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• In this talk, all languages are computable and all structures have
domain ω.

• A structure A is computable if its atomic diagram is
computable.

• A is decidable if its elementary diagram is computable.

• These definitions can be relativized.

• In this talk, only decidability will be mentioned, but all results
hold for computability as well.

Theorem (Knight). If A is X -decidable and nontrivial then
there is a B ∼= A whose elementary diagram has the same degree
as X .



• Every complete decidable theory has a decidable model.

• But what if we want a special model, such as an atomic,
saturated, or homogeneous model?

• These are particularly interesting due to the way their
constructions are tied to type realization and type omitting.

• In particular, atomic and saturated models are unique when they
exist.

• More generally, two homogeneous models realizing the same
types are isomorphic.

• So we can build copies of a given special model without
explicitly building an isomorphism.



• Let T be a theory.

• A partial n-type of T is a set of formulas in the free variables
x1, . . . , xn consistent with T .

• A (complete) n-type of T is a maximal partial n-type of T .

• A type Γ is principal if ∃ϕ ∀ψ ∈ Γ [T ` ϕ→ ψ].

The formula ϕ is called a generator of Γ.

• A �T realizes a type Γ if ∃a ∈ A ∀ψ ∈ Γ [A �ψ(a)].
Otherwise A omits Γ.

• The type spectrum of A is the set of all types realized in A.

• The n-types of T can be thought of as paths on a binary tree
with no dead ends, with principal types being isolated paths.



• We can code a binary tree with no dead ends P into a theory T
in the language with unary predicates R0,R1, . . . via the axioms:

• For σ ∈ P and m ∈ ω:

∃>mx (
∧
σ(k)=1

Rkx ∧
∧
σ(k)=0

¬Rkx)

• For σ /∈ P:

¬∃x (
∧
σ(k)=1

Rkx ∧
∧
σ(k)=0

¬Rkx)

• If P is computable then T is decidable and the principal 1-types
of T correspond to the isolated paths of P.



• A complete theory T is atomic if every formula consistent with
T is contained in a principal type of T .

• A �T is atomic if every type realized in A is principal.

• A �T is prime if ∀B �T [A � B].

• T has an atomic model iff T is atomic.

• A is atomic iff it is prime.

• If A,B �T are both atomic then A ∼= B.



Theorem (Goncharov and Nurtazin; Millar). There is a

complete decidable atomic theory T with no decidable atomic

model.

T can be chosen to have all types computable.

Theorem (Goncharov and Nurtazin; Harrington). Let T be a

complete decidable atomic theory. TFAE

1. T has a decidable atomic model.

2. Given a formula ϕ consistent with T , we can effectively

produce a principal type of T containing ϕ.

3. There is a computable listing of the principal types of T .

Corollary (Millar; Denisov; Drobotun). Every complete

decidable atomic theory has a ∅′-decidable atomic model.



Theorem (Goncharov and Nurtazin; Millar). There is a

complete decidable atomic theory T with no decidable atomic

model.

T can be chosen to have all types computable.

By coding a tree into a theory, it is enough to build a computable

tree T s.t.
1. T has no dead ends.
2. The isolated paths are dense in T .
3. Every path of T is computable.
4. There is no effective procedure that, given x ∈ T , produces
an isolated path in T extending x .



Theorem (Millar; Denisov; Drobotun). Every complete

decidable atomic theory has a ∅′-decidable atomic model.

Theorem (Csima). Every complete decidable atomic theory has

a low-decidable atomic model.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let A 6T ∅′.
TFAE

1. A is nonlow2.

2. Any complete decidable atomic theory has an A-decidable

atomic model.

• This result shows there is a difference between the existence of
low atomic models and the Low Basis Theorem.



Theorem (Csima, Hirschfeldt, Knight, Soare). Let A 6T ∅′.
TFAE

1. A is nonlow2.

2. Any complete decidable atomic theory has an A-decidable

atomic model.

3. Let T be a computable binary tree with no dead ends in
which the isolated paths are dense. Given x ∈ T , we can
A-effectively produce an isolated path of T extending x .

4. Let T be a computable binary tree with no dead ends and let
S0,S1, . . . ⊆ T be uniformly ∆02 dense sets. Given x ∈ T , we
can A-effectively produce a path of T extending x and
meeting each Si .

5. Every ∆02 set contains the range of some A-limitwise

monotonic function.



• Let A 6T ∅′ be nonlow2.

• Let T be a computable binary tree with no dead ends in which
the isolated paths are dense. Given x ∈ T , we can A-effectively
produce an isolated path of T extending x .

• This implies that any complete decidable atomic theory has an
A-decidable atomic model.

Theorem (Martin). A 6T ∅′ is low2 iff there is an f 6T ∅′ that
dominates every g 6T A.

• So if A 6T ∅′ is nonlow2 then for each f 6T ∅′ there is a
g 6T A s.t. ∃∞n (g(n) > f (n)).



• Let A 6T ∅′ be low2.

• There is a computable binary tree with no dead ends T in which
the isolated paths are dense s.t. there is no A-effective procedure

that, given x ∈ T , produces an isolated path of T extending x .

• This implies that there is a complete decidable atomic theory
with no A-decidable atomic model.

Theorem (Jockusch). A 6T ∅′ is low2 iff there is a uniformly
∆02 collection of sets containing every set 6T A.



Theorem (Goncharov and Nurtazin; Millar). There is a

complete decidable atomic theory T with no decidable atomic

model.

T can be chosen to have all types computable.

• We have seen that, without the assumption that all types are
computable, this result can be extended.

• But what if we do add in this assumption?



Theorem (Hirschfeldt). Let A >T ∅ and let T be a complete
decidable theory all of whose types are computable. Then T has

an A-decidable atomic model.

• This extends Csima’s result for the A 6T ∅′ case.

• Restatement: Let A >T ∅ and let T be a computable binary
tree with no dead ends, all of whose paths are computable. Then

there is an A-computable listing of the isolated paths of T .

Corollary (Slaman; Wehner). There is a structure with copies

of every nonzero degree but no computable copy.



Omitting Types Theorem. Let T be a complete theory and S a

countable set of (partial) types of T . There is a model of T

omitting all the nonprincipal types in S .

Theorem (Millar). Let T be a complete decidable theory.

Let S0 be a computable set of complete types of T .

Let S1 be a computable set of nonprincipal partial types of T .

There is a decidable model of T omitting all nonprincipal types in

S0 and all types in S1.

Theorem (Millar). There is a complete decidable theory T and

a computable set S of partial types of T s.t. no decidable model

of T omits all nonprincipal types in S .



Theorem (Millar). There is a complete decidable theory T and

a computable set S of partial types of T s.t. no decidable model

of T omits all nonprincipal types in S .

Proof. Let T be a complete decidable atomic theory T with all

types computable but no decidable atomic model.

Let L be a uniform enumeration of all c.e. partial types of T .

By padding, replace each partial type Γ in L by an equivalent

computable partial type Γ̂ to get S .

L includes all the computable types of T , which are all the

complete types of T .

Omitting Γ̂ is the same as omitting Γ, so a model of T omitting

all nonprincipal types in S is atomic, and hence not decidable.

• How far can this result be extended?



Theorem (Csima). Let ∅ <T A 6T ∅′. Let T be a complete
decidable theory and let S be a computable set of partial types of

T . There is an A-decidable model of T omitting all nonprincipal

types in S .

Corollary (Csima). Let ∅ <T A 6T ∅′ and let T be a complete
decidable theory all of whose types are computable. Then T has

an A-decidable atomic model.

• We have seen that the corollary holds without the hypothesis
that A 6T ∅′.

• What about the theorem?



Theorem (Csima, Hirschfeldt, Shore). TFAE

1. A has hyperimmune degree (i.e., there is an f 6T A not

dominated by any computable function).

2. Let T be a complete decidable theory and let S be a

computable set of partial types of T . There is an

A-decidable model of T omitting all nonprincipal types in S .

• So building atomic models by realizing types is “easier” than
building them by omitting types.



• We can also take the reverse mathematical approach to the
results studied above.

• Here are some examples involving atomic and prime models,
from joint work with Csima and Shore.

Atomic Model Theorem. A complete theory has an atomic

model iff it is atomic.

Prime Model Theorem. A complete theory has a prime model

iff it is atomic.

Atomic Model Uniqueness. Any two atomic models of a given

complete theory are isomorphic.

Prime Model Uniqueness. Any two prime models of a given

complete theory are isomorphic.

Atomic-Prime Equivalence. A structure is atomic iff it is prime.



• In RCA0, we can show the following.
• If a complete theory has an atomic model then it is atomic.
• If a structure is prime then it is atomic.

Theorem (Csima, Hirschfeldt, Shore). TFAE

1. ACA0.

2. Atomic-Prime Equivalence.

3. Atomic Model Uniqueness.

4. Prime Model Theorem.

• Prime Model Uniqueness follows from ACA0, but otherwise its
status is open.

• The Atomic Model Theorem is an interesting case.



• Want to show that Atomic-Prime Equivalence, Atomic Model
Uniqueness, and the Prime Model Theorem all imply ACA0.

• Build a complete decidable theory T with decidable atomic
models A and B s.t. if C 4 A,B then we can get ∅′ from C and
the embeddings.

• Work in the language with unary predicates Rn and Qn,s for
n, s ∈ ω.

• T is specified by the following axioms (with quantifier
elimination and completeness being straightforward to show).



Axioms for T :

• The Rn define infinite, pairwise disjoint sets.

• Each Qn,s defines a subset of Rn.

• Qn,s(x)→ Qn,s+1(x).

• If n /∈ ∅′s then ¬Qn,s(x).

• If n enters ∅′ at s then

∃∞x Qn,s(x) ∧ ∃∞x ¬Qn,s(x).

• If n ∈ ∅′s then ¬Qn,s(x)→ ¬Qn,s+1(x).

• Now build decidable atomic models A and B s.t. if C 4 A,B
then we can get ∅′ from C and the embeddings.



Atomic Model Theorem. A complete theory has an atomic

model iff it is atomic.

• The “only if” direction follows from RCA0.

• ACA0 ` AMT.

Theorem (Csima, Hirschfeldt, Knight, Soare). Let A 6T ∅′.
TFAE

1. A is nonlow2.

2. Any complete decidable atomic theory has an A-decidable

atomic model.

Corollary. WKL0 0 AMT.

Proof. There is a low degree bounding a model of WKL0.



• Let T be a complete decidable atomic theory.

• By combining the proofs of the previous theorem and the
existence of a low atomic model of T , we can get a low atomic

model of T below any given nonlow2 degree a 6T 0
′.

• By iterating, we can build an ω-model of AMT below any given
nonlow2 degree a 6T 0

′.

• Take a to be c.e.

• Then a does not bound a model of WKL0.

• Thus RCA0+ AMT 0 WKL0.

• Also, RCA0+ AMT 0 RT22 (or any of several principles provable
in RT22, such as SRT

2
2, COH, CAC, etc.).



• Most of these nonimplication results also follow from a general
conservativity result.

Theorem (Csima, Hirschfeldt, Shore). AMT is conservative

over RCA0 for sentences of the form

∀X (P(X )→ ∃Y ∀n R(X ,Y , n)),

where P is arithmetic and R is computable.

• By a result of Hirschfeldt and Shore, the same is true of AMT
+ COH.

• Note that statements such as WKL and RT22 can be written in
the above form.

Question. Does RCA0+ RT
2
2 ` AMT? What if we replace RT22

by weaker principles?



• A structure A is homogeneous if

∀a, b ∈ A [(A, a) ≡ (A, b)→ (A, a) ∼= (A, b)].

• Atomic and saturated structures are homogeneous.

• If A and B are homogeneous and realize the same types then
A ∼= B.

• Every theory has a homogeneous model.

Theorem (Goncharov). There is a complete decidable theory

with no decidable homogeneous model.



• A collection of types is the type spectrum of a homogeneous
model iff it is closed under certain basic operations, type-type

amalgamation, and type-formula amalgamation.

• A listing of types L has the effective extension property if
type-formula amalgamation can be performed effectively within L.

Theorem (Goncharov; Peretyat’kin). Let A be homogeneous.
Then A has a decidable copy iff there is a listing of its type
spectrum with the effective extension property.



• Let X have PA-degree.

• That is, there is an X -computable nonstandard model of Peano
Arithmetic.

• Equivalently, there is an X -computable Scott set, i.e., a Turing
ideal S s.t. every infinite binary tree in S has a path in S.

• S can be chosen so that there are partial X -computable
functions witnessing the fact that it is a Scott set.

• Let T be a complete decidable theory.

• The collection of types of T coded by sets in S can be shown
to satisfy the requirements for being the type spectrum of a

homogeneous model, and to have the X -effective extension

property.

• Thus every complete decidable theory has an X -decidable
homogeneous model.



Theorem (Csima, Harizanov, Hirschfeldt, Soare). There is a

complete decidable theory T s.t. every homogeneous model of T

has PA-degree.

Corollary. TFAE

1. X has PA-degree.

2. Every complete decidable theory has an X -decidable

homogeneous model.


