Some properties of c.e. reals in the sw-degrees

Lu Hong
 Department of Mathematics, Nanjing University

July 25, 2005

Introduction and definitions

Downey, Hirschfeldt, and Laforte introduced a measure of relative complexity call sw-reducibility (strong weak truth table reducibility).

Introduction and definitions

Downey, Hirschfeldt, and Laforte introduced a measure of relative complexity call sw-reducibility (strong weak truth table reducibility).

Definition

A set A is nearly computably enumerable if there is a computable approximation $\left\{A_{s}\right\}_{s \in w}$ such that $A(x)=\lim _{s} A_{s}(x)$ for all x and $A_{s}(x)>A_{s+1}(x) \Rightarrow \exists y<x\left(A_{s}(y)<A_{s+1}(y)\right)$.

Definition

A real α is computably enumerable (c.e) if $\alpha=0 . \chi_{A}$ where A is a nearly c.e. set. A real α is strongly computably enumerable (strongly c.e.) if $\alpha=0 . \chi_{A}$ where A is a c.e. set.

Definition

A real α is computably enumerable (c.e) if $\alpha=0$. χ_{A} where A is a nearly c.e. set. A real α is strongly computably enumerable (strongly c.e.) if $\alpha=0$. χ_{A} where A is a c.e. set.

Definition

Let $A, B \subseteq N$. We say that B is strongly weak truth table reducible (sw-reducible) to A, and write $B \leq_{s w} A$, if there is a Turning reduction Γ such that $B=\Gamma^{A}$ and the use $\gamma(x) \leq x+c$ for some constant c. For reals $\alpha=0 \cdot \chi_{A}$ and $\beta=0 \cdot \chi_{B}$, we say that β is sw-reducible to α, and write $\beta \leq_{s w} \alpha$ if $B \leq_{s w} A$.

The sw degrees have a number of nice aspects

For instance, Downey, Hirschfeldt, and Nies proved sw-reducibility satisfies Solovay property and

Theorem (Downey, Hirschfeldt, Laforte)
Let α and β be c.e. reals such that

Furthermore if α is a c.e. real which is noncomputable, then there is a noncomputable strongly c.e. real $\beta \leq_{s w} \alpha$, and this is not true in general, for $\leq s$.

coincidence of s-reducibility and sw-reducibility on strong c.e. reals

coincidence of s-reducibility and sw-reducibility on strong c.e. reals

Theorem
If β is strongly c.e. and α is c.e. then $\alpha \leq_{\text {sw }} \beta$ implies $\alpha \leq_{s} \beta$.

coincidence of s-reducibility and sw-reducibility on strong c.e. reals

Theorem
If β is strongly c.e. and α is c.e. then $\alpha \leq_{\text {sw }} \beta$ implies $\alpha \leq_{s} \beta$.
Theorem
If α is strongly c.e. and β is c.e. then $\alpha \leq_{s} \beta$ implies $\alpha \leq_{s w} \beta$.

the structure of c.e. reals in the sw-degrees

However, we still are interested in sw-reducibility since it has some nice properties and it is helpful for studying Turing-degrees by exploring the $s w$-degrees. Further, we may study the structure of c.e. reals in the sw-degrees.

Definition

Let A be a nearly c.e. set. The sw-canonical c.e. set A^{*} associated with A is defined as follows. Begin with $A_{0}^{*}=\emptyset$. For all x and s, if either $x \notin A_{s}$ and $x \in A_{s+1}$, or $x \in A_{s}$ and $x \notin A_{s+1}$, then for the least j with $<x, j>\notin A_{s}^{*}$, put $\langle x, j\rangle$ into A_{s+1}^{*}.

Definition

Let A be a nearly c.e. set. The sw-canonical c.e. set A^{*} associated with A is defined as follows. Begin with $A_{0}^{*}=\emptyset$. For all x and s, if either $x \notin A_{s}$ and $x \in A_{s+1}$, or $x \in A_{s}$ and $x \notin A_{s+1}$, then for the least j with $<x, j>\notin A_{s}^{*}$, put $\langle x, j\rangle$ into A_{s+1}^{*}.

Theorem (Downey, Hirschfeldt, Laforte)
If A is nearly c.e. and noncomputable then there is a noncomputable c.e. set $A^{*} \leq_{s w} A$. Hence there are no minimal sw-degrees of c.e. reals.

Definition

Let A be a nearly c.e. set. The sw-canonical c.e. set A^{*} associated with A is defined as follows. Begin with $A_{0}^{*}=\emptyset$. For all x and s, if either $x \notin A_{s}$ and $x \in A_{s+1}$, or $x \in A_{s}$ and $x \notin A_{s+1}$, then for the least j with $<x, j>\notin A_{s}^{*}$, put $\langle x, j\rangle$ into A_{s+1}^{*}.

Theorem (Downey, Hirschfeldt, Laforte)
If A is nearly c.e. and noncomputable then there is a noncomputable c.e. set $A^{*} \leq_{\text {sw }} A$. Hence there are no minimal sw-degrees of c.e. reals.

Theorem (Downey, Hirschfeldt, Laforte)

There exist nearly c.e. sets A and B such that for all nearly c.e.
$W \geq_{s w} A, B$ there is a neraly c.e. Q with $A, B \leq_{s w} Q$ but $W \not Z_{s w} Q$. Thus the sw-degrees of c.e. reals do not form an uppersemilattatice.

Yu Liang and Ding Decheng pointed out that we can not characterize randomness by $s w$-reducibility by proving that there is no a largest c.e. sw-degree.
Theorem (Yu and Ding)
There is no sw-complete c.e. real. Even more, there is a pair of c.e. reals for which there is no c.e. real above both of them respect to sw-reducibility.

Theorem (Fan and Lu)

Let $\left\{\alpha_{e}\right\}_{e \in \omega}$ be an effective enumeration of strongly c.e. reals. Then there are strongly c.e. reals β_{0}, β_{1} such that $\beta_{0} \star_{\text {sw }} \alpha_{e}$ or $\beta_{1} \star_{s w} \alpha_{e}$ for every α_{e}.

Proof

$$
R_{e, i}: \Phi_{i}^{\alpha_{e}} \neq \beta_{0} \vee \Psi_{i}^{\alpha_{e}} \neq \beta_{1},
$$

where $\phi_{i}(x) \leq x+i$ and $\psi_{i}(x) \leq x+i$.

Pick a large number $k_{e, i}$ for $R_{e, i}$ such that $k_{e, i}>e, i$ and $k_{e, i}>3 k_{e^{\prime}, i^{\prime}}$ for all $e^{\prime}<e$ or $e=e^{\prime}, i^{\prime}<i$.
We only put numbers between $k_{e, i}$ and $3 k_{e, i}$ into B or C for $R_{e, i}$.

our results of c.e. reals in the sw-degrees

Theorem (Fan and Lu)

Let $\left\{\alpha_{e}\right\}_{e \in \omega}$ be an effective enumeration of strongly c.e. reals.
Then there is a c.e. real β such that $\alpha_{e} \leq_{s w} \beta$ for every α_{e}.
Proof

$$
R_{e}: \Gamma_{e}^{\beta}=\alpha_{e},
$$

where Γ_{e} is defined by us such that $\gamma_{e}(x) \leq x+e+3$.

1) Check whether there exist some R_{e} such that $\alpha_{e}(x)$ changes.
2) Choose the least $e \leq s$ such that
$\left.\exists(x \leq s)\left[\alpha_{e, s+1}(x) \neq \alpha_{e, s}(x)\right]\right\}$.
3) Set $\beta_{s+1}=\beta_{s} \upharpoonright(x+e+3)+2^{-(x+e+3)}$.

Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there is no c.e. real above both of them respect to sw-reducibility.

Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there is no c.e. real above both of them respect to sw-reducibility.

Theorem (Yu)
There exists a sw-cuppable c.e. real.

Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there is no c.e. real above both of them respect to sw-reducibility.

Theorem (Yu)
There exists a sw-cuppable c.e. real.
Theorem (Fan and Lu)
For any c.e. real α, there exists a c.e. real β such that β is
sw-cuppable and $\alpha \leq_{s w} \beta$.

Theorem (Fan and Lu)

Let $\left\{\alpha_{e}\right\}_{e \in \omega}$ be an effective enumeration of c.e. reals. Then there is a strongly c.e. real β_{0} and a c.e. real β_{1} such that $\beta_{0} \not{ }_{\text {sw }} \alpha_{e}$ or $\beta_{1} \star_{s w} \alpha_{e}$ for every e.

Proof

$$
R_{e}: \Phi_{e}^{\alpha_{e}} \neq \beta_{0} \vee \Psi_{e}^{\alpha_{e}} \neq \beta_{1}
$$

For simplicity, we assume that $\phi^{\alpha}(x)=x$ and $\phi^{\alpha}(x)=x$.

Theorem (Fan and Lu)

Let $\left\{\alpha_{e}\right\}_{e \in \omega}$ be an effective enumeration of c.e. reals. Then there is a strongly c.e. real β_{0} and a c.e. real β_{1} such that $\beta_{0} \not \alpha_{\text {sw }} \alpha_{e}$ or $\beta_{1} \star_{s w} \alpha_{e}$ for every e.

Proof

$$
R_{e}: \Phi_{e}^{\alpha_{e}} \neq \beta_{0} \vee \Psi_{e}^{\alpha_{e}} \neq \beta_{1},
$$

Lemma

Given (n, k), there is a strongly c.e. real β_{0}, a c.e. real β_{1} and I such that there exists a function $\Gamma:[0,1) \times[0,1) \rightarrow R$ satisfies $\Gamma\left(\beta_{0} \upharpoonright I, \beta_{1} \upharpoonright I\right) \geq n$ and $\beta_{0} \upharpoonright k=0$. Moreover, β_{0}, β_{1} and I can be computed uniformly from (n, k).
For simplicity, we assume that $\phi^{\alpha}(x)=x$ and $\phi^{\alpha}(x)=x$.

The proof of the lemma is divided into two cases: (1) the induction on n; (2) the induction on k.
Now consider the case for the induction on n. Fixed n, assume that $\Gamma\left(\beta_{0, i, k} \upharpoonright I_{i, k}, \beta_{1, i, k} \upharpoonright I_{i, k}\right) \geq i$ and $\beta_{0, i, k} \upharpoonright k=0$ for every $i \leq n, k \in N$. Let $I_{n+1,0}$ be equal to $\left(I_{n, I_{n, 0}}+1\right)$.
Step 1. Imitate our programme for putting numbers into
$A_{n, I_{n, 0}} \upharpoonright I_{n, I_{n, 0}}, B_{n, I_{n, 0}} \upharpoonright I_{n, I_{n, 0}}$, and do the similar action on the natural number between 2 and $I_{n+1,0}$.
Note that $\Gamma\left(\beta_{0, n, I_{n, 0}} \upharpoonright I_{n, I_{n, 0}}, \beta_{1, n, I_{n, 0}} \upharpoonright I_{n, I_{n, 0}}\right) \geq n, \beta_{0, n, I_{n, 0}} \upharpoonright I_{n, 0}=0$.
It must be $\Gamma\left(\beta_{0, n, I_{n, 0}} \upharpoonright I_{n, I_{n, 0}}, \beta_{1, n, I_{n, 0}} \upharpoonright I_{n, I_{n, 0}}\right)=n$ and
$\beta_{0, n, I_{n, 0}} \upharpoonright I_{n, 0}=0$ at some stage t. Hence, at stage t,
$\Gamma_{t}\left(\beta_{0, n+1,0, t} \upharpoonright I_{n, I_{n, 0}}, \beta_{1, n+1,0, t} \upharpoonright I_{n, I_{n, 0}}\right)=n / 2$, and
$A_{n+1,0, t} \upharpoonright I_{n, 0}+1=0, B_{n+1,0, t} \upharpoonright 1=0$.

Step 2. At stage $t+1$, let $A_{n+1,0}$ active and $B_{n+1,0}$ waiting, set $A_{n+1,0, t+1}(1)=1$, which forces
$\Gamma_{t+1}\left(\beta_{0, n+1,0, t+1} \upharpoonright I_{n, I_{n, 0},}, \beta_{1, n+1,0, t+1} \upharpoonright I_{n, I_{n, 0}}\right)$ equal to $n / 2+1 / 2$.
At stage $t+2$, let $A_{n+1,0}$ be waiting and $B_{n+1,0}$ active, set $B_{n+1,0, t+2}(1)=1, B_{n+1,0, t+2}(q)=0(q>1)$, which forces
$\Gamma_{t+2}\left(\beta_{0, n+1,0, t+2} \upharpoonright I_{n+1,0}, \beta_{1, n+1,0, t+2} \upharpoonright I_{n+1,0}\right)=n / 2+1$.
Step 3. Imitate the programme of the changes of
$A_{n, 0} \upharpoonright I_{n, 0}, B_{n, 0} \upharpoonright I_{n, 0}$. Note that $A_{n+1,0, t+2}(x)=B_{n+1,0, t+2}(x)=0$
($2 \leq x \leq I_{n, 0}+1$), do the following similar actions. Imitate the programme
Note that $\Gamma\left(\beta_{0, n, 0} \upharpoonright I_{n, 0}, \beta_{1, n, 0} \upharpoonright I_{n, 0}\right) \geq n$. The effect of the changes on $\left[2, I_{n, 0}\right.$] of $A_{n+1,0}$ and $B_{n+1,0}$ induces
$\Gamma\left(\beta_{0, n+1,0} \upharpoonright I_{n+1,0}, \beta_{1, n+1,0} \upharpoonright I_{n+1,0}\right) \geq n+1$.

Next consider the case for the induction on k. Fix (n, k), assume that $\Gamma\left(\beta_{0, i, j} \upharpoonright I_{i, j}, \beta_{1, i, j} \upharpoonright I_{i, j}\right) \geq i$ and $\beta_{0, i, j} \upharpoonright j=0$ for every $i \leq n$ or $j \leq k$. We can win by controlling $A_{n, k+1} \upharpoonright I_{n, k+1}, B_{n, k+1} \upharpoonright I_{n, k+1}$ as follows. Let $I_{n, k+1}$ be equal to $I_{n-1, I_{n, k}}+1$.
Step 1. Imitate the programme of the changes of
$A_{n-1, I_{n, k}} \upharpoonright I_{n-1, I_{n, k}}, B_{n-1, I_{n, k}} \upharpoonright I_{n-1, I_{n, k}}$.
Note that $\left\lceil\left(\beta_{0, n-1, I_{n, k}} \upharpoonright I_{n-1, I_{n, k}}, \beta_{1, n-1, I_{n, k}} \upharpoonright I_{n-1, I_{n, k}}\right) \geq n-1\right.$, $\beta_{0, n-1, I_{n, k}} \upharpoonright I_{n, k}=0$. It must be
$\Gamma\left(\beta_{0, n-1, I_{n, k}} \upharpoonright I_{n-1, I_{n, k},}, \beta_{1, n-1, I_{n, k}} \upharpoonright I_{n-1, I_{n, k}}\right)=n+1$, $\beta_{0, n-1, I_{n, k}} \upharpoonright I_{n, k}=0$ at some stage t. Hence, at stage t, $\Gamma_{t}\left(\beta_{0, n, k+1, t}, \beta_{1, n, k+1, t}\right)=(n-1) / 2$, and $A_{n, k+1, t} \upharpoonright I_{n, k, t}+1=0$.

Step 2. At stage $t+1$, let $A_{n, k+1}$ waiting and $B_{n, k+1}$ active, set $B_{n, k+1, t+2}(1)=1, B_{n, k+1, t+2}(q)=0(q>1)$, which forces $\Gamma_{t+1}\left(\beta_{0, n, k+1, t+1} \upharpoonright I_{n, k+1}, \beta_{1, n, k+1, t+1} \upharpoonright I_{n, k+1}\right)=n / 2$.
Step 3. Imitate the programme of the changes of
$A_{n, k} \upharpoonright I_{n, k}, B_{n, k} \upharpoonright I_{n, k}$. Here $A_{n, k+1, t+1}(x)=B_{n, k+1, t+1}(x)=0$ ($2 \leq x \leq I_{n, k}+1$).
Note that $\left\lceil\left(\beta_{0, n, k} \upharpoonright I_{n, k}, \beta_{1, n, k} \upharpoonright I_{n, k}\right) \geq(n-1), \beta_{0, n, k} \upharpoonright k=0\right.$.
The effect of the changes on $\left[2, I_{n, k}+1\right]$ of $A_{n, k+1}$ and $B_{n, k+1}$ induces $\Gamma\left(\beta_{0, n, k+1} \upharpoonright I_{n, k+1}, \beta_{1, n, k+1} \upharpoonright I_{n, k+1}\right) \geq n$ and $\beta_{0, n, k+1} \upharpoonright(k+1)=0$.
Since the construction is effective, $\beta_{0, n, k}$ is strongly c.e. and $\beta_{1, n, k+1}$ is c.e. for every n, k.

The main Theorem in the progress

The main Theorem in the progress

Theorem
There exists a maximal c.e. reals in the sw-Degrees.

The main Theorem in the progress

Theorem
There exists a maximal c.e. reals in the sw-Degrees.
Corollary
There are \aleph_{0} incomparable maximal c.e. reals in the sw-Degrees.

The main Theorem in the progress

Theorem
There exists a maximal c.e. reals in the sw-Degrees.

Corollary

There are \aleph_{0} incomparable maximal c.e. reals in the sw-Degrees.
Theorem
For any noncomputable c.e. real α, there exist a c.e. real β such that $\beta \not \leq_{s w} \alpha$ and $\alpha \leq_{T} \beta$.

The proof of the theorem

It suffices to build a c.e. real α to meet the following requirements:

$$
R_{<e, n>}: \alpha=\Phi_{e}^{\beta_{e}} \Rightarrow \exists \Gamma\left(\Gamma^{\alpha}=\beta_{e}\right)
$$

where each $\left\{\Phi_{e}, \beta_{e}\right\}_{e \in \omega}$ is an enumeration of sw-procedures and c.e. reals with use $\phi_{e}(x) \leq x+n(n \in \omega)$.

Without loss of generality, suppose that β_{e} is less than 0.1 .

The special programm of the theorem

For any Φ_{e}, our aim is to make $\alpha \neq \Phi_{e}^{\beta_{e}}$ or to define a function Γ such that $\Gamma^{\alpha}=\beta_{e}$.

Assume that when we put some number $(\leq I(e, n)$ into α at expansionary stage, $\beta\left\lceil\left(\phi_{e}(x)+1\right)\right.$ changes at the greatest position, i.e. the change is the slowest.

We assume that in digital expansion of β, there are infinite 1 .

The strategy for $n=0$

1. Wait for an expansionary stage when the first 1 appears in digital expansion of β, say at the position $m<I(e, n)$.
Then we let $\alpha(m-1)$ change to 1 .
2. Wait for next expansionary stage and once we find it, $\beta\left(m_{1}\right)$ must change to 1 . Then we let $\alpha(m-2)$ change to 1 and wait for next expansionary stage.
Repeating the above strategy until β have to be ready to change at position 1, by our assumption, this is impossible. Hence we win.

The strategy for $n=1$

1. Wait for an expansionary stage when the first 1 appears in digital expansion of β, say at the position $m<I(e, n)$.
Then we let $\alpha(m-1)$ change to 1 .
2. Wait for next expansionary stage and once we find it, $\beta(m-1)$ must change. We let $\alpha(m-2)$ change to 1 and wait for next expansionary stage.
Repeating the above strategy until β have to be ready to change at position 1, by our assumption, this is impossible. Hence we win.

The strategy for $n=2$

β	100	100	100					
α	100	100	100					
β	100	101	0					
α	100	101	1					
β	101	000	0					
α	101	000	0	\Rightarrow	β	100	100	110
:---:	:---:	:---:	:---:					
α	100	101	000					
β	100	110	0					
α	100	111	0	\Rightarrow				

Similarly we can get

β	11	000	0					
α	11	000	0	\Rightarrow	β	100	000	0
:---:	:---:	:---:	:---:					
α	100	000	0					

The strategy for $n=2$

β	000	100	100					
α	100	100	100					
β	000	101	0					
α	100	101	1					
β	001	000	0					
α	101	000	0	\Rightarrow	β	000	100	110
:---:	:---:	:---:	:---:					
α	100	101	000					
β	000	110	0					
α	100	111	0	\Rightarrow				

Similarly we can get

β	01	000	0					
α	11	000	0	\Rightarrow	β	01	000	0
:---:	:---:	:---:	:---:					
α	10	000	0					

Note that

β	10	000	0
α	11	000	0

can move left forever by using 1 with lifting 1 if it only meet 1 with lifting 1 . We call such case 11.

Using 11, the above case can change to | β | 100 | 000 | 0 |
| :--- | :--- | :--- | :--- |
| α | 111 | 000 | 0 |\Rightarrow

β	0110	000	0
α	1000	000	0
α	100	100	0
α	101	110	0
β	1100	000	0
α	1111	000	0
α	$\Rightarrow$$\beta$ 100 000 0 α 101 000 0 β 101 000 0 α 110 000 0 β 10000 000 0 α 10000 000 0\Rightarrow		

The strategy for n

1. Wait for an expansionary stage, say s_{0} when in β, the number of 1 is $\geq 2^{n-1}+1$. Suppose that the position of the last 1 in β is t_{0}. 2. Creating a situation such that we can apply $(n-1)$-strategy from next expansionary stage.
a) then add 1 to the position $t_{0}-1$ to the α to force β change at $t_{0}-1+n$.
b) Waiting for next expansionary stage when in β, there appear a new 1 , say at position t_{1}, then add 1 to the position $t_{1}-1$ to the α to force β change at $t_{1}-1+n$..
c) repeating until we can get more than $2^{n-2}+1$ new good 1 with lifting $n-1$ position after stage s_{0}.
Now the numbers on α and β are:

β	$010 \cdots 01$	$0 \cdots 0$	$010 \cdots 01$	\cdots	$010 \cdots 01$
α	$100 \cdots 00$	$0 \cdots 0$	$100 \cdots 00$	\cdots	$100 \cdots 00$

to find the first fixed pair

β	$0100 \cdots 01$	$0 \cdots 00$				
α	$1000 \cdots 00$	$0 \cdots 0$				
β	$011 \cdots 111$	$0 \cdots 00$				
α	$111 \cdots 100$	$0 \cdots 00$	\Rightarrow	β	$011 \cdots 001$	$0 \cdots 00$
:---:	:---:	:---:				
α	$110 \cdots 000$	$0 \cdots 0$				
β	$100 \cdots 000$	$0 \cdots 00$				
α	$111 \cdots 110$	$0 \cdots 00$	\Rightarrow			

This is called the first fixed pair. Note that it corresponds to

β	$0100 \cdots 01$	$0 \cdots 00$
α	$1000 \cdots 00$	$0 \cdots 00$

to find the ability of the first fixed pair

when this first fixed point meet a block, we will prove that it can takeover the block, i.e.,

β	0	$100 \cdots 00$	$0 \cdots 00$
α	1	$111 \cdots 11$	$0 \cdots 00$

injure it, it changes to

β	00	$10 \cdots 01$	$0 \cdots 00$					
α	10	$00 \cdots 00$	$0 \cdots 00$					
β	00	$110 \cdots 01$	$0 \cdots 00$					
α	10	$000 \cdots 00$	$0 \cdots 00$					
β	1	$000 \cdots 00$	$0 \cdots 00$	\Rightarrow	β	01	$10 \cdots 00$	$0 \cdots 00$
:---:	:---:	:---:	:---:	:---:				
α	11	$11 \cdots 10$	$0 \cdots 00$					
α	1	$111 \cdots 11$	$0 \cdots 00$					

look for the last fixed pair

the last fixed pair corresponds to

β	0	$1 \cdots 1$	$0 \cdots 00$
α	1	$0 \cdots 0$	$0 \cdots 00$

By induction suppose that this is | β | $100 \cdots 00$ | $0 \cdots 00$ |
| :---: | :---: | :---: |
| α | a | $0 \cdots 00$ |

when this last fixed pair meet a lifting n-number, i.e.,

β	1	$100 \cdots 00$	$0 \cdots 00$
α	1	a	$0 \cdots 00$

applying this last fixed pair, | β | 1 | $11 \cdots 11$ | p | $0 \cdots 00$ |
| :---: | :---: | :---: | :---: | :---: |
| α | 1 | $11 \cdots 11$ | q | $0 \cdots 00$ |

injure it

β	1	$00 \cdots 00$	$0 \cdots 00$
α	1	$000 \cdots 0$	$0 \cdots 00$

Note that there are 2^{n-1} fixed pairs.

leads to a contradiction

6) Applying the above result repeatedly. Then we can force β bigger enough. If we can applying it infinitely, then we can prove that $\beta \geq 0.1$, which is a contradiction. That is,

β	0.01	$11 \cdots 11$	$0 \cdots 00$
α	0.01	$11 \cdots 11$	$0 \cdots 00$

then we can get | β | 0.10 | $00 \cdots 00$ | $0 \cdots 00$ |
| :---: | :---: | :---: | :---: |
| α | 0.10 | $00 \cdots 00$ | $0 \cdots 00$ |

The single strategy for requirement $R_{e, n}$

1. Wait for the first expansionary stage, say s_{1}. Then compute $\Psi\left(e, H, s_{1}\right)$.
(1) If $\Psi\left(e, H, s_{1}\right)=1$, then we do nothing and go to next σ.
(2) If $\Psi\left(e, H, s_{1}\right)=0$, then from this stage we wait for a stage such that either $\Psi(e, H)=1$ or there are $2^{n-1}+1+2^{n-2}+1+\cdots+2^{2-1}+1$ times new 1 appear in β.
2. If later at the next expansionary stage after s_{1} there are $2^{n-1}+1+2^{n-2}+1+\cdots+2^{2-1}+1$ times new 1 appear in β, then define (or redefine) $\Gamma^{\alpha}(x)=\beta_{e}(x)$ for any $x \leq I(e, n)$ with use $\gamma(x)=x+C$.

From this stage, at every expansionary stage, we should define and redefine $\Gamma^{\alpha}=\beta_{e}$. That is, if we find that $\beta(x)$ change to be 1 at some position x some expansionary stage and Γ^{α} do not know, then we put some number $\leq \gamma(x)$ into α, and initialise all strategies with lower priority.

Since we have got the prepared data, we can make a disagreement.

The strategies for two requirements R_{0}, R_{1}

Suppose that σ_{0} and σ_{1} work on R_{0}-strategy and R_{1}-strategy respectively. And $\sigma_{0} \subseteq \sigma_{1}$.

The R_{1}-strategy is:

1. Wait for the first expansionary stage, say s_{1}. Then compute $\Psi\left(1, H, s_{1}\right)$.
(1) If $\Psi\left(1, H, s_{1}\right)=1$, then we do nothing and go to next σ.
(2) If $\Psi\left(1, H, s_{1}\right)=0$, then from this stage we wait for a stage such that either $\Psi(e, H)=1$ or there are $2^{n_{1}+r-1}+1+2^{n_{1}+r-2}+1+\cdots+2^{2-1}+1$ times new 1 appear in β_{1}.
2. If at the next expansionary stage, say s_{2} there are $2^{n+r-1}+1+2^{n+r-2}+1+\cdots+2^{2-1}+1$ times new 1 appear in β, then define (or redefine) $\Gamma^{\alpha}(x)=\beta_{e}(x)$. From s_{2}, at every expansionary stage, we should define and redefine $\Gamma^{\alpha}=\beta_{1}$.

Let $x_{0}=\min \left\{\gamma_{0}(y) \mid \gamma_{0}(y)\right.$ wants to enter into $\left.\alpha\right\}$. $x_{1}=\min \left\{\gamma_{1}(y) \mid \gamma_{1}(y)\right.$ wants to enter into $\left.\alpha\right\}$.

If $x_{0}<x_{1}$, then use the programme given above to make disagreement and initialise R_{1}.

If $x_{0} \geq x_{1}$, then put x_{0} into α, apply the programme given above from the position x_{0}. If it make a disagreement, then we win. If not, then x_{1} will eventually be put into α.
Note that we delay putting x_{1} into α here.

