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Introduction and definitions

Downey, Hirschfeldt, and Laforte introduced a measure of relative
complexity call sw-reducibility (strong weak truth table
reducibility).

Definition
A set A is nearly computably enumerable if there is a computable
approximation {As}s∈w such that A(x) = lims As(x) for all x and
As(x) > As+1(x) ⇒ ∃y < x(As(y) < As+1(y)).
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Definition
A real α is computably enumerable (c.e) if α = 0.χA where A is a
nearly c.e. set. A real α is strongly computably enumerable
(strongly c.e.) if α = 0.χA where A is a c.e. set.

Definition
Let A,B ⊆ N. We say that B is strongly weak truth table
reducible ( sw-reducible ) to A, and write B ≤sw A, if there is a
Turning reduction Γ such that B = ΓA and the use γ(x) ≤ x + c
for some constant c . For reals α = 0.χA and β = 0.χB , we say
that β is sw-reducible to α, and write β ≤sw α if B ≤sw A.
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The sw degrees have a number of nice aspects

For instance, Downey, Hirschfeldt, and Nies proved sw -reducibility
satisfies Solovay property and

Theorem (Downey, Hirschfeldt, Laforte)

Let α and β be c.e. reals such that
lim infn H(α � n)− H(β � n) = ∞. Then β ≤sw α.

Furthermore if α is a c.e. real which is noncomputable, then there
is a noncomputable strongly c.e. real β ≤sw α, and this is not true
in general, for ≤S .
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coincidence of s-reducibility and sw-reducibility on strong
c.e. reals

Theorem
If β is strongly c.e. and α is c.e. then α ≤sw β implies α ≤S β.

Theorem
If α is strongly c.e. and β is c.e. then α ≤S β implies α ≤sw β.
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the structure of c.e. reals in the sw-degrees

However, we still are interested in sw -reducibility since it has some
nice properties and it is helpful for studying Turing-degrees by
exploring the sw -degrees. Further, we may study the structure of
c.e. reals in the sw-degrees.
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Definition
Let A be a nearly c.e. set. The sw-canonical c.e. set A∗ associated
with A is defined as follows. Begin with A∗

0 = ∅. For all x and s, if
either x 6∈ As and x ∈ As+1, or x ∈ As and x 6∈ As+1, then for the
least j with < x , j >6∈ A∗

s , put < x , j > into A∗
s+1.

Theorem (Downey, Hirschfeldt, Laforte)

If A is nearly c.e. and noncomputable then there is a
noncomputable c.e. set A∗ ≤sw A. Hence there are no minimal
sw-degrees of c.e. reals.

Theorem (Downey, Hirschfeldt, Laforte)

There exist nearly c.e. sets A and B such that for all nearly c.e.
W ≥sw A,B there is a neraly c.e. Q with A,B ≤sw Q but
W 6≤sw Q. Thus the sw-degrees of c.e. reals do not form an
uppersemilattatice.
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Yu Liang and Ding Decheng pointed out that we can not
characterize randomness by sw -reducibility by proving that there is
no a largest c.e. sw -degree.

Theorem (Yu and Ding )

There is no sw-complete c.e. real. Even more, there is a pair of
c.e. reals for which there is no c.e. real above both of them
respect to sw-reducibility.
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Theorem (Fan and Lu)

Let {αe}e∈ω be an effective enumeration of strongly c.e. reals.
Then there are strongly c.e. reals β0, β1 such that β0 
sw αe or
β1 
sw αe for every αe .

Proof

Re,i : Φαe
i 6= β0 ∨Ψαe

i 6= β1,

where φi (x) ≤ x + i and ψi (x) ≤ x + i .

Pick a large number ke,i for Re,i such that ke,i > e, i and
ke,i > 3ke′,i ′ for all e ′ < e or e = e ′, i ′ < i .
We only put numbers between ke,i and 3ke,i into B or C for Re,i .
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our results of c.e. reals in the sw-degrees

Theorem (Fan and Lu)

Let {αe}e∈ω be an effective enumeration of strongly c.e. reals.
Then there is a c.e. real β such that αe ≤sw β for every αe .

Proof

Re : Γβ
e = αe ,

where Γe is defined by us such that γe(x) ≤ x + e + 3.

1) Check whether there exist some Re such that αe(x) changes.
2) Choose the least e ≤ s such that
∃(x ≤ s)[αe,s+1(x) 6= αe,s(x)]}.
3) Set βs+1 = βs � (x + e + 3) + 2−(x+e+3).
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Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there
is no c.e. real above both of them respect to sw-reducibility.

Theorem (Yu)

There exists a sw-cuppable c.e. real.

Theorem (Fan and Lu)

For any c.e. real α, there exists a c.e. real β such that β is
sw-cuppable and α ≤sw β.
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Theorem (Fan and Lu)

Let {αe}e∈ω be an effective enumeration of c.e. reals. Then there
is a strongly c.e. real β0 and a c.e. real β1 such that β0 
sw αe or
β1 
sw αe for every e.

Proof

Re : Φαe
e 6= β0 ∨Ψαe

e 6= β1,

Lemma
Given (n, k), there is a strongly c.e. real β0, a c.e. real β1 and l
such that there exists a function Γ : [0, 1)× [0, 1) → R satisfies
Γ(β0 � l , β1 � l) ≥ n and β0 � k = 0. Moreover, β0, β1 and l can be
computed uniformly from (n, k).

For simplicity, we assume that φα(x) = x and φα(x) = x .
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The proof of the lemma is divided into two cases: (1) the
induction on n; (2) the induction on k.
Now consider the case for the induction on n. Fixed n, assume
that Γ(β0,i ,k � li ,k , β1,i ,k � li ,k) ≥ i and β0,i ,k � k = 0 for every
i ≤ n, k ∈ N. Let ln+1,0 be equal to (ln,ln,0 + 1).
Step 1. Imitate our programme for putting numbers into
An,ln,0 � ln,ln,0 ,Bn,ln,0 � ln,ln,0 , and do the similar action on the
natural number between 2 and ln+1,0.
Note that Γ(β0,n,ln,0 � ln,ln,0 , β1,n,ln,0 � ln,ln,0) ≥ n, β0,n,ln,0 � ln,0 = 0.
It must be Γ(β0,n,ln,0 � ln,ln,0 , β1,n,ln,0 � ln,ln,0) = n and
β0,n,ln,0 � ln,0 = 0 at some stage t. Hence, at stage t,
Γt(β0,n+1,0,t � ln,ln,0 , β1,n+1,0,t � ln,ln,0) = n/2, and
An+1,0,t � ln,0 + 1 = 0, Bn+1,0,t � 1 = 0.
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Step 2. At stage t + 1, let An+1,0 active and Bn+1,0 waiting, set
An+1,0,t+1(1) = 1, which forces
Γt+1(β0,n+1,0,t+1 � ln,ln,0 , β1,n+1,0,t+1 � ln,ln,0) equal to n/2 + 1/2.
At stage t + 2, let An+1,0 be waiting and Bn+1,0 active, set
Bn+1,0,t+2(1) = 1, Bn+1,0,t+2(q) = 0 (q > 1), which forces
Γt+2(β0,n+1,0,t+2 � ln+1,0, β1,n+1,0,t+2 � ln+1,0) = n/2 + 1.
Step 3. Imitate the programme of the changes of
An,0 � ln,0,Bn,0 � ln,0. Note that An+1,0,t+2(x) = Bn+1,0,t+2(x) = 0
(2 ≤ x ≤ ln,0 + 1), do the following similar actions. Imitate the
programme
Note that Γ(β0,n,0 � ln,0, β1,n,0 � ln,0) ≥ n. The effect of the
changes on [2, ln,0] of An+1,0 and Bn+1,0 induces
Γ(β0,n+1,0 � ln+1,0, β1,n+1,0 � ln+1,0) ≥ n + 1.

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees



Outline

Next consider the case for the induction on k. Fix (n, k), assume
that Γ(β0,i ,j � li ,j , β1,i ,j � li ,j) ≥ i and β0,i ,j � j = 0 for every i ≤ n
or j ≤ k. We can win by controlling An,k+1 � ln,k+1,Bn,k+1 � ln,k+1

as follows. Let ln,k+1 be equal to ln−1,ln,k
+ 1.

Step 1. Imitate the programme of the changes of
An−1,ln,k

� ln−1,ln,k
,Bn−1,ln,k

� ln−1,ln,k
.

Note that Γ(β0,n−1,ln,k
� ln−1,ln,k

, β1,n−1,ln,k
� ln−1,ln,k

) ≥ n − 1,
β0,n−1,ln,k

� ln,k = 0. It must be
Γ(β0,n−1,ln,k

� ln−1,ln,k
, β1,n−1,ln,k

� ln−1,ln,k
) = n + 1,

β0,n−1,ln,k
� ln,k = 0 at some stage t. Hence, at stage t,

Γt(β0,n,k+1,t , β1,n,k+1,t) = (n − 1)/2, and An,k+1,t � ln,k,t + 1 = 0.
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Step 2. At stage t + 1, let An,k+1 waiting and Bn,k+1 active, set
Bn,k+1,t+2(1) = 1, Bn,k+1,t+2(q) = 0 (q > 1), which forces
Γt+1(β0,n,k+1,t+1 � ln,k+1, β1,n,k+1,t+1 � ln,k+1) = n/2.
Step 3. Imitate the programme of the changes of
An,k � ln,k ,Bn,k � ln,k . Here An,k+1,t+1(x) = Bn,k+1,t+1(x) = 0
(2 ≤ x ≤ ln,k + 1).
Note that Γ(β0,n,k � ln,k , β1,n,k � ln,k) ≥ (n − 1), β0,n,k � k = 0.
The effect of the changes on [2, ln,k + 1] of An,k+1 and Bn,k+1

induces Γ(β0,n,k+1 � ln,k+1, β1,n,k+1 � ln,k+1) ≥ n and
β0,n,k+1 � (k + 1) = 0.
Since the construction is effective, β0,n,k is strongly c.e. and
β1,n,k+1 is c.e. for every n, k.
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The main Theorem in the progress

Theorem
There exists a maximal c.e. reals in the sw-Degrees.

Corollary

There are ℵ0 incomparable maximal c.e. reals in the sw-Degrees.

Theorem
For any noncomputable c.e. real α, there exist a c.e. real β such
that β 6≤sw α and α ≤T β.
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The proof of the theorem

It suffices to build a c.e. real α to meet the following requirements:

R<e,n> : α = Φβe
e ⇒ ∃Γ(Γα = βe)

where each {Φe , βe}e∈ω is an enumeration of sw-procedures and
c.e. reals with use φe(x) ≤ x + n(n ∈ ω).

Without loss of generality, suppose that βe is less than 0.1.
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The special programm of the theorem

For any Φe , our aim is to make α 6= Φβe
e or to define a function Γ

such that Γα = βe .

Assume that when we put some number (≤ l(e, n) into α at
expansionary stage, βd(φe(x) + 1) changes at the greatest
position, i.e. the change is the slowest.

We assume that in digital expansion of β, there are infinite 1.
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The strategy for n = 0

1. Wait for an expansionary stage when the first 1 appears in
digital expansion of β, say at the position m < l(e, n).
Then we let α(m − 1) change to 1.
2. Wait for next expansionary stage and once we find it, β(m1)
must change to 1. Then we let α(m − 2) change to 1 and wait for
next expansionary stage.
Repeating the above strategy until β have to be ready to change
at position 1, by our assumption, this is impossible. Hence we win.
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The strategy for n = 1

1. Wait for an expansionary stage when the first 1 appears in
digital expansion of β, say at the position m < l(e, n).
Then we let α(m − 1) change to 1.
2. Wait for next expansionary stage and once we find it, β(m − 1)
must change. We let α(m − 2) change to 1 and wait for next
expansionary stage.
Repeating the above strategy until β have to be ready to change
at position 1, by our assumption, this is impossible. Hence we win.
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The strategy for n = 2

β 100 100 100

α 100 100 100
⇒ β 100 100 110

α 100 101 000
⇒

β 100 101 0

α 100 101 1
⇒ β 100 110 0

α 100 111 0
⇒

β 101 000 0

α 101 000 0
Similarly we can get
β 11 000 0

α 11 000 0
⇒ β 100 000 0

α 100 000 0

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees



Outline

The strategy for n = 2

β 000 100 100

α 100 100 100
⇒ β 000 100 110

α 100 101 000
⇒

β 000 101 0

α 100 101 1
⇒ β 000 110 0

α 100 111 0
⇒

β 001 000 0

α 101 000 0
Similarly we can get
β 01 000 0

α 11 000 0
⇒ β 01 000 0

α 10 000 0
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Note that
β 10 000 0

α 11 000 0
can move left forever by using 1 with lifting 1 if it only meet 1 with
lifting 1. We call such case 11.

Using 11, the above case can change to
β 100 000 0

α 111 000 0
⇒

β 0110 000 0

α 1000 000 0
⇒ β 100 000 0

α 101 000 0
⇒

β 100 100 0

α 101 110 0
⇒ β 101 000 0

α 110 000 0
⇒

β 1100 000 0

α 1111 000 0
⇒ β 10000 000 0

α 10000 000 0
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The strategy for n

1. Wait for an expansionary stage, say s0 when in β, the number of
1 is ≥ 2n−1 + 1. Suppose that the position of the last 1 in β is t0.
2.Creating a situation such that we can apply (n − 1)-strategy
from next expansionary stage.
a) then add 1 to the position t0 − 1 to the α to force β change at
t0 − 1 + n.
b) Waiting for next expansionary stage when in β, there appear a
new 1, say at position t1, then add 1 to the position t1 − 1 to the
α to force β change at t1 − 1 + n..
c)repeating until we can get more than 2n−2 + 1 new good 1 with
lifting n − 1 position after stage s0.
Now the numbers on α and β are:
β 010· · · 01 0· · · 0 010· · · 01 · · · 010· · · 01

α 100· · · 00 0· · · 0 100· · · 00 · · · 100· · · 00
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to find the first fixed pair

β 0100· · · 01 0· · · 00

α 1000· · · 00 0· · · 0 ⇒ β 011· · · 001 0· · · 00

α 110· · · 000 0· · · 0 ⇒

β 011· · · 111 0· · · 00

α 111· · · 100 0· · · 00
⇒ β 100· · · 000 0· · · 00

α 111· · · 110 0· · · 00
This is called the first fixed pair. Note that it corresponds to
β 0100· · · 01 0· · · 00

α 1000· · · 00 0· · · 00
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to find the ability of the first fixed pair

when this first fixed point meet a block, we will prove that it can
takeover the block, i.e.,
β 0 100· · · 00 0· · · 00

α 1 111· · · 11 0· · · 00
injure it, it changes to
β 00 10· · · 01 0· · · 00

α 10 00· · · 00 0· · · 00
⇒ β 01 10· · · 00 0· · · 00

α 11 11· · · 10 0· · · 00
⇒

β 00 110· · · 01 0· · · 00

α 10 000· · · 00 0· · · 00
⇒ β 01 1100· · · 00 0· · · 00

α 11 1111· · · 10 0· · · 00

⇒ β 1 000· · · 00 0· · · 00

α 1 111· · · 11 0· · · 00
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look for the last fixed pair

the last fixed pair corresponds to
β 0 1· · · 1 0· · · 00

α 1 0· · · 0 0· · · 00

By induction suppose that this is
β 100· · · 00 0· · · 00

α a 0· · · 00
when this last fixed pair meet a lifting n-number, i.e.,
β 1 100· · · 00 0· · · 00

α 1 a 0· · · 00

applying this last fixed pair,
β 1 11· · · 11 p 0· · · 00

α 1 11· · · 11 q 0· · · 00
injure it
β 1 00· · · 00 0· · · 00

α 1 000· · · 0 0· · · 00

Note that there are 2n−1 fixed pairs.
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leads to a contradiction

6) Applying the above result repeatedly. Then we can force β
bigger enough. If we can applying it infinitely, then we can prove
that β ≥ 0.1, which is a contradiction. That is,
β 0.0 1 11· · · 11 0· · · 00

α 0. 01 11· · · 11 0· · · 00

then we can get
β 0.1 0 00· · · 00 0· · · 00

α 0.10 00· · · 00 0· · · 00
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The single strategy for requirement Re,n

1. Wait for the first expansionary stage, say s1. Then compute
Ψ(e,H, s1).

(1) If Ψ(e,H, s1) = 1, then we do nothing and go to next σ.

(2) If Ψ(e,H, s1) = 0, then from this stage we wait for a stage
such that either Ψ(e,H) = 1 or there are
2n−1 + 1 + 2n−2 + 1 + · · ·+ 22−1 + 1 times new 1 appear in β.
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2. If later at the next expansionary stage after s1 there are
2n−1 + 1 + 2n−2 + 1 + · · ·+ 22−1 + 1 times new 1 appear in β,
then define (or redefine) Γα(x) = βe(x) for any x ≤ l(e, n) with
use γ(x) = x + C .

From this stage, at every expansionary stage, we should define and
redefine Γα = βe . That is, if we find that β(x) change to be 1 at
some position x some expansionary stage and Γα do not know,
then we put some number ≤ γ(x) into α, and initialise all
strategies with lower priority.

Since we have got the prepared data, we can make a disagreement.
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The strategies for two requirements R0, R1

Suppose that σ0 and σ1 work on R0-strategy and R1-strategy
respectively. And σ0 ⊆ σ1.

The R1-strategy is:

1. Wait for the first expansionary stage, say s1. Then compute
Ψ(1,H, s1).
(1) If Ψ(1,H, s1) = 1, then we do nothing and go to next σ.

(2) If Ψ(1,H, s1) = 0, then from this stage we wait for a stage
such that either Ψ(e,H) = 1 or there are
2n1+r−1 + 1 + 2n1+r−2 + 1 + · · ·+ 22−1 + 1 times new 1 appear in
β1.
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2. If at the next expansionary stage, say s2 there are
2n+r−1 + 1 + 2n+r−2 + 1 + · · ·+ 22−1 + 1 times new 1 appear in β,
then define (or redefine) Γα(x) = βe(x). From s2, at every
expansionary stage, we should define and redefine Γα = β1.

Let x0 = min{γ0(y)| γ0(y) wants to enter into α}.
x1 = min{γ1(y)| γ1(y) wants to enter into α}.

If x0 < x1, then use the programme given above to make
disagreement and initialise R1.

If x0 ≥ x1, then put x0 into α, apply the programme given above
from the position x0. If it make a disagreement, then we win. If
not, then x1 will eventually be put into α.
Note that we delay putting x1 into α here.
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