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e In this talk, all languages are computable and all structures have
domain w.

e A structure A is computable if its atomic diagram is
computable.

o A is decidable if its elementary diagram is computable.
e These definitions can be relativized.

e In this talk, only decidability will be mentioned, but all results
hold for computability as well.

Theorem (Knight). If A is X-decidable and nontrivial then
there is a B = A whose elementary diagram has the same degree
as X.



e Every complete decidable theory has a decidable model.

e But what if we want a special model, such as an atomic,
saturated, or homogeneous model?

e These are particularly interesting due to the way their
constructions are tied to type realization and type omitting.

e |n particular, atomic and saturated models are unique when they
exist.

e More generally, two homogeneous models realizing the same
types are isomorphic.

e S0 we can build copies of a given special model without
explicitly building an isomorphism.



e Let T be a theory.

e A partial n-type of T is a set of formulas in the free variables
X1r .., X, consistent with 7.

e A (complete) n-type of T is a maximal partial n-type of T.

e A type I is principal if o Vi € T [T @ — ).
The formula ¢ is called a generator of I.

o AET realizesa type I''if Jae AVY €T [AEY(3)].
Otherwise A omits .

e The type spectrum of A is the set of all types realized in A.

e The n-types of T can be thought of as paths on a binary tree
with no dead ends, with principal types being isolated paths.



e \WWe can code a binary tree with no dead ends P into a theory T
in the language with unary predicates Ry, R1, ... via the axioms:

e Foro € P and m € w:

37Mx ( /\ Rix A /\ - Rk x)
o(k)=1 o(k)=0
e Foro ¢ P:
—3x ( /\ Rix A /\ —Ryx)

o(k)=1 o(

e |f P is computable then T is decidable and the principal 1-types
of T correspond to the isolated paths of P.



e A complete theory T is atomic if every formula consistent with
T is contained in a principal type of T.

e AFET is atomic if every type realized in A is principal.

e AET is primeif VBET [A =< B].

e 7 has an atomic model iff T is atomic.

e A is atomic iff it is prime.

o If A, BET are both atomic then A = B.



Theorem (Goncharov and Nurtazin; Millar). There is a
complete decidable atomic theory T with no decidable atomic
model.

T can be chosen to have all types computable.

Theorem (Goncharov and Nurtazin; Harrington). Let T be a
complete decidable atomic theory. TFAE

1. T has a decidable atomic model.

2. Given a formula ¢ consistent with T, we can effectively
produce a principal type of T containing .

3. There is a computable listing of the principal types of T.

Corollary (Millar; Denisov; Drobotun). Every complete
decidable atomic theory has a ('-decidable atomic model.



Theorem (Goncharov and Nurtazin; Millar). There is a
complete decidable atomic theory T with no decidable atomic
model.

T can be chosen to have all types computable.

By coding a tree into a theory, it is enough to build a computable
tree T s.t.

1. 7 has no dead ends.
2. The isolated paths are dense in T.
3. Every path of 7 is computable.

4. There is no effective procedure that, given x € T, produces
an isolated path in 7 extending x.



Theorem (Millar; Denisov; Drobotun). Every complete
decidable atomic theory has a #’-decidable atomic model.

Theorem (Csima). Every complete decidable atomic theory has
a low-decidable atomic model.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let A <. (.
TFAE

1. Ais nonlows.

2. Any complete decidable atomic theory has an A-decidable
atomic model.

e This result shows there is a difference between the existence of
low atomic models and the Low Basis Theorem.



Theorem (Csima, Hirschfeldt, Knight, Soare). Let A <. (.
TFAE

1. Ais nonlows.

2. Any complete decidable atomic theory has an A-decidable
atomic model.

3. Let T be a computable binary tree with no dead ends in
which the isolated paths are dense. Given x € T, we can
A-effectively produce an isolated path of 7 extending x.

4. Let T be a computable binary tree with no dead ends and let
So, 51, ... €T be uniformly Ag dense sets. Given x € T, we
can A-effectively produce a path of 7 extending x and
meeting each §;.

5. Every A9 set contains the range of some A-limitwise
monotonic function.



o Let A <+ @ be nonlows.

e Let 7 be a computable binary tree with no dead ends in which
the isolated paths are dense. Given x € T, we can A-effectively
produce an isolated path of 7 extending x.

e This implies that any complete decidable atomic theory has an
A-decidable atomic model.

Theorem (Martin). A <; (/' is lows iff there is an f < (' that
dominates every g <1 A.

e So if A< 0 is nonlows then for each f <. (' there is a
g <p As.t. 3%n(g(n) > f(n)).



o Let A<t 0 be lows.

e There is a computable binary tree with no dead ends T in which
the isolated paths are dense s.t. there is no A-effective procedure
that, given x € T, produces an isolated path of 7 extending x.

e This implies that there is a complete decidable atomic theory
with no A-decidable atomic model.

Theorem (Jockusch). A <; (/' is lows iff there is a uniformly
Ag collection of sets containing every set <, A.



Theorem (Goncharov and Nurtazin; Millar). There is a
complete decidable atomic theory T with no decidable atomic
model.

T can be chosen to have all types computable.

e \We have seen that, without the assumption that all types are
computable, this result can be extended.

e But what if we do add in this assumption?



Theorem (Hirschfeldt). Let A >, () and let T be a complete
decidable theory all of whose types are computable. Then T has
an A-decidable atomic model.

e This extends Csima’s result for the A < (' case.

e Restatement: Let A >+ () and let 7 be a computable binary
tree with no dead ends, all of whose paths are computable. Then
there is an A-computable listing of the isolated paths of T.

Corollary (Slaman; Wehner). There is a structure with copies
of every nonzero degree but no computable copy.



Omitting Types Theorem. Let 7 be a complete theory and S a
countable set of (partial) types of T. There is a model of T
omitting all the nonprincipal types in S.

Theorem (Millar). Let T be a complete decidable theory.

Let Sp be a computable set of complete types of T.

Let S; be a computable set of nonprincipal partial types of T.
There is a decidable model of T omitting all nonprincipal types in
Sp and all types in S7.

Theorem (Millar). There is a complete decidable theory T and
a computable set S of partial types of T s.t. no decidable model
of T omits all nonprincipal types in S.



Theorem (Millar). There is a complete decidable theory T and
a computable set S of partial types of T s.t. no decidable model
of T omits all nonprincipal types in S.

Proof. Let T be a complete decidable atomic theory T with all
types computable but no decidable atomic model.

Let L be a uniform enumeration of all c.e. partial types of T.

By padding, replace each partial type [ in L by an equivalent
computable partial type ' to get S.

L includes all the computable types of T, which are all the
complete types of T.

Omitting [ is the same as omitting I, so a model of T omitting
all nonprincipal types in S is atomic, and hence not decidable.

e How far can this result be extended?



Theorem (Csima). Let ) < A< 0. Let T be a complete
decidable theory and let S be a computable set of partial types of
T. There is an A-decidable model of T omitting all nonprincipal
types in S.

Corollary (Csima). Let ) < A<; (% and let T be a complete
decidable theory all of whose types are computable. Then T has
an A-decidable atomic model.

e \We have seen that the corollary holds without the hypothesis
that A <, 0.

e What about the theorem?



Theorem (Csima, Hirschfeldt, Shore). TFAE

1. A has hyperimmune degree (i.e., there is an f <1 A not
dominated by any computable function).

2. Let T be a complete decidable theory and let S be a
computable set of partial types of T. There is an
A-decidable model of T omitting all nonprincipal types in S.

e So building atomic models by realizing types is “easier” than
building them by omitting types.



e \We can also take the reverse mathematical approach to the
results studied above.

e Here are some examples involving atomic and prime models,
from joint work with Csima and Shore.

Atomic Model Theorem. A complete theory has an atomic
model iff it is atomic.

Prime Model Theorem. A complete theory has a prime model
iff it is atomic.

Atomic Model Uniqueness. Any two atomic models of a given
complete theory are isomorphic.

Prime Model Uniqueness. Any two prime models of a given
complete theory are isomorphic.

Atomic-Prime Equivalence. A structure is atomic iff it is prime.



e In RCAq, we can show the following.
e |f a complete theory has an atomic model then it is atomic.

e |f a structure is prime then it is atomic.

Theorem (Csima, Hirschfeldt, Shore). TFAE
1. ACAg.
2. Atomic-Prime Equivalence.
3. Atomic Model Uniqueness.
4. Prime Model Theorem.

e Prime Model Uniqueness follows from ACAq, but otherwise its
status is open.

e The Atomic Model Theorem is an interesting case.



e Want to show that Atomic-Prime Equivalence, Atomic Model
Uniqueness, and the Prime Model Theorem all imply ACAy.

e Build a complete decidable theory T with decidable atomic
models A and B s.t. if C < A, B then we can get (/ from C and
the embeddings.

e Work in the language with unary predicates R, and Qs for
nseuw.

e T is specified by the following axioms (with quantifier
elimination and completeness being straightforward to show).



Axioms for T:

e The R, define infinite, pairwise disjoint sets.
e Fach Qs defines a subset of R,.

® Qns(x) = Qnsy1(x).

o If n ¢ 0L then =Qp s(x).

e If n enters () at s then

I°x Qns(x) A I¥x =Qps(X).

elfne @ls then _'Qn,s(x) — _‘Qn,s+1(X)-

e Now build decidable atomic models A and Bs.t. if C < A, B
then we can get () from C and the embeddings.



Atomic Model Theorem. A complete theory has an atomic
model iff it is atomic.

e The “only if" direction follows from RCAy.
e ACAg - AMT.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let A <, (.
TFAE

1. Ais nonlows.

2. Any complete decidable atomic theory has an A-decidable
atomic model.

Corollary. WKLy ¥ AMT.

Proof. There is a low degree bounding a model of WKL.



e et T be a complete decidable atomic theory.
e By combining the proofs of the previous theorem and the
existence of a low atomic model of T, we can get a low atomic

model of T below any given nonlow, degree a <, 0'.

e By iterating, we can build an w-model of AMT below any given
nonlow, degree a < 0.

e Take a to be c.e.
e Then a does not bound a model of WKLg.
e Thus RCAg+ AMT K WKL,.

e Also, RCAg+ AMT ¥ RT% (or any of several principles provable
in RT3, such as SRT3, COH, CAC, etc.).



e Most of these nonimplication results also follow from a general
conservativity result.

Theorem (Csima, Hirschfeldt, Shore). AMT is conservative
over RCAq for sentences of the form

VX (P(X) — 3Y Vn R(X,Y,n)),
where P is arithmetic and R is computable.

e By a result of Hirschfeldt and Shore, the same is true of AMT
+ COH.

e Note that statements such as WKL and RT3 can be written in
the above form.

Question. Does RCAg+ RT3 = AMT? What if we replace RT3
by weaker principles?



e A structure A is homogeneous if
va,be A[(A a)= (A b) — (A,3) = (A D).
e Atomic and saturated structures are homogeneous.

e If A and B are homogeneous and realize the same types then
A=B.

e Every theory has a homogeneous model.

Theorem (Goncharov). There is a complete decidable theory
with no decidable homogeneous model.



e A collection of types is the type spectrum of a homogeneous
model iff it is closed under certain basic operations, type-type
amalgamation, and type-formula amalgamation.

e A listing of types L has the effective extension property if
type-formula amalgamation can be performed effectively within L.

Theorem (Goncharov; Peretyat’kin). Let A be homogeneous.
Then A has a decidable copy iff there is a listing of its type
spectrum with the effective extension property.



e Let X have PA-degree.

e That is, there is an X-computable nonstandard model of Peano
Arithmetic.

e Equivalently, there is an X-computable Scott set, i.e., a Turing
ideal S s.t. every infinite binary tree in S has a path in S.

e S can be chosen so that there are partial X-computable
functions witnessing the fact that it is a Scott set.

e et T be a complete decidable theory.

e The collection of types of T coded by sets in S can be shown
to satisfy the requirements for being the type spectrum of a
homogeneous model, and to have the X-effective extension
property.

e Thus every complete decidable theory has an X-decidable
homogeneous model.



Theorem (Csima, Harizanov, Hirschfeldt, Soare). There is a
complete decidable theory T s.t. every homogeneous model of T
has PA-degree.

Corollary. TFAE

1. X has PA-degree.

2. Every complete decidable theory has an X-decidable
homogeneous model.



