
Cupping Computably Enumerable
Degrees in the Difference Hierarchy

Wu Guohua
Nanyang Technological University

http://www.ntu.edu.sg/home/guohua

– p. 1/21



D.c.e. sets and d.c.e. degrees

• A set D is d.c.e. if there are c.e. sets B and C
such that D = B − C. D is the difference of two
c.e. sets.

• A Turing degree is d.c.e. if it contains a d.c.e. set.
• Every c.e. degree is d.c.e..

• (Arslanov) Every nonzero d.c.e. degree is
cuppable.
(cf. InR, there exist noncuppable degrees.)
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Proof
• Given A (c.e. set) incomputable. We will

construct an incomplete d.c.e. set D and a
computable functional Γ such that K = ΓA,D,
where K is a fixed creative set.

R: K = ΓA,D.

Pe: E 6= ΦD
e .
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R:

R works to extend the definition of ΓA,D.

• If n enters K, and we want to rectify ΓA,D(n)
(defined as 0) at stage s, we put γ(n)[s]) (or
smaller) into D, to undefine ΓA,D(n).

• If A changes blow γ(n)[s]) after stage s, then we
can take γ(n)[s]) out of D since this A change
can undefine ΓA,D(n).
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P:

• Step 1: Choose x and k.
If K changes below k, then we start from the
beginning, except that we keep k the same.
♦ Such a refresh (or reset) procedure can

happen at most k many times.
♦ k is called a “threshold”of P .

• Step 2: Wait for ΦD(x) to converge to 0.
• Step 3: Put γ(k) into D. Go back to step 2, and

simultaneously, wait for A to change below γ(k).
• Step 4: Take γ(k) out of D and put x into E.
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Outcomes of P:

• Stop at step 2. P is satisfied.

• Reach step 4 eventually. Again, P is satisfied.

• Stop at step 3 infinitely many times. Then A is
computable, which can be called a
pseudo-outcome of P .
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Nondensity Theorem

• (Cooper, Harrington, Lachlan, Lempp and Soare)

There is a maximal incomplete d.c.e. degree.
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From nondensity to almost uni-
versal cupping

• An incomplete d.c.e. degree is almost universal
cupping if it cups each c.e. degree not below it to
0
′.

• Between almost universal cupping degree and 0
′,

there are no c.e. degrees.

• There is no d.c.e. universal cupping degree.

• Maximal incomplete degrees are almost universal
cupping.
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Theorem 1

Almost universal cupping degrees exist.
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Proof
We will construct a d.c.e. set A such that for each c.e.
set W , either A cups W to K or A computes W .

Re: K = ΓA,We

e or We = ∆
A
e .

Pe: E 6= ΦA
e .

• Compare with Arslanov’s requirements.
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Interactions between strategies

• OneR and one P .
Similar to the proof of Arslanov’s cupping
theorem. (Oracle A in ∆A seems not necessary in
this special case.)

• Consider the interactions of two P strategies.
• Two ways to get around the obstacle.

♦ Make A ω-c.e. and universal cupping (Li,
Song and Wu)

♦ Make A d.c.e. but ∆A is now necessary.
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• A nonzero c.e. degree has plus-cupping property
if any nonzero c.e. degree below it can be cupped
to 0

′.

• If c cups b to 0
′ then b is called a cupping

partner of c.

• How many cupping partners are needed in this
definition?

• Answer: infinite.
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Three alternative approaches

• (Slaman)
There are c.e. degrees a > 0,b, c, with b 6≥ c

such that b cups any nonzero c.e. degree below a

above c.

• (Slaman)
There are c.e. degrees a,b > 0 such that for any
c ≤ a, if c 6≤ b, then c ∪ b = 0

′.
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Theorem 2 (Plus-cupping for
d.c.e.)

There are a c.e. degree a > 0 and an incomplete
d.c.e. degree d such that d cups each nonzero c.e.
degree below a to 0

′.
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Proof

Qe: A 6= Φe;

Me: E 6= ΦD
e ;

Ne: We = Φ
A
e ⇒ K = ΓWe,D or We is

computable.
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Theorem 1+2

There are d.c.e. degrees a,d such that if c is a
nonzero c.e. degree below a then c ∪ d = 0

′, and
if c is a c.e. degree not below a then c ∪ a = 0

′.

• Consider the interactions of these two 0′′′
arguments.
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Compare with Li-Yi’s cupping

(Li and Yi) There are two d.c.e. degrees b,d such
that any nonzero c.e. degree cups one of them to
0
′.

R: W is computable, or W cups B to K, or W
cups D to K.

Theorem 1+2 implies Li and Yi’s cupping. Extra
properties.

Li and Yi’s cupping implies Theorem 2.
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More consequences

• Arslanov’s cupping theorem

• Downey’s diamond embedding

• N5 embedding

– p. 18/21



More consequences

• Arslanov’s cupping theorem

• Downey’s diamond embedding

• N5 embedding

– p. 18/21



More consequences

• Arslanov’s cupping theorem

• Downey’s diamond embedding

• N5 embedding

– p. 18/21



More consequences

• Arslanov’s cupping theorem

• Downey’s diamond embedding

• N5 embedding

– p. 18/21



More cupping

(1) There are intervals of d.c.e. degrees containing
exactly one c.e. degree.

(2) These c.e. degrees are dense in the high c.e.
degrees.

(3) These c.e. degrees can be low.
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Questions
• In Theorem 1+2, can we have the almost

universal cupping there maximal?

• How to define computably enumerable degrees in
the ∆0

2
degrees?
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Thank you!
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