Algorithmic Randomness 5

Rod Downey

Victoria University

Wellington

New Zealand

Measure-Theoretical Injury

- I would like to discuss some relatively poorly known (and sometimes re-proven) theorems of especially Stuart Kurtz using interesting arguments, I call measure-theoretical injury.
- We will need from Lecture 3 the 0-1 Laws

Effective 0-1 Laws

- Lemma (Kučera-Kautz) Let $n \ge 1$. Let T be a Π_n^D class of positive measure. Then T contains a member of every D - n-random degree.
- We will need this especially for $D = \emptyset'$, so that it reads
- Every Π₂⁰ class of positive measure contains members of every 2-random degree.

Martin's Theorem

- Recall that a degree *a* is called hyperimmune if there is a function computable from *a* not majorized by any computable function.
- We have seen that there are hyperimmune-free randomns.
- Are typical randoms hyperimmune?

- (Martin's Theorem) Suppose that *a* is 2-random. Then *a* is hyperimmune.
- Claimed by Kautz to hold for weakly 2-randoms, but every Kurtz random hyperimmune free degree is also weakly 2-random by Lecture 3. (Recall if A ∈ ∩_nU_n, then enumerate enough till A occurs and use majorization.)

The Paris-Martin Method

- The Proof:
- "risking measure": failing on some small measure.
- By 0-1 Law: μ({A : A bounds a hyperimmune degree }) > 0. (Exact calculation later)
- We define partial computable functional Ξ so that
- $\mu(\{A: \Xi^A \text{ is total and not dominated} by any computable function } \geq \frac{1}{2}.$
- We consider here Ξ as a continous partial computable partial functional from strings to strings.

- Requirements $R_e : \varphi_e$ total $\rightarrow \Xi^A$ is not majorized by φ_e .
- Suppose that we *knew* whether φ_e was total.
- Then we do this: Begin with R_0 at λ .
- φ_0 was not total, do nothing. Move on to R_1
- φ_0 total, pick witness n_0 , compute $\varphi_0(n_0)$ and then set $\Xi^{\lambda}(n_0) = \varphi_0(n_0) + 1.$
- Then φ_0 cannot majorize Ξ^A for any A.
- Then use a new witness for R_1 etc.

- However, even for a witness n_0 , we can't decide if $\varphi_0(n_0) \downarrow [s]$
- The solution: The idea then is to try to implement this process in such a way that should we fail to meet some R_e then the overall cost (in terms of measure) will be small. (Here small will be $2^{-(e+2)}$.)

- For R_0 alone.
- Pick 4 arenas: [00], [01], [10], [11].
- Initially (and perhaps forever) R₀
 only deals with [00]. The other
 requirements will have the arena [00]
 for their pleasure.

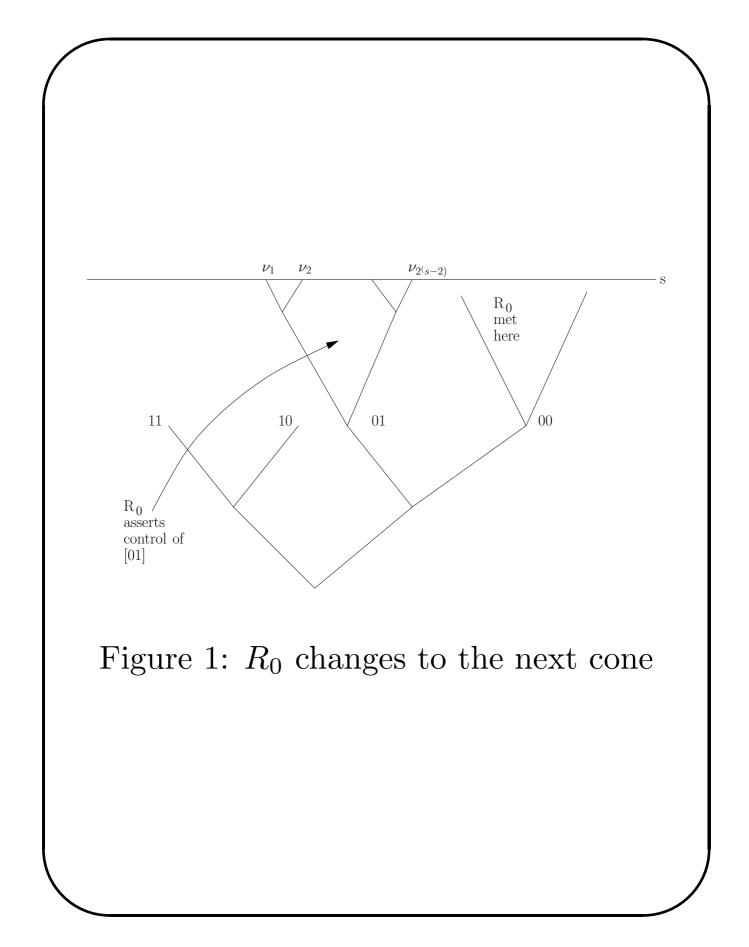
- Pick a witness $n_0 = n_0^{00}$ for [00] and R_0 .
- Don't define $\Xi^{\sigma}(n_0)$ for any σ extending 00 unless $\varphi_0(n_0^{00}) \downarrow [s]$.
- Should such an s occur, define $\Xi^{00}(n_0) = \varphi_0(n_0) + 1.$
- And then R_0 releases control of [00], since now it is *met* there. The *point* is that now for any strings σ extending $00, \Xi^{\sigma}(n_0) = \varphi_0(n_0) + 1$.
- If we *fail* to define Ξ⁰⁰, then n₀⁰⁰ is a witness to the fact that φ₀ is not total, and don't define Ξ on a cone of measure at most 1/4. But R₀ is met globally.

- Now whilst we are devoting [00] to testing R₀, we cannot stop Ξ^ν being defined for strings *not* extending 00.
- Thus, for instance, by the stage s
 that we get to define
 Ξ⁰⁰(n₀) ↓ [s] = φ(n₀) + 1, we might
 well have defined Ξ^σ(m) for various σ
 extending 01.

- Now, we meet R₀ in the cone [01] (and then [10], then [11], always risking 2⁻² each time). Thus R₁ will assert control of [01]
- R_0 asserts control of all xtensions of 01 of length s. There will be 2^{s-2} such extensions $\nu_1 \dots \nu_{2^{s-2}}$ and note that

$$\sum_{i \le i \le 2^{s-2}} 2^{-|\nu_i|} = 2^{-2}.$$

• Pick a new large n_0^{01} which will serve for *all* of the ν_i 's.



- Now if we ever see a stage t > s such that $\varphi_0(n_0^{01}) \downarrow [t]$, we will be free to define $\Xi^{\nu_i}(n_0^{01}) \downarrow [t] = \varphi_0(n_0^{01}) + 1$, for all ν_i simultaneously.
- In general, R_e deals with the cones $[\sigma_i]$ at length e + 2.
- In this way, we see that at any stage each R_e has exactly 2^{−(e+2)} of measure risked because of it, of R − e is completely met.
- Thus the overall measure where Ξ is not defined is bounded by $\sum_{e \in \mathbb{N}} 2^{-(e+2)} = \frac{1}{2}.$

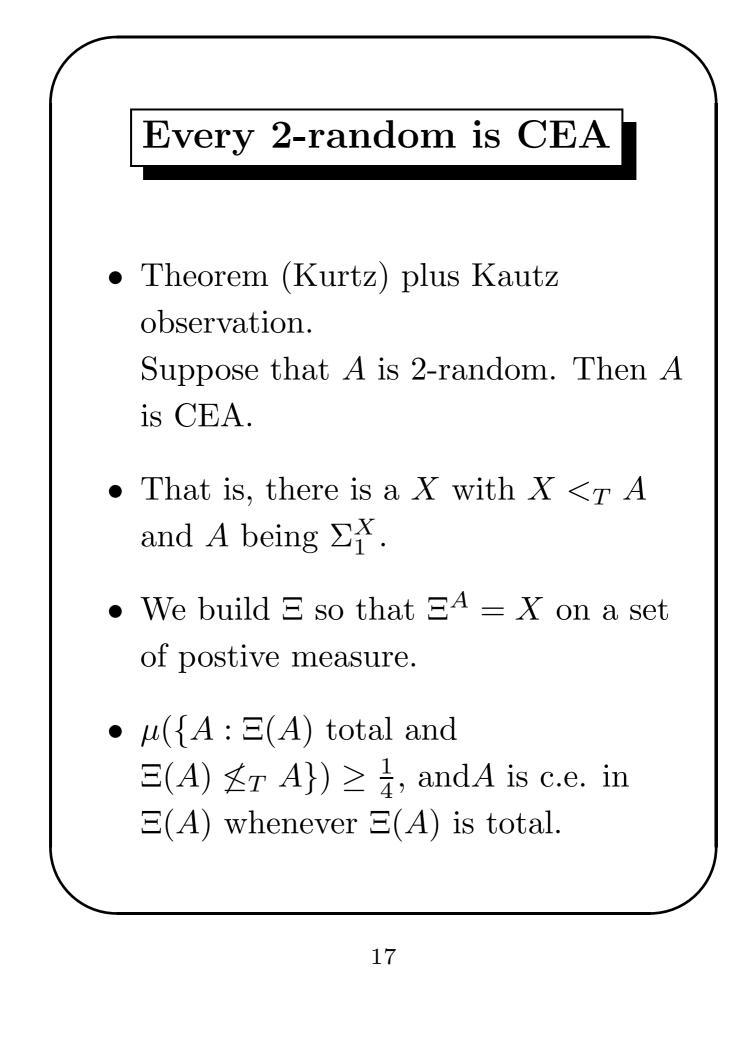
The NST Proof

- There is a very nice proof of Martin's Theorem by Nies, Stephan, and Terwijn.
- Recall from Lecture 3, A is 2-random iff for all computable time bounds gwith $g(n) \ge n^2$,

$$\exists d \exists^{\infty} n (C^g(A \upharpoonright n) \ge n - d).$$

- Let A-computable : $f(k) = \mu n[\exists p_1, \dots, p_k \leq n](C^g(A \upharpoonright p_i) \geq p_i - d).$
- Claim f is not dominated by any computable h.

- If not, Define the Π_1^0 class $P = \{Z : \forall k [\exists p_1, \dots, p_k \leq h(k)] \ (C^g(Z \upharpoonright p_i) \geq p_i - d)\}.$
- $P \neq \emptyset$ and contains only 2-randoms!



- To make A c.e. in $\Xi(A)$, $n \in A$ iff $\exists m(\langle n, m \rangle \in \Xi(A)).$
- Requirements: $R_e : A \neq \Phi_e^{\Xi(A)}$.
- Need to notion of *acceptable strings*

Acceptable strings

• ξ is *acceptable* for a string σ iff

$$\xi(\langle m, n \rangle) = 1 \to \sigma(n) = 1.$$

- We make A c.e. in Ξ^A. Thus we will always require that Ξ^σ[s] is acceptable.
- (Notation) We will also try, whenever possible, to use ξ to represent string in the range of Ξ[s].

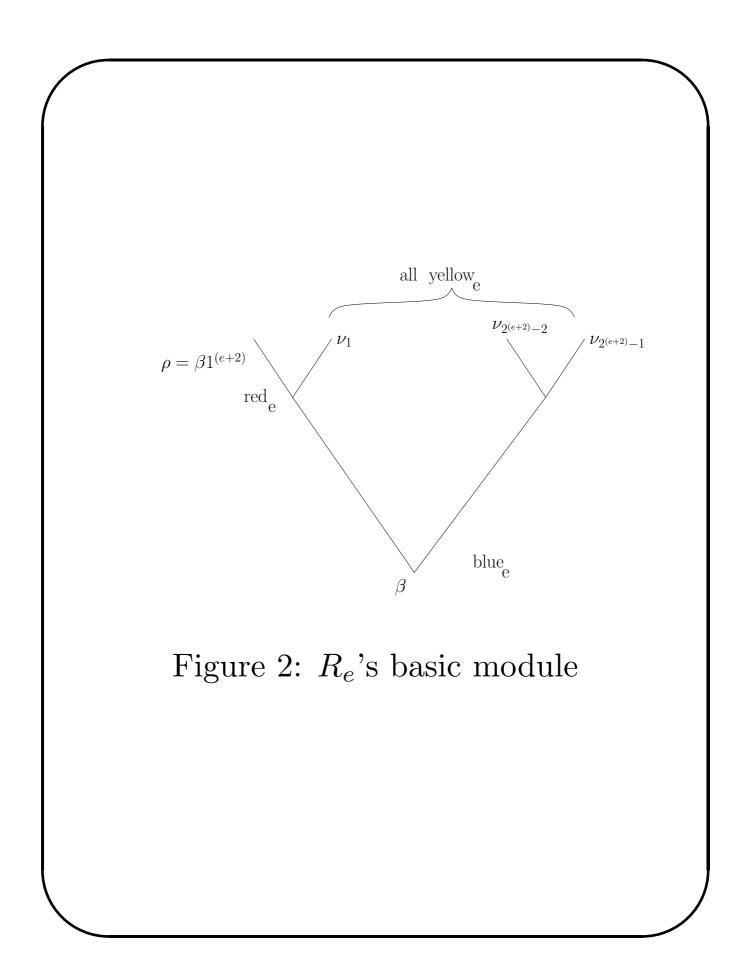
The Problem

- It is very difficult for us to force $A \neq \Phi_e^{\Xi(A)}$.
- It is our opponent who controls Φ_e .
- In some sense we can *monitor* what the opponent tries to do. Kurtz' strategy is based around this idea.

Kurtz's Idea

- We will inductively be working above some string β, to which Kurtz assigns a *state* via a colour blue_e.
- blue_e means we are currently "happy" (do be described!)
- We consider R_e in the cone [β] for now. The argument is actually infinitary.
- We don't define (perhaps forever, again) Ξ on some cone of small measure in the cone [β].

- Ξ^{σ} will be defined for σ extending $\beta 1^{e+2}$, should it be possible for us to actually perform some kind of diagonalization.
- This testing is signalled by state red_e .
- While we wait: work in $[\nu_1], \ldots, [\nu_{2^{(e+2)}-1}]$ (length e+2extensions of β)
- Give these colour yellow_e. Only will define Ξ^{τ} for $\nu_i \leq \tau$, for now.



\mathbf{Purple}_{e}

- The construction will be defining Ξ^{σ} for various θ extending ν_i in the cone $[\beta]$.
- Under what circumstances would a string θ look bad from R_e 's point of view?
- It would look bad if it looked like the initial segment of a real α with $\Phi_e^{\Xi(\alpha)} = \alpha$.

• We say that a string θ is threatening a requirement R_e is there is a yellow_e strings ν extending its blue_e predecessor β with $\nu \leq \theta$, and a strings ξ acceptable to θ such that

(i)
$$|\theta| \leq s$$

(ii)
$$|\xi| = s$$

(iii)
$$\Xi^{\nu}[s] \preceq \xi$$

- (iv) $\Phi_e^{\xi}(k) = \nu(k) = 0[s]$ for some k such that $|\beta| < k \le |\nu|$, and
 - (v) no initial segment of θ has colour purple_e (a minimality requirement).

• θ which is threatening R_e colour purple_e. While this situation holds, we will not define Ξ on any extension of θ .

Too much $purple_e$

- Maybe: β , the measure of the strings coloured red_e (namely $2^{-(|\beta|+e+2)}$) *plus* the measure of purple_e strings remains *small enough*.
- So R_e 's injury to defining Ξ is small in $[\beta]$.
- The R_e is met and $\beta 1^{(e+2)}$ tells us so.

- ν_i are chosen so that they each differ from 1^{e+2} in at least one place where they are a 0. Let $\rho = \beta 1^{e+2}$.
- By (iv) of "threatening" for such ξ , for some k with $\rho(k) = 1$ we must have $\Phi_e^{\xi}(k) = \nu(k) = 0 \neq \rho(k) = 1$, by fact that $\rho = \beta 1^{e+2}$.
- Hence, if we define Ξ^α on extensions
 α of ρ to emulate Ξ^ν, then it cannot
 be that Φ_e^{Ξ^α} = α as it must be wrong
 on ρ.

- If θ is purple_e, let θ' denote the unique string of length $|\theta|$ extending the red_e string ρ with $\theta(m) = \theta'(m)$ for all $n \ge |\rho|$.
- When the density of purple_e strings above the blue_e string β exceeds 2^{-(e+3)}, there must be some yellow_e string ν such that the density of purple_e strings above ν must also exceed 2^{-(e+3)}, by the Lebesgue Density Theorem.

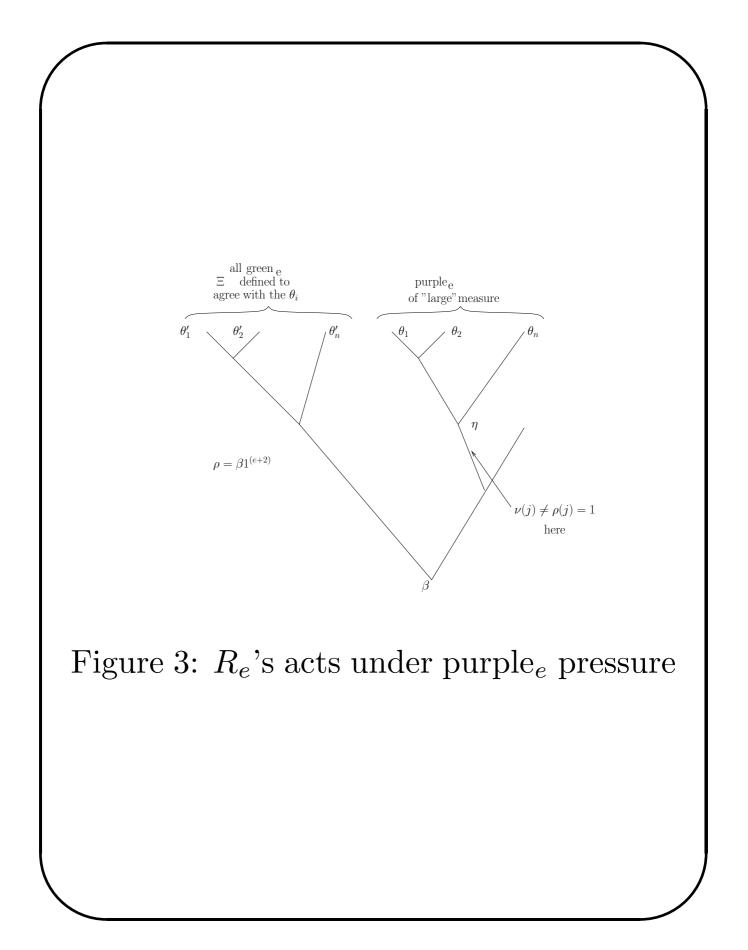
- Let $\{\theta_1, \ldots, \theta_n\}$ list the purple_e strings above ν
- For θ_i , let ξ_i be the least string which witnesses the threat to R_e

• Then we know:

- (i) ξ_i is acceptable for θ_i , (and for ρ),
- (ii) $\Xi^{\nu} \leq \xi_i$, and
- (iii) $\Phi_e^{\xi_i}(k) = 0 = \theta_i(k)$ for some k with $\rho(k) = 1$.
- We can win R_e in the cone above ρ , and on a set of large measure.

\mathbf{Green}_e

- Define Ξ to mimic the action of Ξ on the θ_i above ν, so that Ξ^ν[s] = Ξ^ρ[s]. The action is that
 - (a) Any string extending β loses its colour.
 - (b) β loses colour blue_e.
 - (c) Each string θ'_i is given colour green_e.
 - (d) We define $\Xi^{\theta'_i} = \xi_i$, which will then force $\Phi_e^{\xi_i}(k) \neq \theta'(k)$ for some k with $|\beta| < k \le |\nu|$.
- Green_e is best of all (and saves whales)



- Each time we are forced to use the red_e string ρ, we are guaranteed to succeed on set of measure at least 2^{-(e+5)} above β
- With a "catch up stage" for the acceptability of the ξ, we then replicate this e module on the boundary.
- Notice {Xi^A is total } is a Π₂⁰ class of positive measure, and hence
 2-randomness is enough.

1-Generic degrees

- Recall that A is n-generic iff for all Σ_n^0 sets of strings S, either there is a $\sigma \prec A$ with $\sigma \in S$, or there is a $\sigma \prec A$ such that, for any $\tau \in S$, $\sigma \not\preceq \tau$.
- Corollary (Kurtz) Every 2-random real bounds a 1-generic one.
- This follows from
- Folklore Suppose that A is CEA(B) with B <_T A. Then A bounds a 1-generic degree.

- This is Shore's proof:
- $A = \bigcup_s A_s$ *B*-computable enumeration. and let $c(n) = \mu s(A_s \upharpoonright n = A \upharpoonright n).$
- Let V_e denote the *e*-th c.e. set of strings
- Construction: G_{s+1} = G_s unless (for some least e) we see some extension
 γ ∈ V_{e,c(s+1)} with G_s ≺ γ. In this latter case, let G_{s+1} = γ.

- Suppose G is not 1-generic. Claim $A \leq_T B$.
- Suppose G is dense in V_e and not meeting it. Suppose e now has priority.
- To compute c, assume that G_s is known. Compute a minimal stage t such that some extension γ_s of G_s occurs in V_{e,t}. The it must be that t > c(s + 1), lest we would act for e. This allows us to compute c(s + 1), and hence G_{s+1}.

More 1-Generic degrees

- Kurtz used the risking measure method to prove the following remarkable result.
- Recall a class C of degrees is $downward \ dense$ below a degree a iff for all nonzero b < a there is a degree $c \leq b$ with $c \in C$.
- Theorem The 1-generic degrees are downward dense below any 2-random degree.

- The proof uses an idea akin to that of the CEA proof for 1-genericity.
- One key ingredient is the fact

 (Lecture 4) that if Φ^A is
 noncomputable, then the cone of
 reals Turing above Φ^A has measure 0.
- This allows for "low measure noise" in the construction of Ξ^{Φ^A} .
- But, sometimes Φ^A is computable, and this must be dealt with another way.
- The proof is either "elegant" or "horrible" depending on your outlook.

Analogs

- Actually there are a number of analogs that can be pursued here.
- For example, Yu Liang has proven a analog of van Lambalgen's Theorem: x ⊕ z is n-generic iff x is n-z-generic and z is n-generic.
- We can ask if there are reals low for 1-genericity.
- Theorem (Greenberg, Miller, Yu) No.

- One last analog: (Csima, Downey, Greenberg, Hirschfeldt, Miller)
 - (i) If A is 2-generic and B is n-generic, and for $n \ge 3$, $A \le_T B$. Then A is *n*-generic.
 - (ii) (MUST BE CHECKED) There is a 1-generic $X \leq Y$ with Y 2-generic and X not 2-generic.