Computability-Theoretic and Proof-Theoretic Aspects of Vaughtian Model Theory

Denis Hirschfeldt University of Chicago \bullet In this talk, all languages are computable and all structures have domain $\omega.$

 \bullet A structure ${\cal A}$ is *computable* if its atomic diagram is computable.

• \mathcal{A} is *decidable* if its elementary diagram is computable.

• These definitions can be relativized.

• In this talk, only decidability will be mentioned, but all results hold for computability as well.

Theorem (Knight). If \mathcal{A} is X-decidable and nontrivial then there is a $\mathcal{B} \cong \mathcal{A}$ whose elementary diagram has the same degree as X.

• Every complete decidable theory has a decidable model.

• But what if we want a special model, such as an atomic, saturated, or homogeneous model?

• These are particularly interesting due to the way their constructions are tied to type realization and type omitting.

• In particular, atomic and saturated models are unique when they exist.

• More generally, two homogeneous models realizing the same types are isomorphic.

• So we can build copies of a given special model without explicitly building an isomorphism.

• Let T be a theory.

• A partial *n*-type of T is a set of formulas in the free variables x_1, \ldots, x_n consistent with T.

- A (complete) *n*-type of T is a maximal partial *n*-type of T.
- A type Γ is *principal* if $\exists \varphi \; \forall \psi \in \Gamma \; [T \vdash \varphi \rightarrow \psi]$. The formula φ is called a *generator* of Γ .
- $\mathcal{A} \models \mathcal{T}$ realizes a type Γ if $\exists \overline{a} \in \mathcal{A} \forall \psi \in \Gamma [\mathcal{A} \models \psi(\overline{a})]$. Otherwise \mathcal{A} omits Γ .
- The *type spectrum* of \mathcal{A} is the set of all types realized in \mathcal{A} .

• The *n*-types of T can be thought of as paths on a binary tree with no dead ends, with principal types being isolated paths.

• We can code a binary tree with no dead ends \mathcal{P} into a theory T in the language with unary predicates R_0, R_1, \ldots via the axioms:

• For $\sigma \in \mathcal{P}$ and $m \in \omega$:

$$\exists^{\geq m} x \left(\bigwedge_{\sigma(k)=1}^{\infty} R_k x \land \bigwedge_{\sigma(k)=0}^{\infty} \neg R_k x \right)$$

• For $\sigma \notin \mathcal{P}$:

$$\neg \exists x \left(\bigwedge_{\sigma(k)=1} R_k x \land \bigwedge_{\sigma(k)=0} \neg R_k x \right)$$

• If \mathcal{P} is computable then \mathcal{T} is decidable and the principal 1-types of \mathcal{T} correspond to the isolated paths of \mathcal{P} .

- A complete theory T is *atomic* if every formula consistent with T is contained in a principal type of T.
- $\mathcal{A} \vDash \mathcal{T}$ is *atomic* if every type realized in \mathcal{A} is principal.
- $\mathcal{A} \vDash T$ is prime if $\forall \mathcal{B} \vDash T \ [\mathcal{A} \preceq \mathcal{B}].$
- T has an atomic model iff T is atomic.
- $\bullet \ \mathcal{A}$ is atomic iff it is prime.
- If $\mathcal{A}, \mathcal{B} \vDash \mathcal{T}$ are both atomic then $\mathcal{A} \cong \mathcal{B}$.

Theorem (Goncharov and Nurtazin; Millar). There is a complete decidable atomic theory T with no decidable atomic model.

 $\ensuremath{\mathcal{T}}$ can be chosen to have all types computable.

Theorem (Goncharov and Nurtazin; Harrington). Let T be a complete decidable atomic theory. TFAE

- 1. T has a decidable atomic model.
- 2. Given a formula φ consistent with T, we can effectively produce a principal type of T containing φ .
- 3. There is a computable listing of the principal types of T.

Corollary (Millar; Denisov; Drobotun). Every complete decidable atomic theory has a \emptyset' -decidable atomic model.

Theorem (Goncharov and Nurtazin; Millar). There is a complete decidable atomic theory T with no decidable atomic model.

 \mathcal{T} can be chosen to have all types computable.

By coding a tree into a theory, it is enough to build a computable tree ${\mathcal T}$ s.t.

- 1. \mathcal{T} has no dead ends.
- 2. The isolated paths are dense in \mathcal{T} .
- 3. Every path of \mathcal{T} is computable.
- 4. There is no effective procedure that, given $x \in \mathcal{T}$, produces an isolated path in \mathcal{T} extending x.

Theorem (Millar; Denisov; Drobotun). Every complete decidable atomic theory has a \emptyset' -decidable atomic model.

Theorem (Csima). Every complete decidable atomic theory has a low-decidable atomic model.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let $A \leq_{T} \emptyset'$. TFAE

- 1. A is nonlow₂.
- 2. Any complete decidable atomic theory has an *A*-decidable atomic model.

• This result shows there is a difference between the existence of low atomic models and the Low Basis Theorem.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let $A \leq_{T} \emptyset'$. TFAE

- 1. A is nonlow₂.
- 2. Any complete decidable atomic theory has an *A*-decidable atomic model.
- 3. Let \mathcal{T} be a computable binary tree with no dead ends in which the isolated paths are dense. Given $x \in \mathcal{T}$, we can *A*-effectively produce an isolated path of \mathcal{T} extending *x*.
- Let *T* be a computable binary tree with no dead ends and let S₀, S₁,... ⊆ *T* be uniformly Δ₂⁰ dense sets. Given x ∈ *T*, we can A-effectively produce a path of *T* extending x and meeting each S_i.
- 5. Every Δ_2^0 set contains the range of some A-limitwise monotonic function.

• Let $A \leq_{\mathrm{T}} \emptyset'$ be nonlow₂.

• Let \mathcal{T} be a computable binary tree with no dead ends in which the isolated paths are dense. Given $x \in \mathcal{T}$, we can A-effectively produce an isolated path of \mathcal{T} extending x.

• This implies that any complete decidable atomic theory has an *A*-decidable atomic model.

Theorem (Martin). $A \leq_{T} \emptyset'$ is low₂ iff there is an $f \leq_{T} \emptyset'$ that dominates every $g \leq_{T} A$.

• So if $A \leq_{\mathrm{T}} \emptyset'$ is nonlow₂ then for each $f \leq_{\mathrm{T}} \emptyset'$ there is a $g \leq_{\mathrm{T}} A$ s.t. $\exists^{\infty} n (g(n) > f(n))$.

• Let $A \leq_{\mathrm{T}} \emptyset'$ be low₂.

• There is a computable binary tree with no dead ends \mathcal{T} in which the isolated paths are dense s.t. there is no A-effective procedure that, given $x \in \mathcal{T}$, produces an isolated path of \mathcal{T} extending x.

• This implies that there is a complete decidable atomic theory with no *A*-decidable atomic model.

Theorem (Jockusch). $A \leq_{\mathrm{T}} \emptyset'$ is low₂ iff there is a uniformly Δ_2^0 collection of sets containing every set $\leq_{\mathrm{T}} A$.

Theorem (Goncharov and Nurtazin; Millar). There is a complete decidable atomic theory T with no decidable atomic model.

 ${\cal T}$ can be chosen to have all types computable.

• We have seen that, without the assumption that all types are computable, this result can be extended.

• But what if we do add in this assumption?

Theorem (Hirschfeldt). Let $A >_{T} \emptyset$ and let T be a complete decidable theory all of whose types are computable. Then T has an A-decidable atomic model.

• This extends Csima's result for the $A \leq_{T} \emptyset'$ case.

• Restatement: Let $A >_{T} \emptyset$ and let \mathcal{T} be a computable binary tree with no dead ends, all of whose paths are computable. Then there is an *A*-computable listing of the isolated paths of \mathcal{T} .

Corollary (Slaman; Wehner). There is a structure with copies of every nonzero degree but no computable copy.

Omitting Types Theorem. Let T be a complete theory and S a countable set of (partial) types of T. There is a model of T omitting all the nonprincipal types in S.

Theorem (Millar). Let T be a complete decidable theory. Let S_0 be a computable set of complete types of T. Let S_1 be a computable set of nonprincipal partial types of T. There is a decidable model of T omitting all nonprincipal types in S_0 and all types in S_1 .

Theorem (Millar). There is a complete decidable theory T and a computable set S of partial types of T s.t. no decidable model of T omits all nonprincipal types in S.

Theorem (Millar). There is a complete decidable theory T and a computable set S of partial types of T s.t. no decidable model of T omits all nonprincipal types in S.

Proof. Let T be a complete decidable atomic theory T with all types computable but no decidable atomic model.

Let L be a uniform enumeration of all c.e. partial types of T.

By padding, replace each partial type Γ in L by an equivalent computable partial type $\widehat{\Gamma}$ to get S.

L includes all the computable types of T, which are all the complete types of T.

Omitting $\widehat{\Gamma}$ is the same as omitting Γ , so a model of T omitting all nonprincipal types in S is atomic, and hence not decidable.

• How far can this result be extended?

Theorem (Csima). Let $\emptyset <_{T} A \leq_{T} \emptyset'$. Let T be a complete decidable theory and let S be a computable set of partial types of T. There is an A-decidable model of T omitting all nonprincipal types in S.

Corollary (Csima). Let $\emptyset <_{T} A \leq_{T} \emptyset'$ and let T be a complete decidable theory all of whose types are computable. Then T has an A-decidable atomic model.

• We have seen that the corollary holds without the hypothesis that $A \leqslant_{\mathrm{T}} \emptyset'$.

• What about the theorem?

Theorem (Csima, Hirschfeldt, Shore). TFAE

1. A has hyperimmune degree (i.e., there is an $f \leq_{T} A$ not dominated by any computable function).

Let T be a complete decidable theory and let S be a computable set of partial types of T. There is an A-decidable model of T omitting all nonprincipal types in S.

• So building atomic models by realizing types is "easier" than building them by omitting types.

• We can also take the reverse mathematical approach to the results studied above.

• Here are some examples involving atomic and prime models, from joint work with Csima and Shore.

Atomic Model Theorem. A complete theory has an atomic model iff it is atomic.

Prime Model Theorem. A complete theory has a prime model iff it is atomic.

Atomic Model Uniqueness. Any two atomic models of a given complete theory are isomorphic.

Prime Model Uniqueness. Any two prime models of a given complete theory are isomorphic.

Atomic-Prime Equivalence. A structure is atomic iff it is prime.

- In RCA_0 , we can show the following.
 - If a complete theory has an atomic model then it is atomic.
 - If a structure is prime then it is atomic.

Theorem (Csima, Hirschfeldt, Shore). TFAE

- $1. \ \mathsf{ACA}_0.$
- 2. Atomic-Prime Equivalence.
- 3. Atomic Model Uniqueness.
- 4. Prime Model Theorem.
- \bullet Prime Model Uniqueness follows from ACA_0, but otherwise its status is open.
- The Atomic Model Theorem is an interesting case.

• Want to show that Atomic-Prime Equivalence, Atomic Model Uniqueness, and the Prime Model Theorem all imply ACA₀.

• Build a complete decidable theory \mathcal{T} with decidable atomic models \mathcal{A} and \mathcal{B} s.t. if $\mathcal{C} \preccurlyeq \mathcal{A}, \mathcal{B}$ then we can get \emptyset' from \mathcal{C} and the embeddings.

• Work in the language with unary predicates R_n and $Q_{n,s}$ for $n, s \in \omega$.

• T is specified by the following axioms (with quantifier elimination and completeness being straightforward to show).

Axioms for T:

- The R_n define infinite, pairwise disjoint sets.
- Each $Q_{n,s}$ defines a subset of R_n .
- $Q_{n,s}(x) \rightarrow Q_{n,s+1}(x).$
- If $n \notin \emptyset'_s$ then $\neg Q_{n,s}(x)$.
- If n enters \emptyset' at s then

$$\exists^{\infty} x \ Q_{n,s}(x) \quad \wedge \quad \exists^{\infty} x \neg Q_{n,s}(x).$$

• If
$$n \in \emptyset'_s$$
 then $\neg Q_{n,s}(x) \rightarrow \neg Q_{n,s+1}(x)$.

• Now build decidable atomic models \mathcal{A} and \mathcal{B} s.t. if $\mathcal{C} \preccurlyeq \mathcal{A}, \mathcal{B}$ then we can get \emptyset' from \mathcal{C} and the embeddings.

Atomic Model Theorem. A complete theory has an atomic model iff it is atomic.

- The "only if" direction follows from RCA_0 .
- $ACA_0 \vdash AMT$.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let $A \leqslant_{T} \emptyset'$. TFAE

- 1. A is nonlow₂.
- 2. Any complete decidable atomic theory has an *A*-decidable atomic model.

Corollary. WKL₀ ⊬ AMT.

Proof. There is a low degree bounding a model of WKL_0 .

• Let T be a complete decidable atomic theory.

• By combining the proofs of the previous theorem and the existence of a low atomic model of T, we can get a low atomic model of T below any given nonlow₂ degree $\mathbf{a} \leq_{\mathrm{T}} \mathbf{0}'$.

• By iterating, we can build an ω -model of AMT below any given nonlow₂ degree $\mathbf{a} \leq_{\mathrm{T}} \mathbf{0}'$.

- Take **a** to be c.e.
- Then \mathbf{a} does not bound a model of WKL₀.
- Thus $RCA_0 + AMT \nvDash WKL_0$.
- Also, $RCA_0 + AMT \nvDash RT_2^2$ (or any of several principles provable in RT_2^2 , such as SRT_2^2 , COH, CAC, etc.).

• Most of these nonimplication results also follow from a general conservativity result.

Theorem (Csima, Hirschfeldt, Shore). AMT is conservative over RCA_0 for sentences of the form

 $\forall X \ (P(X) \to \exists Y \ \forall n \ R(X, Y, n)),$

where P is arithmetic and R is computable.

- \bullet By a result of Hirschfeldt and Shore, the same is true of AMT + COH.
- \bullet Note that statements such as WKL and RT_2^2 can be written in the above form.

Question. Does $RCA_0 + RT_2^2 \vdash AMT$? What if we replace RT_2^2 by weaker principles?

• A structure \mathcal{A} is homogeneous if

$$\forall \overline{a}, \overline{b} \in \mathcal{A} \ [(\mathcal{A}, \overline{a}) \equiv (\mathcal{A}, \overline{b}) \rightarrow (\mathcal{A}, \overline{a}) \cong (\mathcal{A}, \overline{b})].$$

- Atomic and saturated structures are homogeneous.
- If \mathcal{A} and \mathcal{B} are homogeneous and realize the same types then $\mathcal{A} \cong \mathcal{B}$.
- Every theory has a homogeneous model.

Theorem (Goncharov). There is a complete decidable theory with no decidable homogeneous model.

• A collection of types is the type spectrum of a homogeneous model iff it is closed under certain basic operations, type-type amalgamation, and type-formula amalgamation.

• A listing of types \mathcal{L} has the *effective extension property* if type-formula amalgamation can be performed effectively within \mathcal{L} .

Theorem (Goncharov; Peretyat'kin). Let \mathcal{A} be homogeneous. Then \mathcal{A} has a decidable copy iff there is a listing of its type spectrum with the effective extension property. • Let X have PA-degree.

• That is, there is an X-computable nonstandard model of Peano Arithmetic.

• Equivalently, there is an X-computable Scott set, i.e., a Turing ideal S s.t. every infinite binary tree in S has a path in S.

• S can be chosen so that there are partial X-computable functions witnessing the fact that it is a Scott set.

• Let T be a complete decidable theory.

• The collection of types of T coded by sets in S can be shown to satisfy the requirements for being the type spectrum of a homogeneous model, and to have the X-effective extension property.

• Thus every complete decidable theory has an X-decidable homogeneous model.

Theorem (Csima, Harizanov, Hirschfeldt, Soare). There is a complete decidable theory T s.t. every homogeneous model of T has PA-degree.

Corollary. TFAE

- 1. X has PA-degree.
- 2. Every complete decidable theory has an *X*-decidable homogeneous model.