Some properties of c.e. reals in the *sw-degrees*

Lu Hong Department of Mathematics, Nanjing University

July 25, 2005

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees

(4回) (4回) (4回)

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees

・ロト ・回 ト ・ヨト ・ヨト

₹ 9 Q (P

Introduction and definitions

Downey, Hirschfeldt, and Laforte introduced a measure of relative complexity call *sw-reducibility* (strong weak truth table reducibility).

・ 回 ト ・ ヨ ト ・ ヨ ト …

Introduction and definitions

Downey, Hirschfeldt, and Laforte introduced a measure of relative complexity call *sw-reducibility* (strong weak truth table reducibility).

Definition

A set A is nearly computably enumerable if there is a computable approximation $\{A_s\}_{s \in w}$ such that $A(x) = \lim_s A_s(x)$ for all x and $A_s(x) > A_{s+1}(x) \Rightarrow \exists y < x(A_s(y) < A_{s+1}(y)).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees

・ロト ・回 ト ・ヨト ・ヨト

₹ 9 Q (P

Definition

A real α is computably enumerable (c.e) if $\alpha = 0.\chi_A$ where A is a nearly c.e. set. A real α is strongly computably enumerable (strongly c.e.) if $\alpha = 0.\chi_A$ where A is a c.e. set.

伺 ト イヨト イヨト

Definition

A real α is computably enumerable (c.e) if $\alpha = 0.\chi_A$ where A is a nearly c.e. set. A real α is strongly computably enumerable (strongly c.e.) if $\alpha = 0.\chi_A$ where A is a c.e. set.

Definition

Let $A, B \subseteq N$. We say that B is strongly weak truth table reducible (*sw-reducible*) to A, and write $B \leq_{sw} A$, if there is a Turning reduction Γ such that $B = \Gamma^A$ and the use $\gamma(x) \leq x + c$ for some constant c. For reals $\alpha = 0.\chi_A$ and $\beta = 0.\chi_B$, we say that β is sw-reducible to α , and write $\beta \leq_{sw} \alpha$ if $B \leq_{sw} A$.

The sw degrees have a number of nice aspects

For instance, Downey, Hirschfeldt, and Nies proved *sw*-reducibility satisfies Solovay property and

Theorem (Downey, Hirschfeldt, Laforte)

Let α and β be c.e. reals such that lim $\inf_n H(\alpha \upharpoonright n) - H(\beta \upharpoonright n) = \infty$. Then $\beta \leq_{sw} \alpha$.

Furthermore if α is a c.e. real which is noncomputable, then there is a noncomputable strongly c.e. real $\beta \leq_{sw} \alpha$, and this is not true in general, for \leq_{s} .

(1) マン・ション・

coincidence of s-reducibility and sw-reducibility on strong c.e. reals

白 と く ヨ と く ヨ と

-2

coincidence of s-reducibility and sw-reducibility on strong c.e. reals

Theorem If β is strongly c.e. and α is c.e. then $\alpha \leq_{sw} \beta$ implies $\alpha \leq_{s} \beta$.

回 と く ヨ と く ヨ と

coincidence of s-reducibility and sw-reducibility on strong c.e. reals

Theorem

If β is strongly c.e. and α is c.e. then $\alpha \leq_{sw} \beta$ implies $\alpha \leq_{s} \beta$.

Theorem

If α is strongly c.e. and β is c.e. then $\alpha \leq_{\mathsf{S}} \beta$ implies $\alpha \leq_{\mathsf{sw}} \beta$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

the structure of c.e. reals in the sw-degrees

However, we still are interested in *sw*-reducibility since it has some nice properties and it is helpful for studying Turing-degrees by exploring the *sw*-degrees. Further, we may study the structure of c.e. reals in the *sw*-degrees.

伺 ト イヨト イヨト

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees

・ロト ・回 ト ・ヨト ・ヨト

₹ 9 Q (P

Definition

Let A be a nearly c.e. set. The sw-canonical c.e. set A^* associated with A is defined as follows. Begin with $A_0^* = \emptyset$. For all x and s, if either $x \notin A_s$ and $x \in A_{s+1}$, or $x \in A_s$ and $x \notin A_{s+1}$, then for the least j with $\langle x, j \rangle \notin A_s^*$, put $\langle x, j \rangle$ into A_{s+1}^* .

伺 ト イヨト イヨト

Definition

Let A be a nearly c.e. set. The sw-canonical c.e. set A^* associated with A is defined as follows. Begin with $A_0^* = \emptyset$. For all x and s, if either $x \notin A_s$ and $x \in A_{s+1}$, or $x \in A_s$ and $x \notin A_{s+1}$, then for the least j with $\langle x, j \rangle \notin A_s^*$, put $\langle x, j \rangle$ into A_{s+1}^* .

Theorem (Downey, Hirschfeldt, Laforte)

If A is nearly c.e. and noncomputable then there is a noncomputable c.e. set $A^* \leq_{sw} A$. Hence there are no minimal sw-degrees of c.e. reals.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let A be a nearly c.e. set. The sw-canonical c.e. set A^* associated with A is defined as follows. Begin with $A_0^* = \emptyset$. For all x and s, if either $x \notin A_s$ and $x \in A_{s+1}$, or $x \in A_s$ and $x \notin A_{s+1}$, then for the least j with $\langle x, j \rangle \notin A_s^*$, put $\langle x, j \rangle$ into A_{s+1}^* .

Theorem (Downey, Hirschfeldt, Laforte)

If A is nearly c.e. and noncomputable then there is a noncomputable c.e. set $A^* \leq_{sw} A$. Hence there are no minimal sw-degrees of c.e. reals.

Theorem (Downey, Hirschfeldt, Laforte)

There exist nearly c.e. sets A and B such that for all nearly c.e. $W \ge_{sw} A, B$ there is a neraly c.e. Q with $A, B \le_{sw} Q$ but $W \not\le_{sw} Q$. Thus the sw-degrees of c.e. reals do not form an uppersemilattatice.

Yu Liang and Ding Decheng pointed out that we can not characterize randomness by *sw*-reducibility by proving that there is no a largest c.e. *sw*-degree.

Theorem (Yu and Ding)

There is no sw-complete c.e. real. Even more, there is a pair of c.e. reals for which there is no c.e. real above both of them respect to sw-reducibility.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Fan and Lu)

Let $\{\alpha_e\}_{e \in \omega}$ be an effective enumeration of strongly c.e. reals. Then there are strongly c.e. reals β_0 , β_1 such that $\beta_0 \notin_{sw} \alpha_e$ or $\beta_1 \notin_{sw} \alpha_e$ for every α_e .

Proof

$$R_{e,i}: \Phi_i^{\alpha_e} \neq \beta_0 \lor \Psi_i^{\alpha_e} \neq \beta_1,$$

where $\phi_i(x) \leq x + i$ and $\psi_i(x) \leq x + i$.

Pick a large number $k_{e,i}$ for $R_{e,i}$ such that $k_{e,i} > e, i$ and $k_{e,i} > 3k_{e',i'}$ for all e' < e or e = e', i' < i. We only put numbers between $k_{e,i}$ and $3k_{e,i}$ into B or C for $R_{e,i}$.

our results of c.e. reals in the sw-degrees

Theorem (Fan and Lu)

Let $\{\alpha_e\}_{e \in \omega}$ be an effective enumeration of strongly c.e. reals. Then there is a c.e. real β such that $\alpha_e \leq_{sw} \beta$ for every α_e . **Proof**

$$R_e: \Gamma_e^\beta = \alpha_e,$$

where Γ_e is defined by us such that $\gamma_e(x) \leq x + e + 3$.

 Check whether there exist some R_e such that α_e(x) changes.
Choose the least e ≤ s such that ∃(x ≤ s)[α_{e,s+1}(x) ≠ α_{e,s}(x)]}.
Set β_{s+1} = β_s ↾ (x + e + 3) + 2^{-(x+e+3)}.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there is no c.e. real above both of them respect to sw-reducibility.

向下 イヨト イヨト

Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there is no c.e. real above both of them respect to sw-reducibility.

Theorem (Yu)

There exists a sw-cuppable c.e. real.

(4) (5) (4) (5) (4)

Definition (Yu)

A c.e.real α is sw-cuppable if there is a c.e. real β such that there is no c.e. real above both of them respect to sw-reducibility.

Theorem (Yu)

There exists a sw-cuppable c.e. real.

Theorem (Fan and Lu)

For any c.e. real α , there exists a c.e. real β such that β is sw-cuppable and $\alpha \leq_{sw} \beta$.

向下 イヨト イヨト

Theorem (Fan and Lu)

Let $\{\alpha_e\}_{e \in \omega}$ be an effective enumeration of c.e. reals. Then there is a strongly c.e. real β_0 and a c.e. real β_1 such that $\beta_0 \notin_{sw} \alpha_e$ or $\beta_1 \notin_{sw} \alpha_e$ for every e.

Proof

$$R_e: \Phi_e^{\alpha_e} \neq \beta_0 \lor \Psi_e^{\alpha_e} \neq \beta_1,$$

For simplicity, we assume that $\phi^{\alpha}(x) = x$ and $\phi^{\alpha}(x) = x$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Fan and Lu)

Let $\{\alpha_e\}_{e \in \omega}$ be an effective enumeration of c.e. reals. Then there is a strongly c.e. real β_0 and a c.e. real β_1 such that $\beta_0 \not\leq_{sw} \alpha_e$ or $\beta_1 \not\leq_{sw} \alpha_e$ for every e.

Proof

$$R_e: \Phi_e^{\alpha_e} \neq \beta_0 \vee \Psi_e^{\alpha_e} \neq \beta_1,$$

Lemma

Given (n, k), there is a strongly c.e. real β_0 , a c.e. real β_1 and l such that there exists a function $\Gamma : [0, 1) \times [0, 1) \rightarrow R$ satisfies $\Gamma(\beta_0 \upharpoonright l, \beta_1 \upharpoonright l) \ge n$ and $\beta_0 \upharpoonright k = 0$. Moreover, β_0, β_1 and l can be computed uniformly from (n, k).

3

For simplicity, we assume that $\phi^{\alpha}(x) = x$ and $\phi^{\alpha}(x) = x$.

The proof of the lemma is divided into two cases: (1) the induction on n; (2) the induction on k.

Now consider the case for the induction on n. Fixed n, assume that $\Gamma(\beta_{0,i,k} \upharpoonright I_{i,k}, \beta_{1,i,k} \upharpoonright I_{i,k}) \geq i$ and $\beta_{0,i,k} \upharpoonright k = 0$ for every $i \leq n, k \in N$. Let $I_{n+1,0}$ be equal to $(I_{n,I_{n,0}} + 1)$. **Step 1.** Imitate our programme for putting numbers into $A_{n,l_{n,0}} \upharpoonright I_{n,l_{n,0}}, B_{n,l_{n,0}} \upharpoonright I_{n,l_{n,0}}$, and do the similar action on the natural number between 2 and $I_{n+1.0}$. Note that $\Gamma(\beta_{0,n,l_{n,0}} \upharpoonright l_{n,l_{n,0}}, \beta_{1,n,l_{n,0}} \upharpoonright l_{n,l_{n,0}}) \ge n, \ \beta_{0,n,l_{n,0}} \upharpoonright l_{n,0} = 0.$ It must be $\Gamma(\beta_{0,n,l_n,0} \upharpoonright l_{n,l_n,0}, \beta_{1,n,l_n,0} \upharpoonright l_{n,l_n,0}) = n$ and $\beta_{0,n,l_{n,0}} \upharpoonright l_{n,0} = 0$ at some stage t. Hence, at stage t, $\Gamma_t(\beta_{0,n+1,0,t} \upharpoonright I_{n,I_{n,0}}, \beta_{1,n+1,0,t} \upharpoonright I_{n,I_{n,0}}) = n/2$, and $A_{n+1,0,t} \upharpoonright I_{n,0} + 1 = 0, B_{n+1,0,t} \upharpoonright 1 = 0.$

Step 2. At stage t + 1, let $A_{n+1,0}$ active and $B_{n+1,0}$ waiting, set $A_{n+1,0,t+1}(1) = 1$, which forces $\Gamma_{t+1}(\beta_{0,n+1,0,t+1} \upharpoonright I_{n,l_{n,0}}, \beta_{1,n+1,0,t+1} \upharpoonright I_{n,l_{n,0}})$ equal to n/2 + 1/2. At stage t + 2, let $A_{n+1,0}$ be waiting and $B_{n+1,0}$ active, set $B_{n+1,0,t+2}(1) = 1$, $B_{n+1,0,t+2}(q) = 0$ (q > 1), which forces $\Gamma_{t+2}(\beta_{0,n+1,0,t+2} \upharpoonright I_{n+1,0}, \beta_{1,n+1,0,t+2} \upharpoonright I_{n+1,0}) = n/2 + 1.$ Step 3. Imitate the programme of the changes of $A_{n,0} \upharpoonright I_{n,0}, B_{n,0} \upharpoonright I_{n,0}$. Note that $A_{n+1,0,t+2}(x) = B_{n+1,0,t+2}(x) = 0$ $(2 \le x \le I_{n,0} + 1)$, do the following similar actions. Imitate the programme Note that $\Gamma(\beta_{0,n,0} \upharpoonright I_{n,0}, \beta_{1,n,0} \upharpoonright I_{n,0}) \ge n$. The effect of the changes on $[2, I_{n,0}]$ of $A_{n+1,0}$ and $B_{n+1,0}$ induces $\Gamma(\beta_{0,n+1,0} \upharpoonright I_{n+1,0}, \beta_{1,n+1,0} \upharpoonright I_{n+1,0}) > n+1.$

Next consider the case for the induction on k. Fix (n, k), assume that $\Gamma(\beta_{0,i,i} \upharpoonright I_{i,i}, \beta_{1,i,i} \upharpoonright I_{i,i}) \geq i$ and $\beta_{0,i,i} \upharpoonright j = 0$ for every $i \leq n$ or $j \leq k$. We can win by controlling $A_{n,k+1} \upharpoonright I_{n,k+1}, B_{n,k+1} \upharpoonright I_{n,k+1}$ as follows. Let $I_{n,k+1}$ be equal to $I_{n-1,l_{n,k}} + 1$. Step 1. Imitate the programme of the changes of $A_{n-1,I_{n,k}} \upharpoonright I_{n-1,I_{n,k}}, B_{n-1,I_{n,k}} \upharpoonright I_{n-1,I_{n,k}}.$ Note that $\Gamma(\beta_{0,n-1,l_{n,k}} \upharpoonright l_{n-1,l_{n,k}}, \beta_{1,n-1,l_{n,k}} \upharpoonright l_{n-1,l_{n,k}}) \ge n-1$, $\beta_{0,n-1,l_{n,k}} \upharpoonright l_{n,k} = 0$. It must be $\Gamma(\beta_{0,n-1,l_{n,k}} \upharpoonright l_{n-1,l_{n,k}}, \beta_{1,n-1,l_{n,k}} \upharpoonright l_{n-1,l_{n,k}}) = n+1,$ $\beta_{0,n-1,l_{n,k}} \upharpoonright l_{n,k} = 0$ at some stage t. Hence, at stage t, $\Gamma_t(\beta_{0,n,k+1,t}, \beta_{1,n,k+1,t}) = (n-1)/2$, and $A_{n,k+1,t} \upharpoonright I_{n,k,t} + 1 = 0$.

Step 2. At stage t + 1, let $A_{n,k+1}$ waiting and $B_{n,k+1}$ active, set $B_{n,k+1,t+2}(1) = 1$, $B_{n,k+1,t+2}(q) = 0$ (q > 1), which forces $\Gamma_{t+1}(\beta_{0,n,k+1,t+1} \upharpoonright I_{n,k+1}, \beta_{1,n,k+1,t+1} \upharpoonright I_{n,k+1}) = n/2.$ **Step** 3. Imitate the programme of the changes of $A_{n,k} \upharpoonright I_{n,k}, B_{n,k} \upharpoonright I_{n,k}$. Here $A_{n,k+1,t+1}(x) = B_{n,k+1,t+1}(x) = 0$ $(2 < x < l_{n,k} + 1).$ Note that $\Gamma(\beta_{0,n,k} \upharpoonright I_{n,k}, \beta_{1,n,k} \upharpoonright I_{n,k}) \ge (n-1), \beta_{0,n,k} \upharpoonright k = 0.$ The effect of the changes on $[2, I_{n,k} + 1]$ of $A_{n,k+1}$ and $B_{n,k+1}$ induces $\Gamma(\beta_{0,n,k+1} \upharpoonright I_{n,k+1}, \beta_{1,n,k+1} \upharpoonright I_{n,k+1}) \geq n$ and $\beta_{0,n,k+1} \upharpoonright (k+1) = 0.$ Since the construction is effective, $\beta_{0,n,k}$ is strongly c.e. and $\beta_{1,n,k+1}$ is c.e. for every n, k.

The main Theorem in the progress

- 4 回 2 - 4 □ 2 - 4 □

The main Theorem in the progress

Theorem

There exists a maximal c.e. reals in the sw-Degrees.

・ 同下 ・ ヨト ・ ヨト

-2

The main Theorem in the progress

Theorem

There exists a maximal c.e. reals in the sw-Degrees.

Corollary

There are \aleph_0 incomparable maximal c.e. reals in the sw-Degrees.

向下 イヨト イヨト

э

The main Theorem in the progress

Theorem

There exists a maximal c.e. reals in the sw-Degrees.

Corollary

There are \aleph_0 incomparable maximal c.e. reals in the sw-Degrees.

Theorem

For any noncomputable c.e. real α , there exist a c.e. real β such that $\beta \not\leq_{sw} \alpha$ and $\alpha \leq_T \beta$.

向下 イヨト イヨト

The proof of the theorem

It suffices to build a c.e. real α to meet the following requirements:

$$R_{\langle e,n\rangle}: \alpha = \Phi_e^{\beta_e} \Rightarrow \exists \Gamma(\Gamma^{\alpha} = \beta_e)$$

where each $\{\Phi_e, \beta_e\}_{e \in \omega}$ is an enumeration of sw-procedures and c.e. reals with use $\phi_e(x) \leq x + n(n \in \omega)$.

Without loss of generality, suppose that β_e is less than 0.1.

向下 イヨト イヨト

The special programm of the theorem

For any Φ_e , our aim is to make $\alpha \neq \Phi_e^{\beta_e}$ or to define a function Γ such that $\Gamma^{\alpha} = \beta_e$.

Assume that when we put some number $(\leq l(e, n) \text{ into } \alpha \text{ at expansionary stage, } \beta \lceil (\phi_e(x) + 1) \text{ changes at the greatest position, i.e. the change is the slowest.}$

We assume that in digital expansion of β , there are infinite 1.

(4月) (1日) (日)

The strategy for n = 0

- 1. Wait for an expansionary stage when the first 1 appears in digital expansion of β , say at the position m < l(e, n). Then we let $\alpha(m-1)$ change to 1.
- 2. Wait for next expansionary stage and once we find it, $\beta(m_1)$ must change to 1. Then we let $\alpha(m-2)$ change to 1 and wait for next expansionary stage.
- Repeating the above strategy until β have to be ready to change at position 1, by our assumption, this is impossible. Hence we win.

・ロン ・回 と ・ ヨ と ・

The strategy for n = 1

- 1. Wait for an expansionary stage when the first 1 appears in digital expansion of β , say at the position m < l(e, n). Then we let $\alpha(m-1)$ change to 1.
- 2. Wait for next expansionary stage and once we find it, $\beta(m-1)$ must change. We let $\alpha(m-2)$ change to 1 and wait for next expansionary stage.

Repeating the above strategy until β have to be ready to change at position 1, by our assumption, this is impossible. Hence we win.

The strategy for n = 2

-						_							
β	100	100	1	00	_	/	β	1(00	10	00	110	
α	100	100	1	00		(α	1(00	10)1	000] 7
β	100	101	0	٦_	, f	3	1	00	1	10	0		
α	100	101	1			ł	1	00	1	11	0		
β	101	000	0										
α	101	000	0										
Simi	larly	we car	ו ge	t									
β	11	000	0	\rightarrow	β		10	0	00	0	0		
α	11	000	0	\rightarrow	α		10	0	00	0	0		

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees

イロン イヨン イヨン イヨン

-21

The strategy for n = 2

-													
β	000	100	1	00	_	β		000)	10	0	110	
α	100	100	1	00	-	α		100)	10	1	000	
β	000	101	0]_	ß	}	00	0	11	0	0		
α	100	101	1			ł	10	0	11	1	0		
β	001	000	0										
α	101	000	0										
Simi	larly	we car	ו ge	t									
β	01	000	0	\rightarrow	β	0	1	00	00	0			
α	11	000	0	\rightarrow	α	1	0	00	00	0			

Lu Hong Department of Mathematics, Nanjing University Some properties of c.e. reals in the sw-degrees

イロン イヨン イヨン イヨン

-21

No	te	th	at

β	10	000	0
α	11	000	0

can move left forever by using 1 with lifting 1 if it only meet 1 with lifting 1. We call such case 11.

3

- ∢ ⊒ →

The strategy for *n*

1. Wait for an expansionary stage, say s_0 when in β , the number of 1 is $\geq 2^{n-1} + 1$. Suppose that the position of the last 1 in β is t_0 . 2.Creating a situation such that we can apply (n-1)-strategy from next expansionary stage.

a) then add 1 to the position $t_0 - 1$ to the α to force β change at $t_0 - 1 + n$.

b) Waiting for next expansionary stage when in β , there appear a new 1, say at position t_1 , then add 1 to the position $t_1 - 1$ to the α to force β change at $t_1 - 1 + n$.

c)repeating until we can get more than $2^{n-2} + 1$ new good 1 with lifting n-1 position after stage s_0 .

Now the numbers on α and β are:

β	01001	00	01001	 01001
α	$100 \cdot \cdot \cdot 00$	00	$100 \cdot \cdot \cdot 00$	 $100 \cdots 00$

소리가 소리가 소문가 소문가

to find the first fixed pair

β	$0100 \cdots 01$	000		β	$011 \cdots 001$	000					
α	100000	00		α	$110 \cdots 000$	00					
β	$011 \cdots 111$	000		β	$100 \cdot \cdot \cdot 000$	000					
α	$111 \cdots 100$	000		α	$111 \cdots 110$	000					
This	This is called the first fixed pair. Note that it corresponds to										
β	$0100 \cdots 01$	000									
α	100000	000									

イロト イヨト イヨト イヨト

to find the ability of the first fixed pair

when this first fixed point meet a block, we will prove that it can takeover the block, i.e.,

β	0	10	0000	0.	00								
α	1	1	$11 \cdots 11$	0.	00								
inju	ire it	:, it	changes	to									
β	00) [1001	0.	00	_	1	3	01	$10 \cdots 00$	0.	00	
α	10) (0000	0.	00	\Rightarrow	6	γ	11	$11 \cdots 10$	0.	00	
β	00) [$110 \cdots 01$	()00	٦_		β	01	1100	00	0	00
α	10) (0000	()00] ~		α	11	1111	10	0	00
	β	1	0000	0	0(00							
\Rightarrow	α	1	$111\cdots 1$.1	0(00							

・ 同 ト ・ ヨ ト ・ ヨ ト

-2

look for the last fixed pair

the last fixed	pair	corresponds	to
----------------	------	-------------	----

β	0	$1 \cdots 1$	000
α	1	00	000

By induction suppose that this is

when this last fixed pair meet a lifting *n*-number, i.e.,

β	1	$100 \cdots 00$	000
α	1	а	000
			-

applying this last fixed pair, $\begin{vmatrix} \beta & 1 & 11 \cdots 11 & p \\ \hline \alpha & 1 & 11 \cdots 11 & q \end{vmatrix}$

iniure it

β	1	0000	000							
α	1	0000	000							

Note that there are 2^{n-1} fixed pairs.

0...00

 $0 \cdot \cdot \cdot 00$

6) Applying the above result repeatedly. Then we can force β bigger enough. If we can applying it infinitely, then we can prove that $\beta \geq 0.1$, which is a contradiction. That is,

β	0.0 1	$11 \cdot$	· · 11	0	00	
α	0. 01	$11 \cdot$	$\cdot \cdot 11$. 0	00	
then we can		act	β	0.1 0	0000	000
LITEI	we can	ger	α	0.10	0000	000

・ 回 と く ヨ と く ヨ と

The single strategy for requirement $R_{e,n}$

- 1. Wait for the first expansionary stage, say s_1 . Then compute $\Psi(e, H, s_1)$.
- (1) If $\Psi(e, H, s_1) = 1$, then we do nothing and go to next σ .

(2) If $\Psi(e, H, s_1) = 0$, then from this stage we wait for a stage such that either $\Psi(e, H) = 1$ or there are $2^{n-1} + 1 + 2^{n-2} + 1 + \dots + 2^{2-1} + 1$ times new 1 appear in β .

2. If later at the next expansionary stage after s_1 there are $2^{n-1} + 1 + 2^{n-2} + 1 + \dots + 2^{2-1} + 1$ times new 1 appear in β , then define (or redefine) $\Gamma^{\alpha}(x) = \beta_{e}(x)$ for any $x \leq l(e, n)$ with use $\gamma(x) = x + C$.

From this stage, at every expansionary stage, we should define and redefine $\Gamma^{\alpha} = \beta_{e}$. That is, if we find that $\beta(x)$ change to be 1 at some position x some expansionary stage and Γ^{α} do not know, then we put some number $\leq \gamma(x)$ into α , and initialise all strategies with lower priority.

Since we have got the prepared data, we can make a disagreement.

The strategies for two requirements R_0 , R_1

Suppose that σ_0 and σ_1 work on R_0 -strategy and R_1 -strategy respectively. And $\sigma_0 \subseteq \sigma_1$.

The R_1 -strategy is:

1. Wait for the first expansionary stage, say s_1 . Then compute $\Psi(1, H, s_1)$. (1) If $\Psi(1, H, s_1) = 1$, then we do nothing and go to next σ .

(2) If $\Psi(1, H, s_1) = 0$, then from this stage we wait for a stage such that either $\Psi(e, H) = 1$ or there are $2^{n_1+r-1} + 1 + 2^{n_1+r-2} + 1 + \dots + 2^{2-1} + 1$ times new 1 appear in β_1 .

2. If at the next expansionary stage, say s_2 there are $2^{n+r-1} + 1 + 2^{n+r-2} + 1 + \cdots + 2^{2-1} + 1$ times new 1 appear in β , then define (or redefine) $\Gamma^{\alpha}(x) = \beta_e(x)$. From s_2 , at every expansionary stage, we should define and redefine $\Gamma^{\alpha} = \beta_1$.

Let
$$x_0 = \min\{\gamma_0(y) | \gamma_0(y) \text{ wants to enter into } \alpha\}$$
.
 $x_1 = \min\{\gamma_1(y) | \gamma_1(y) \text{ wants to enter into } \alpha\}$.

If $x_0 < x_1$, then use the programme given above to make disagreement and initialise R_1 .

If $x_0 \ge x_1$, then put x_0 into α , apply the programme given above from the position x_0 . If it make a disagreement, then we win. If not, then x_1 will eventually be put into α . Note that we delay putting x_1 into α here.

(日) (同) (E) (E) (E)