) = 1, by
fact that p = f1¢72.

e Hence, if we define =% on extensions
a of p to emulate =¥, then it cannot
be that =" = « as it must be wrong

on p.

\_ /
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e If 0 is purple,, let 8’ denote the

unique string of length |f| extending
the red, string p with 6(m) = 6'(m)
for all n > |p|.

When the density of purple. strings
above the blue. string (3 exceeds
2—(e+3) there must be some yellow,
string v such that the density of
purple, strings above v must also
exceed 27(¢T3) by the Lebesgue
Density Theorem.

29



o Let {01,...,0,} list the purple,

strings above v

e For 0;, let &; be the least string which

witnesses the threat to R,

30
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e Then we know:

(i) & is acceptable for 6;, (and for p),
(ii) =¥ =< &;, and
(iii) ®%i (k) =0 = 0;(k) for some k with
p(k) = 1.

e We can win R, in the cone above p,

and on a set of large measure.

31
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e Define = to mimic the action of = on
the 6; above v, so that Z¥[s] = Z°[s].

The action is that

(a) Any string extending [ loses its
colour.

(b) (3 loses colour blue,.

(c) Each string 6’ is given colour
greens.

(d) We define 2% = ¢;, which will
then force ®%i (k) # 0'(k) for some
k with |B] < k < |v].

e Green, is best of all (and saves

\ whales) /
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all green g

=  defined to purpleg
agree with the 6; of "large” measure

01 0 o 0, 0y 0,

v(j) # p(G) =1

here

8

Figure 3: R.’s acts under purple, pressure

\_
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e Each time we are forced to use the

red. string p, we are guaranteed to

succeed on set of measure at least
2—(e+5) above 3

e With a “catch up stage” for the

acceptability of the &, we then
replicate this e module on the

boundary.

Notice {Xi4 is total } is a II9 class of
positive measure, and hence

2-randomness is enough.

/
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‘ 1-Generic degrees I

e Recall that A is n-generic iff for all

>V sets of strings S, either there is a
o <Awitho €5, orthereisaoc < A
such that, for any 7 € S, 0 A 7.

e Corollary (Kurtz) Every 2-random

real bounds a 1-generic one.

e This follows from

e Folklore Suppose that A is CEA(B)
with B <7 A. Then A bounds a

1-generic degree.

\_ /
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This is Shore’s proof:

A =U;A, B-computable
enumeration. and let

C(n) — :LLS(AS n=A fn)

Let V. denote the e-th c.e. set of

strings

Construction: G411 = G unless (for
some least €) we see some extension
Y € Ve e(s+1) With G5 <. In this
latter case, let G111 = 7.

/
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e Suppose G is not 1-generic. Claim

A <r B.

Suppose G is dense in V, and not
meeting it. Suppose e now has

priority.

To compute ¢, assume that G is
known. Compute a minimal stage ¢
such that some extension v5 of G

occurs in V. ;. The it must be that

t > c(s+ 1), lest we would act for e.

This allows us to compute c(s + 1),

and hence G4, 1.

~

/
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‘More 1-(Gzeneric degrees'

e Kurtz used the risking measure

method to prove the following
remarkable result.

e Recall a class C of degrees is
downward dense below a degree a iff
for all nonzero b < a there is a
degree ¢ < b with ¢ € C.

e Theorem The 1-generic degrees are
downward dense below any 2-random
degree.

\_ /
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The proof uses an idea akin to that

of the CEA proof for 1-genericity.

One key ingredient is the fact
(Lecture 4) that if ®4 is
noncomputable, then the cone of

reals Turing above ®“ has measure 0.

This allows for “low measure noise”’in

. _BA
the construction of =2 .

But, sometimes ®4 is computable,
and this must be dealt with another

way.

The proof is either “elegant” or
“horrible” depending on your

outlook.

/
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‘ Analogs I

Actually there are a number of

analogs that can be pursued here.

For example, Yu Liang has proven a
analog of van Lambalgen’s Theorem:
x D z is n-generic iff x is n-z-generic

and z 1S n-generic.

We can ask if there are reals low for

1-genericity.

Theorem (Greenberg, Miller, Yu) No.

/
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e One last analog: (Csima, Downey,
Greenberg, Hirschfeldt, Miller)

(i) If A is 2-generic and B is n-generic,
and for n > 3, A <pr B. Then A is

n-generic.

(ii) (MUST BE CHECKED) There is a
I-generic X <Y with Y 2-generic af
X not 2-generic.

d

\_ /
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